Supporting Information

Experimental and Computational Study of a Direct O₂-Coupled Wacker Oxidation: Water

Dependence in the Absence of Cu Salts

Brian J. Anderson, John A. Keith^b* and Matthew S. Sigman^a*

^aDepartment of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112-085;

^bInstitut für Elektrochemie, Universität Ulm, Albert-Einstein-Allee 47, D-89069 Ulm, GE

Contents:

General information	S2
Sample experiment to determine initial rate	S2
Dependence on [decene]	S3-S4
Dependence on [Pd((-)-sparteine)Cl ₂]	S4-S5
Dependence on [water]	S6-S7
Dependence on [NaCl]	S8-S10
Dependence on [sparteine]	S10-S11
Determination of K_{D1}	S11
Dependence on [decene] with CuCl ₂	S11-S13
Dependence on [decene] with NaCl	S13-S14
Synthesis of 2-deutero-undec-1ene	S14-S15
Kinetics with 2-deutero-undec-1ene	S15-S16
Kinetic Isotope Effect for D ₂ O	S17-S18
Rate law derivation- both chlorides dissociate	S18-S23
Theoretical Methods	S24-S30

General

All reagents, unless otherwise specified were bought from commercial sources and used without further purification. Caution should be taken when heating flammable solvents in the presence of O_2 . Pd((–)-sparteine)Cl₂ was prepared as described by literature procedure.ⁱ

Sample experiment to determine initial rate:

Water (0.27 mL), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA, 0.002 mmol), and DMA (1.35 mL) were charged to a O₂-uptake reaction vessel. The reaction vessel was evacuated and filled with O₂ five times before being pressurized to 25 psi O₂ and heated to 70 °C. The mixture was stirred at 800 rpm for 20 minutes (allowing the pressure to stabilize) before decene (114 μ L, 0.6 mmol, 0.3 M) was injected via syringe. Pressure data was collected every five seconds and converted to μ mol of O₂. The conversion of the reaction was monitored by consumption of O₂ and was confirmed by GC. After a short incubation period (approximately 15 min) the pressure decreased. The initial rate of the reaction was determined for the first two percent conversion of decene (loss of 12 μ mol of O₂, Figure 1). **Figure 1.** Consumption of O_2 during Wacker oxidation of decene, the full reaction profile (left) and the linear fit for the initial two percent conversion of decene (right) are shown below.

Dependence on decene

$$\begin{array}{c} \mbox{Pd}((\text{-})\text{-sparteine})(Cl_2) \\ \hline 4:1 \mbox{ DMA: } H_2O \\ \hline 70 \ ^{o}C, \ 25 \ psi \ O_2, \ 800 \ rpm \\ O \end{array}$$

Water (0.4 mL), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((-)-sparteine) Cl_2 (69 µL of a 0.029M solution in DMA), and DMA (total volume 2.0 mL) were charged to a O₂uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the pressure stabilized. Decene was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to µmol of O₂ and the conversion of the reaction was monitored by consumption of O₂ and was confirmed by GC. The initial rate of the reaction was determined for the first two percent conversion of decene.

decene				
[D]	Initial rate	1	0.040	
[Decene]	(µmol O₂/s)	error	0.035 -	
0.02	0.00305	4.20E-04 🗑		1- 1
0.04	0.00786	2.30E-04	0.030 -	1.5
0.05	0.01283	2.10E-04	0.025 -	· •
0.10 ^a	0.016	9.43E-05	0.020	
0.125	0.02088	1.80E-04 🥡		y = (ax)/(b+x)
0.15	0.02176	3.90E-04	0.015	Chi^2/DoF = 2.5656E-6
0.20 ^a	0.01984	1.17E-04 🗳	0.010-]	R^2 = 0.97486
0.25	0.03026	1.33E-04 🙀	~	a 0.04285 ±0.00249 b 0.156 ±0.02331
0.30	0.02849	8.06E-05 🖲	0.005 -	
0.40 ^a	0.0308	8.94E-05	0.000	0.3 0.4 0.4
0.45 ^a	0.03081	6.02E-05		[decene]
0.50 ^a	0.02831	9.00E-05		

^a average of 2 values

 Table 1. Initial rates for oxidation of

Pd((-)-sparteine)(Cl₂) dependence at low [decene] (0.1 M)

Water (0.4 mL, 11.1 M), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (x μ L of a 0.029M solution in DMA), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi with O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the temperature and pressure stabilized. Decene (38 μ L, 0.1 M) was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was determined for the first two percent conversion of decene.

Pd((-)-sparteine)(Cl₂) dependence at high [decene] (0.3 M)

Water (0.27 mL, 7.4 M), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (x μ L of a 0.029M solution in DMA), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi with O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the temperature and pressure stabilized. Decene (114 μ L, 0.3 M) was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was determined for the first two percent conversion of decene.

Water dependence at low [decene] (0.1 M)

Water (x mL), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA, 0.002 mmol), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi with O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the temperature and pressure stabilized. Decene (38 μ L, 0.1 M) was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was determined for the first two percent conversion of decene.

Water dependence at high [decene] (0.3 M)

Water (x mL), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA, 0.002 mmol), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi with O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the temperature and pressure stabilized. Decene (114 μ L, 0.3 M) was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was determined for the first two percent conversion of decene.

Chloride inhibition at low [decene] (0.1 M)

Water (total volume 0.40 mL, 11.1 M), NaCl (x μ L of a 0.49 M solution in H₂O), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA, 0.002 mmol), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi with O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the temperature and pressure stabilized. Decene (38 μ L, 0.1 M) was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was determined for the first two percent conversion of decene.

[NaCl]	Initial rate (µmol O₂/s)	error	م 0.018 -
0.003	0.01585	9.20E-04	0.016 Equation:
0.004	0.00909	5.40E-04	y = a*x^b
0.005	0.00651	2.30E-04	6 0.014 1 Chi^2/DoF = 3.2833E-6 R^2 = 0.82822
0.006	0.00965	8.30E-04	O 0.012
0.007	0.00637	3.80E-04	0.010 1 b -0.95484 ±0.14972
0.0095	0.00209	5.00E-05	0.010 0.008 0.006 0.006 0.006 0.0006 0.00006 0.00006 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004
0.011	0.00649	6.50E-04	
0.012	0.00271	1.30E-04	
0.017	0.00147	9.00E-05	
0.022	0.00217	7.00E-05	<u> </u>
0.027	0.00363	2.20E-04	0.000
0.032	0.00412	2.70E-04	0.00 0.01 0.02 0.03 0.04 0.05
0.042	6.60E-04	2.00E-05	[Cſ]
0.047	0.00177	6.00E-05	
0.052	5.10E-04	2.00E-05	_

Chloride inhibition at high [decene] (0.3 M)

Water (total volume 0.27 mL, 7.4 M), NaCl (x μ L of a 0.49 M solution in H₂O), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA, 0.002 mmol), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi with O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the temperature and pressure stabilized. Decene (114 μ L, 0.3 M) was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was determined for the first two percent conversion of decene.

Water (total volume 0.40 mL, 11.1 M), (–)-sparteine (x μ L), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA, 0.002 mmol), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi with O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the temperature and pressure stabilized. Decene (38 μ L, 0.1 M) was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was determined for the first two percent conversion of decene.

[sparteine]	Initial rate (µmol O₂/s)	error
0.0003	0.01562	0.00298
0.0005	0.01010	0.00161
0.0010	0.00143	0.00007
0.0015	0.00279	0.00014
0.0020	0.00088	0.00007
0.0030	0.00055	0.00002

Determination of K_{D1}

Water (total volume 0.40 mL, 11.1 M), Pd((-)-sparteine) Cl_2 (69 µL of a 0.029M solution in DMA, 0.002 mmol), and DMA (total volume 2.0 mL) were heated to 70 °C and stirred for 15 minutes. The [Cl⁻] was measured using a SympHony Chloride Electrode to be 0.001 M. The same [Cl⁻] was measured when the [H₂O] was decreased to 7.4 M. From the error of the electrode (0.00005 M) the dissociation constant (K_{D1}) can be determined to be greater than 0.018.

Dependence on decene with 0.001 M CuCl₂

Water (0.333 mL), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((-)-sparteine)Cl₂ (69 µL of a 0.029M solution in DMA), CuCl₂ (0.067 mL of a 0.03 M solution in water), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The

solution was evacuated and filled with O_2 five times before being pressurized to 25 psi O_2 , heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the pressure stabilized. Decene was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to µmol of O_2 and the conversion of the reaction was monitored by consumption of O_2 and was confirmed by GC. The initial rate of the reaction was determined for the first two percent conversion of decene.

[[decene]	Initial rate (µmol O₂/s)	error
0.05	0.01221	9.30E-04
0.075	0.0282	0.00297
0.125	0.04747	0.00212
0.175	0.06205	0.0029
0.225	0.07896	0.00205

Dependence on decene with 0.01 M CuCl₂

Water (0.19 mL), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((-)-sparteine) Cl_2 (69 µL of a 0.029M solution in DMA), $CuCl_2$ (0.08 mL of a 0.25 M solution in water), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the pressure stabilized. Decene was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to µmol of O₂ and the conversion of the reaction was monitored by consumption of O₂ and was confirmed by GC. The initial rate of the reaction was determined for the first two percent conversion of decene.

[[decene]	Initial rate (µmol O₂/s)	error
0.1	6.80E-04	7.00E-05
0.15	0.00194	5.00E-05
0.2	0.00497	1.50E-04
0.25	0.00486	6.00E-05
0.3	0.00947	1.30E-04
0.125	0.0011	3.00E-05
0.175	0.00225	4.00E-05
0.275	0.00701	1.00E-04

Dependence on decene with 0.01 M NaCl

Water (0.19 mL), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA), NaCl (0.08 mL of a 0.25 M solution in water), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the pressure stabilized. Decene was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was monitored by consumption of O₂ and was confirmed by GC. The initial rate of the reaction was determined for the first two percent conversion of decene.

[[decene]	Initial rate (µmol O₂/s)	error
0.05	0.00038	4.00E-05
0.1	0.00114	1.33E-07
0.15	0.00196	4.00E-05

0.2	0.002315	1.35E-07
0.25	0.00226	1.01E-07
0.3	0.00216	8.76E-08
0.35	0.00234	3.00E-05

Synthesis of 2-deutero-undec-1ene

Methyl deconate (423 mg, 2.3 mmol) was added dropwise to a slurry of lithium aluminum deuteride (386 mg, 9.2 mmol) in 15 mL of THF at -78 °C. The slurry was allowed to warm to room temperature before being heated under reflux for 10 hours. The mixture was quenched by slow addition of 1 mL of H₂O and the product was extracted with 50 mL of diethyl ether. The ether was washed with saturated NaHCO₃, brine, dried with NaSO₄, and concentrated *in vacuo* to give 365 mg (98%) of a colorless liquid.

The deuterated alcohol was then added dropwise to a solution of oxalyl chloride (388 μ L, 4.5 mmol) and dimethyl sulfoxide (653 μ L, 13.8 mmol) in 15 mL of CH₂Cl₂ at -78 °C. The mixture was stirred for 1 hour before triethyl amine (1.9 mL, 13.8 mmol) was added and the solution was allowed to warm to room temperature. The mixture was quenched with 5 mL of aqueous NH₄Cl, extracted with 50 mL of ether, washed with brine, dried with MgSO₄, and concentrated *in vacuo* to give 330 mg (91%) 1-*deutero*-decanal as a colorless liquid.

Methyltriphenylphosphonium bromide (787 mg, 2.1 mmol) in 15 mL of THF was treated with butyl lithium (840 μ L of a 2.5 M solution in hexanes) at -78 °C. The mixture was allowed to warm to room temperature for 10 minutes before returning to -78 °C and treated with 1*deutero*-decanal (330 mg, 2.1 mmol) and stirred for 1 hour before allowing to warm to room temperature. Silica (50 mg) was added to the slurry and the solution was decanted. The remaining solid was washed with hexanes (3 x 30 mL), the organic fractions were combined and the solvent was removed to give an oil. The 2-deutero-undec-1ene was purified by Kugelrohr distillation to give 250 mg (77%) of the desired product containing 93% deuterium incorporation as determined by GC-MS.

Kinetics with 2-deutero-undec-1ene

Water (0.4 mL), tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the pressure stabilized. Undecene was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was monitored by consumption of O₂ and was confirmed by GC. The initial rate of the reaction was determined for the first two percent conversion of undecene. No KIE was observed at 0.1 M or 0.3 M undecene. The product, 2-undecanone, contained 60% deuterium incorporation as determined by GCMS.

[undecene]	Initial Rate	error	Initial Rate	error	kH/kD
0.1	0.0124	1.39708E-05	0.0122	3.70E-04	1.0
0.3	0.0067	1.73472E-06	0.0076	1.40E-04	0.9

Kinetic Isotope Effect: *k*_{H20}/k_{D20}

The effect of D_2O on the reaction rate was studied at both low and high [decene] reaction conditions.

D₂O, tetradecane (0.2 mL of a 0.1 M solution in DMA), Pd((–)-sparteine)Cl₂ (69 μ L of a 0.029M solution in DMA, 0.002 mmol), and DMA (total volume 2.0 mL) were charged to a O₂-uptake reaction vessel. The solution was evacuated and filled with O₂ five times before being pressurized to 25 psi with O₂, heated to 70 °C, and stirred at 800 rpm. The mixture was stirred for 20 minutes and the temperature and pressure stabilized. Decene was injected and the pressure was measured in each well every 5 seconds. The pressure was converted to μ mol of O₂ and the conversion of the reaction was monitored by consumption of O₂ and was confirmed by GC. The initial rate of the reaction was determined for the first two percent conversion of decene. The average initial rates for reaction in D₂O were compared to the average rates with H₂O. At low [decene] a KIE of 1.6 ± 0.1 was observed. At high concentration a KIE of 2.6 ± 0.1 was observed. The data can be seen in the table below.

Table 1. Comparison of H_2U to D_2U				
[decene]	D or H	initial rate (µmol O₂/s)	error	
0.1	D_2O	0.00799	5.80E-04	
0.1	D_2O	0.00766	2.80E-04	
0.1	D_2O	0.00932	4.70E-04	
0.1	H_2O	0.0091	0.00102	
0.1	H_2O	0.01831	0.00137	
0.1	H_2O	0.01267	0.00113	
0.3	D_2O	0.00825	1.30E-04	
0.3	D_2O	0.00636	1.10E-04	
0.3	D_2O	0.00539	8.00E-05	
0.3	H_2O	0.02019	6.30E-04	

Table 1. Comparison of H₂O to D₂O

0.3	H_2O	0.01906	0.00158
0.3	H_2O	0.01205	4.20E-04

Table 2. Kinetic isotope effect

Conditions		Average Initial Rate (µmol O₂/s)	Error	k _H ∕k _D	error
Low [decene]	D ₂ O H ₂ O	0.008323 0.013360	0.000266 0.000683	1.6	0.1
high [decene]	D ₂ O H ₂ O	0.006667 0.017100	0.000063 0.000584	2.6	0.1

RATE LAW DERIVATION

$$PdCl_{2} + L \xrightarrow{K_{D1}} Pd(Cl)(L)^{+} + Cl^{-}$$

$$Pd = Pd((-)sparteine)$$

$$Pd(Cl)(L)^{+} + L \xrightarrow{K_{D2}} PdL_{2}^{2+} + Cl^{-}$$

$$PdL_{2}^{2+} + A \xrightarrow{K_{A}} Pd(A)(L)^{2+} + L$$

$$PdL_{2}^{2+} + A \xrightarrow{K_{A}} Pd(A)(L)^{2+} + L$$

$$Pd(A)(L)^{2+} + 3H_{2}O \xrightarrow{k_{1}} Pd(L)(A)(3H_{2}O)^{2+}$$

$$L = DMA$$

$$Pd(A)(L)(3H_{2}O)^{2+} \xrightarrow{k_{rds}} Pd(B)(L)^{+} + 3H_{2}O$$

Rate $v = k_{rds} [Pd(A)(L)(3H_2O)^{2+}]$

Total Pd: $[Pd]_T = [PdCl_2] + [Pd(L)(Cl)^+] + [PdL_2^{2+}] + [Pd(A)(L)^{2+}] + [Pd(A)(L)(3H_2O)^{2+}]$

$$K_{D1} = \frac{[Pd(Cl)(L)^{+}][Cl^{-}]}{[PdCl_{2}][L]} \qquad K_{D2} = \frac{[PdL_{2}^{2+}][Cl^{-}]}{[Pd(Cl)(L)^{+}][L]} \qquad K_{A} = \frac{[Pd(A)(L)^{2+}][L]}{[PdL_{2}^{2+}][A]}$$

SS assumption:

$$0 = k_1 [Pd(A)(L)^{2+}] [H_2O]^3 - k_{-1} [Pd(A)(L)(3H_2O)^{2+}] - k_{rds} [Pd(A)(L)(3H_2O)^{2+}]$$

Rearrange K_{D1} expression:

$$[PdCl_{2}] = \frac{[Pd(Cl)(L)^{+}][Cl^{-}]}{K_{D1}[L]}$$

Sub into the expression for [Pd]_T:

$$[Pd]_{T} = \frac{[Pd(Cl)(L)^{+}][Cl^{-}]}{K_{D1}[L]} + [Pd(L)(Cl)^{+}] + [PdL_{2}^{2+}] + [Pd(A)(L)^{2+}] + [Pd(A)(L)(3H_{2}O)^{2+}]$$

Combine terms:

$$[Pd]_{T} = [Pd(L)(Cl)^{+}] \left(1 + \frac{[Cl^{-}]}{K_{Dl}[L]} \right) + [PdL_{2}^{2+}] + [Pd(A)(L)^{2+}] + [Pd(A)(L)(3H_{2}O)^{2+}]$$

Rearrange K_{D2} expression

$$[Pd(Cl)(L)^{+}] = \frac{[PdL_{2}^{2+}][Cl^{-}]}{K_{D2}[L]}$$

Sub into [Pd]_T expression:

$$[Pd]_{T} = \frac{[PdL_{2}^{2+}][Cl^{-}]}{K_{D2}[L]} \left(1 + \frac{[Cl^{-}]}{K_{D1}[L]}\right) + [PdL_{2}^{2+}] + [Pd(A)(L)^{2+}] + [Pd(A)(L)(3H_{2}O)^{2+}]$$

Rearrange, combine terms:

$$[Pd]_{T} = \frac{[PdL_{2}^{2+}][Cl^{-}]}{K_{D2}[L]} \left(1 + \frac{[Cl^{-}]}{K_{D1}[L]} + \frac{K_{D2}[L]}{[Cl^{-}]}\right) + [Pd(A)(L)^{2+}] + [Pd(A)(L)(3H_{2}O)^{2+}]$$

Rearrange K_A expression

$$[PdL_{2}^{2^{+}}] = \frac{[Pd(A)(L)^{2^{+}}][L]}{K_{A}[A]}$$

Sub into [Pd]_T expression:
$$[Pd]_{T} = \frac{[Pd(A)(L)^{2^{+}}][L][Cl^{-}]}{K_{A}K_{D2}[L][A]} \left(1 + \frac{[Cl^{-}]}{K_{D1}[L]} + \frac{K_{D2}[L]}{[Cl^{-}]}\right) + [Pd(A)(L)^{2^{+}}] + [Pd(A)(L)(3H_{2}O)^{2^{+}}] \text{Rear}$$

range, combine terms:

$$[Pd]_{T} = \frac{[Pd(A)(L)^{2+}][Cl^{-}]}{K_{A}K_{D2}[A]} \left(1 + \frac{[Cl^{-}]}{K_{D1}[L]} + \frac{K_{D2}[L]}{[Cl^{-}]} + \frac{K_{A}K_{D2}[A]}{[Cl^{-}]}\right) + [Pd(A)(L)(3H_{2}O)^{2+}]$$

Rearrange SS assumption: $h = h = D J(A)(L)^{2+3} = L = D J(A)($

$$0 = k_1 [Pd(A)(L)^{2+}] [H_2O]^3 - k_{-1} [Pd(A)(L)(3H_2O)^{2+}] - k_{rds} [Pd(A)(L)(3H_2O)^{2+}] k_1 [Pd(A)(L)^{2+}] [H_2O]^3 = k_{-1} [Pd(A)(L)(3H_2O)^{2+}] + k_{rds} [Pd(A)(L)(3H_2O)^{2+}]$$

$$[Pd(A)(L)^{2+}] = \frac{[Pd(A)(L)(3H_2O)^{2+}](k_{-1} + k_{rds})}{k_1[H_2O]^3}$$

Sub into [Pd]_T expression:

$$[Pd]_{T} = \frac{[Pd(A)(L)(3H_{2}O)^{2^{+}}](k_{-1} + k_{rds})[Cl^{-}]}{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]} \left(1 + \frac{[Cl^{-}]}{K_{D1}[L]} + \frac{K_{D2}[L]}{[Cl^{-}]} + \frac{K_{A}K_{D2}[A]}{[Cl^{-}]}\right) + [Pd(A)(L)(3H_{2}O)^{2^{+}}]$$

Combine terms:

$$[Pd]_{T} = \frac{[Pd(A)(L)(3H_{2}O)^{2^{+}}](k_{-1} + k_{rds})[Cl^{-}]}{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]} \left(1 + \frac{[Cl^{-}]}{K_{D1}[L]} + \frac{K_{D2}[L]}{[Cl^{-}]} + \frac{K_{A}K_{D2}[A]}{[Cl^{-}]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{(k_{-1} + k_{rds})[Cl^{-}]}\right)$$

Solve for $[Pd(A)(L)(3H_2O)^{2+}]$

$$[Pd(A)(L)(3H_2O)^{2+}] = \frac{[Pd]_T k_1[H_2O]^3 K_A K_{D2}[A]}{\left(k_{-1} + k_{rds}\right)[Cl^-] \left(1 + \frac{[Cl^-]}{K_{D1}[L]} + \frac{K_{D2}[L]}{[Cl^-]} + \frac{K_A K_{D2}[A]}{[Cl^-]} + \frac{k_1[H_2O]^3 K_A K_{D2}[A]}{[Cl^-]}\right)}$$

Sub into rate expression:

$$v = \frac{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A K_{D2} [A]}{\left(k_{-1} + k_{rds}\right) [Cl^-] \left(1 + \frac{[Cl^-]}{K_{D1} [L]} + \frac{K_{D2} [L]}{[Cl^-]} + \frac{K_A K_{D2} [A]}{[Cl^-]} + \frac{k_1 [H_2 O]^3 K_A K_{D2} [A]}{\left(k_{-1} + k_{rds}\right) [Cl^-]}\right)}$$

At high [A] expression simplifies to:

$$v = \frac{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A K_{D2} [A]}{\left(k_{-1} + k_{rds}\right) [Cl^-] \left(\frac{K_A K_{D2} [A]}{[Cl^-]} + \frac{k_1 [H_2 O]^3 K_A K_{D2} [A]}{\left(k_{-1} + k_{rds}\right) [Cl^-]}\right)}$$

$$v = \frac{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A K_{D2}}{\left(k_{-1} + k_{rds}\right) [Cl^-] \left(\frac{K_A K_{D2}}{[Cl^-]} + \frac{k_1 [H_2 O]^3 K_A K_{D2}}{\left(k_{-1} + k_{rds}\right) [Cl^-]}\right)}$$

Solve for Cl dependence inverse:

$$\frac{1}{v} = \frac{\left(k_{-1} + k_{rds}\right)\left[Cl^{-}\right]\left(1 + \frac{\left[Cl^{-}\right]}{K_{D1}\left[L\right]} + \frac{K_{D2}\left[L\right]}{\left[Cl^{-}\right]} + \frac{K_{A}K_{D2}\left[A\right]}{\left[Cl^{-}\right]} + \frac{k_{1}\left[H_{2}O\right]^{3}K_{A}K_{D2}\left[A\right]}{\left(k_{-1} + k_{rds}\right)\left[Cl^{-}\right]}\right)}{k_{rds}\left[Pd\right]_{T}k_{1}\left[H_{2}O\right]^{3}K_{A}K_{D2}\left[A\right]}$$

expand

$$\frac{1}{v} = \frac{\left(\left(k_{-1} + k_{rds}\right)[CI^{-}] + \frac{\left(k_{-1} + k_{rds}\right)[CI^{-}][K_{D1}]}{K_{D1}[L]} + \frac{\left(k_{-1} + k_{rds}\right)[CI^{-}]K_{A}K_{D2}[A]}{[CI^{-}]} + \frac{\left(k_{-1} + k_{rds}\right)[CI^{-}]k_{A}K_{D2}[A]}{[CI^{-}]} + \frac{\left(k_{-1} + k_{rds}\right)[CI^{-}]k_{A}K_{D2}[A]}{(k_{-1} + k_{rds})[CI^{-}]} + \frac{\left(k_{-1} + k_{rds}\right)[CI^{-}]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]} - \frac{\left(\left(k_{-1} + k_{rds}\right)[CI^{-}] + \frac{\left(k_{-1} + k_{rds}\right)[CI^{-}]^{2}}{K_{D1}[L]} + \left(k_{-1} + k_{rds}\right)K_{D2}[L] + \left(k_{-1} + k_{rds}\right)K_{A}K_{D2}[A] + k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]\right)}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]} - \frac{\left(k_{-1} + k_{rds}\right)[CI^{-}]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]} + \frac{\left(k_{-1} + k_{rds}\right)K_{D2}[L]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}[A]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{k_{rds}[Pd]_{T}[H_{2}O]^{3}[A]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{k_{rds}[Pd]_{T}[H_{2}O]^{3}[A]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{k_{rds}[Pd]_{T}[H_{2}O]^{3}[A]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{k_{rds}[Pd]_{T}[H_{2}O]^{3}[A]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{k_{rds}[Pd]_{T}[H_{2}O]^{3}[A]} + \frac{k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]}{k_{rds}[Pd]_{T}[H_{2}O]^{3}[A]} + \frac{k_{1}[H_{2}O]$$

100 mM decene		300 mM decene	
[Cl ⁻]	Rate ⁻¹ (umol O ₂ s ⁻¹)	[Cl ⁻]	Rate ⁻¹ (umol O ₂ s ⁻¹)
0.002	63.1	0.031	1100
0.003	110.0	0.041	1890
0.004	153.6	0.0015	226
0.005	103.6	0.0025	262

0.006	157.0	0.0035	298	
0.0085	225.2	0.011	424	
0.01	217.4	0.016	549	
0.016	539.1	0.021	833	
		0.026	725	
		0.0085	403	

Dependence on Alkene

Solve for dependence on [A]:

$$v = \frac{k_{rds}[Pd]_{T} k_{1}[H_{2}O]^{3} K_{A} K_{D2}[A]}{\left(k_{-1} + k_{rds}\right)[Cl^{-}] \left(1 + \frac{[Cl^{-}]}{K_{D1}[L]} + \frac{K_{D2}[L]}{[Cl^{-}]} + \frac{K_{A} K_{D2}[A]}{[Cl^{-}]} + \frac{k_{1}[H_{2}O]^{3} K_{A} K_{D2}[A]}{[Cl^{-}]} + \frac{k_{1}[H_{2}O]^{3} K_{A} K_{D2}[A]}{(k_{-1} + k_{rds})[Cl^{-}]}\right)}$$

$$\frac{1}{v} = \frac{(k_{-1} + k_{rds})[Cl^{-}]}{k_{rds}[Pd]_{T} k_{1}[H_{2}O]^{3} K_{A} K_{D2}[A]} + \frac{(k_{-1} + k_{rds})[Cl^{-}]^{2}}{(k_{rds}[Pd]_{T} k_{1}[H_{2}O]^{3} K_{A} K_{D2}[A]} + \frac{(k_{-1} + k_{rds})[L]}{(k_{rds}[Pd]_{T} k_{1}[H_{2}O]^{3} K_{A} K_{D2}[A] K_{D1}[L]} + \frac{(k_{-1} + k_{rds})[L]}{(k_{-1} + k_{rds})[L]} + \frac{(k_{-1} + k_{rds})}{(k_{-1} + k_{rds})[L]} + \frac{(k_{-1} + k_{rds})}{$$

$$= \frac{1}{[A]} \left(\frac{1}{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A K_{D2}} + \frac{1}{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A K_{D2} K_{D1} [L]} + \frac{1}{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A} \right) + \frac{1}{k_{rds} [Pd]_T k_1 [H_2 O]^3} + \frac{1}{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A K_{D2} K_{D1} [L]} + \frac{1}{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A} \right) + \frac{1}{k_{rds} [Pd]_T k_1 [H_2 O]^3 K_A K_{D2} K_{D1} [L]} + \frac{1}{k_{rds} [Pd]_T K_{D1}$$

Fit y = mx + b

Pd dependence

$$\frac{1}{v} = \frac{\left(k_{-1} + k_{rds}\right)\left[Cl^{-}\right]\left(1 + \frac{\left[Cl^{-}\right]}{K_{D1}\left[L\right]} + \frac{K_{D2}\left[L\right]}{\left[Cl^{-}\right]} + \frac{K_{A}K_{D2}\left[A\right]}{\left[Cl^{-}\right]} + \frac{k_{1}\left[H_{2}O\right]^{3}K_{A}K_{D2}\left[A\right]}{\left(k_{-1} + k_{rds}\right)\left[Cl^{-}\right]}\right)}{k_{rds}\left[Pd\right]_{T}k_{1}\left[H_{2}O\right]^{3}K_{A}K_{D2}\left[A\right]}$$

$$\frac{1}{v} = \left(\frac{1}{[Pd]_T}\right) \frac{\left(k_{-1} + k_{rds}\right) [Cl^-] \left(1 + \frac{[Cl^-]}{K_{D1}[L]} + \frac{K_{D2}[L]}{[Cl^-]} + \frac{K_A K_{D2}[A]}{[Cl^-]} + \frac{k_1 [H_2 O]^3 K_A K_{D2}[A]}{\left(k_{-1} + k_{rds}\right) [Cl^-]}\right)}{k_{rds} k_1 [H_2 O]^3 K_A K_{D2}[A]}$$

y = mx

100 mM decene		300 mM	decene
[Pd] ⁻¹	[Pd] ⁻¹ Rate ⁻¹ (umol O ₂ s ⁻¹)		Rate ⁻¹ (umol O ₂ s ⁻¹)
1333	111.4	2000.0	198.0
1000	74.9	1333.3	77.2
769	27.5	1000.0	70.2
588	39.1	769.2	79.9
500	34.8	625.0	69.7
400	18.6	500.0	31.8
333	21.2	434.8	35.3
		384.6	28.2
		333.3	29.9
		285.7	24.1
		250.0	20.7

Solve for dependence of water:

$$\frac{1}{v} = \frac{(k_{-1} + k_{rds})[Cl^{-}]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]} + \frac{(k_{-1} + k_{rds})[Cl^{-}]^{2}}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}K_{D2}[A]K_{D1}[L]} + \frac{(k_{-1} + k_{rds})[L]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}[A]} + \frac{(k_{-1} + k_{rds})}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}} + \frac{1}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}[A]} + \frac{(k_{-1} + k_{rds})[L]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}[A]} + \frac{(k_{-1} + k_{rds})}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}} + \frac{1}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}} + \frac{1}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}[A]} + \frac{(k_{-1} + k_{rds})[L]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}[A]} + \frac{(k_{-1} + k_{rds})[Cl^{-}]^{2}}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}[A]} + \frac{(k_{-1} + k_{rds})[L]}{k_{rds}[Pd]_{T}k_{1}[H_{2}O]^{3}K_{A}[A]} + \frac{(k_{-1}$$

y = mx + b

100 mM decene		300 mM decene	
[water] ⁻³	Rate ⁻¹ (umol O ₂ s ⁻¹)	[water] ⁻³	Rate ⁻¹ (umol O ₂ s ⁻¹)
0.0135	952	0.0135	186
0.0080	476	0.0080	116
0.0036	270	0.0057	87
0.0030	160	0.0036	63
0.0025	366	0.0025	45
0.0018	120	0.0018	53
0.0018	259		
0.0011	160		
0.0007	92		
0.0005	72		

Theoretical details:

- 1. Methods
- 2. Solvation discussion
- 3. Coordinates

1. Methods:

All calculations were carried out with Jaguar version 7.5. Molecular geometries using the B3LYP exchange correlation functional were first optimized with a mixed basis set whereby the Pd atom was assigned the LACVP pseudopotential, adjacent atoms were assigned the 6-31G* basis set, and the rest of the atoms were assigned the "midi!" basis set. After geometric convergence was obtained, the geometries were further optimized by assigning the 6-31G** basis set to all atoms previously assigned with the midi! basis set. Vibrational frequencies at this level confirmed stationary intermediates with the correct number of imaginary frequencies. Finally, single point energy calculations at the B3LYP/LACV3P**++ level yielded final electronic energies.

Solvation was treated with Jaguar's implicit Poisson-Boltzmann continuum solver at the B3LYP/LACVP** level. Dielectric constants ($\varepsilon_{H2O} = 80.4$, $\varepsilon_{DMA} = 37.8$) and probe radii ($r_{H2O} = 1.40$, $r_{DMA} = 2.64$) were used.

2. Solvation discussion:

The simulation of reactions in mixed solvents is difficult due to poorly defined thermal behavior of mixed solvents and the net dielectric effect of mixed solvents. We do not predict the actual solvation energy of a mixed solvent though we do report solvation energies of simulations in pure H_2O and DMA solvents. Calculated energy differences are quite small regardless of the solvent selected, and total energies were small regardless if the molecular geometries were optimized in solvent or not. Thus, calculation data reported in the text are gas-phase optimized structures with single point solvation energy corrections, and we deem our values as quite reasonable approximations of the solvation energies of these species.

Pd[(-)-sparteine]Cl₂

<u>Gas phase energies</u> (LACV3P**++) Gas phase : -1744.240885 a.u. H2O optimized : -1744.238332 a. u. DMA optimized : -1744.238723 a. u.

<u>H2O solvation energies</u> (LACVP**) Gas phase geometry : -0.033724938 a. u. H2O optimized : -0.03833505039 a. u.

DMA solvation energies (LACVP**) Gas phase geometry : -0.035398414 a. u. DMA optimized : -0.04022977438 a. u.

Pd[(-)-sparteine](H₂O)₂²⁺

<u>Gas phase energies (LACV3P**++)</u> Gas phase : -976.109154 H2O optimized : -976.10413320999 DMA optimized : -976.10520076782

H2O solvation energies (LACVP**) Gas phase geometry / H2O solvation : -0.257138753 a. u. H2O optimized / H2O solvation : -0.26364721213 a. u.

<u>DMA solvation energies</u> (LACVP**) Gas phase geometry / DMA solvation : -0.255419769 a. u. DMA optimized / DMA solvation: -0.25834512854 a. u.

Pd[(-)-sparteine](DMA)2²⁺

<u>Gas phase energies</u> (LACV3P**++) Gas phase : -1399.094169 a. u. H2O optimized : -1399.09390155332 a. u. DMA optimized : -1399.09386782461 a. u.

<u>H2O solvation energies</u> (LACVP**) Gas phase geometry : -0.202726037 a. u. H2O optimized : -0.20305161929 a. u.

<u>DMA solvation energies (LACVP**)</u> Gas phase geometry : -0.203105681 a. u. DMA optimized : -0.20296511494 a. u.

3. Coordinates:

PdCl2	nucleophilic	attack	transition	state.

i della indeleopinne attaek transition state.				
Atom	х	У	Z	nbo_charge
Pd	0.030	9 0.062	5 0.0208	0.5560
С	0.290	2 -0.010	3 2.5861	-0.2003
0	0.9924	-0.1129	4.3243	-0.8400
С	1.3205	-0.2476	1.6153	-0.5868
Н	1.6524	0.6714	4.3727	0.5381
Cl	-0.4881	-2.2386	-0.0794	-0.6261
Н	1.6735	-1.2731	1.5236	0.2579
Н	2.0973	0.5100	1.5453	0.2468
Cl	0.4982	2.4059	-0.0086	-0.6246
Н	-0.0600	1.0057	2.7321	0.2638
Н	-0.4536	-0.7818	2.7519	0.2731
Н	1.5282	-0.9203	4.3413	0.5465
0	-1.3109	0.2139	-1.7493	-0.9615
Н	-0.8132	0.5870	-2.4904	0.5504
Н	-1.4126	-0.7392	-1.9199	0.5413
Н	2.7526	2.2542	3.4600	0.5295
0	2.6341	1.8410	4.3601	-1.0178
Н	2.3976	2.5643	4.9536	0.5297
Н	2.0874	2.8710	1.3683	0.5085
0	2.8542	2.9708	1.9772	-1.0131
Н	3.6328	2.8206	1.4276	0.5287

Pd[(-)-sparteine] nucleophilic attack transition state:				
Atom	X	у	Z	nbo charge
Pd	-0.1586	-0.0221	0.0931	0.7536
С	-0.4823	-0.5807	2.7115	-0.2121
0	-0.1228	-0.8203	4.6699	-0.8922
Н	0.8703	-0.6948	4.7417	0.5348
Н	-1.5462	-0.4475	2.8837	0.2578
С	0.3009	0.4635	2.1801	-0.6629
Н	-0.5349	-0.1177	5.1950	0.5335
Н	1.3749	0.3176	2.2033	0.2544
Н	-0.1721	-1.6083	2.5743	0.2630
Н	0.0018	1.4831	2.3951	0.2529
0	2.5077	-0.5374	4.6326	-1.0168
Н	2.8777	0.2308	5.0877	0.5237
Н	3.0090	-1.3182	4.9721	0.5277
0	3.8874	-2.7449	5.4070	-1.0013
Н	4.8159	-2.6634	5.6655	0.5335
Н	3.4947	-3.3417	6.0592	0.5280
Ν	-1.7999	1.3582	-0.1933	-0.4680
С	-3.0061	0.4756	-0.5383	-0.0672
С	-4.3737	1.1876	-0.3824	-0.4834
С	-4.5453	1.9244	0.9473	-0.4697
С	-3.3868	2.9057	1.1230	-0.4870
С	-2.0588	2.1448	1.0722	-0.2661
С	-2.8713	-0.1174	-1.9613	-0.2893
Н	-2.9720	-0.3360	0.1991	0.2654
Н	-5.1402	0.4134	-0.4999	0.2692
Н	-4.5298	1.8996	-1.1986	0.2465
Н	-4.5597	1.2113	1.7832	0.2378
Н	-5.5075	2.4444	0.9638	0.2615
Н	-3.4299	3.4084	2.0959	0.2678
Н	-3.4318	3.6991	0.3683	0.2477
Н	-2.0656	1.4286	1.8940	0.2361
Н	-1.2076	2.8167	1.2055	0.2676
С	-1.4538	2.3273	-1.2953	-0.2778
С	-1.4027	1.7108	-2.6993	-0.2857
С	-2.7295	1.0036	-3.0036	-0.4720
Н	-3.7910	-0.6864	-2.1392	0.2960
С	-1.7163	-1.1116	-2.1545	-0.2729
Н	-0.5045	2.7940	-1.0199	0.2676
Н	-2.2112	3.1183	-1.3051	0.2634
C	-0.2472	0.7284	-2.9500	-0.0671
Н	-1.2544	2.5472	-3.3921	0.2960

Η	-2.7162 0.5823 -4.0142	0.2635
Н	-3.5684 1.7027 -2.9725	0.2589
Ν	-0.3550 -0.4874 -2.0627	-0.5014
С	0.6588 -1.5045 -2.5161	-0.2704
Н	-1.8230 -1.5664 -3.1499	0.2586
Н	-1.7554 -1.9254 -1.4225	0.2615
С	1.1576 1.3368 -2.8833	-0.4766
Н	-0.3884 0.3592 -3.9792	0.2598
С	2.0904 -0.9687 -2.5759	-0.4757
Η	0.3489 -1.8359 -3.5178	0.2442
Н	0.5886 -2.3610 -1.8437	0.2626
C	2.1998 0.3291 -3.3836	-0.4666
Н	1.3917 1.6443 -1.8543	0.2371
		0.2371
Н		
Н	2.7215 -1.7530 -3.0086	0.2653
Η	2.4541 -0.7913 -1.5609	0.2298
Н	2.0276 0.1276 -4.4485	0.2420
Η	3.2094 0.7438 -3.3041	0.2560
Н	1.5146 -4.7392 2.1841	0.2500
Н	1.9357 -5.0300 0.4823	0.2513
С	1.6025 -4.2723 1.1983	-0.4956
Ĥ	4.1051 -4.5875 1.5533	0.2559
Н	0.6362 -3.8822 0.8892	0.2611
Н		0.2566
н С		
		-0.5007
Ν	2.5853 -3.1828 1.2618	-0.4101
Η	3.8638 -3.4819 2.9288	0.2575
С	2.2760 -1.9397 0.8781	0.7247
0	1.1176 -1.7035 0.4045	-0.7058
Н	4.2289 -1.1054 0.4609	0.2831
С	3.3199 -0.8551 1.0155	-0.7948
Ĥ	3.5918 -0.7141 2.0670	0.2872
Н	2.9267 0.0804 0.6202	0.2694
11	2.9207 0.0004 0.0202	0.2074
Dal	[(-)-sparteine]Cl ₂	
Pd	-1.53852 0.22689 0.36338	
Pd N	-1.53852 0.22689 0.36338 -3.63748 1.00742 0.24462	
Pd N C	-1.53852 0.22689 0.36338 -3.63748 1.00742 0.24462 -3.57937 2.26336 1.09377	
Pd N C C	-1.53852 0.22689 0.36338 -3.63748 1.00742 0.24462 -3.57937 2.26336 1.09377 -4.75818 3.24178 0.85920	
Pd N C C C	-1.538520.226890.36338-3.637481.007420.24462-3.579372.263361.09377-4.758183.241780.85920-5.012353.54416-0.62016	
Pd N C C	-1.538520.226890.36338-3.637481.007420.24462-3.579372.263361.09377-4.758183.241780.85920	
Pd N C C C	-1.538520.226890.36338-3.637481.007420.24462-3.579372.263361.09377-4.758183.241780.85920-5.012353.54416-0.62016	
Pd N C C C C C	-1.538520.226890.36338-3.637481.007420.24462-3.579372.263361.09377-4.758183.241780.85920-5.012353.54416-0.62016-5.204892.22623-1.37324	
Pd N C C C C C C C C	-1.53852 0.22689 0.36338 -3.63748 1.00742 0.24462 -3.57937 2.26336 1.09377 -4.75818 3.24178 0.85920 -5.01235 3.54416 -0.62016 -5.20489 2.22623 -1.37324 -3.96915 1.34303 -1.18313	
Pd N C C C C C C C H	-1.53852 0.22689 0.36338 -3.63748 1.00742 0.24462 -3.57937 2.26336 1.09377 -4.75818 3.24178 0.85920 -5.01235 3.54416 -0.62016 -5.20489 2.22623 -1.37324 -3.96915 1.34303 -1.18313 -3.46553 1.92325 2.60160 -2.66258 2.77137 0.77162	
Pd N C C C C C C C H H	-1.53852 0.22689 0.36338 -3.63748 1.00742 0.24462 -3.57937 2.26336 1.09377 -4.75818 3.24178 0.85920 -5.01235 3.54416 -0.62016 -5.20489 2.22623 -1.37324 -3.96915 1.34303 -1.18313 -3.46553 1.92325 2.60160 -2.66258 2.77137 0.77162 -4.52754 4.16184 1.41001	
Pd N C C C C C C H H H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C C H H H H H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C C H H H H H H	-1.53852 0.22689 0.36338 -3.63748 1.00742 0.24462 -3.57937 2.26336 1.09377 -4.75818 3.24178 0.85920 -5.01235 3.54416 -0.62016 -5.20489 2.22623 -1.37324 -3.96915 1.34303 -1.18313 -3.46553 1.92325 2.60160 -2.66258 2.77137 0.77162 -4.52754 4.16184 1.41001 -5.68095 2.84423 1.29738 -4.15681 4.08533 -1.04637 -5.88620 4.19692 -0.72545	
Pd N C C C C C C C H H H H H H H	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Pd N C C C C C C C H H H H H H H H	-1.53852 0.22689 0.36338 -3.63748 1.00742 0.24462 -3.57937 2.26336 1.09377 -4.75818 3.24178 0.85920 -5.01235 3.54416 -0.62016 -5.20489 2.22623 -1.37324 -3.96915 1.34303 -1.18313 -3.46553 1.92325 2.60160 -2.66258 2.77137 0.77162 -4.52754 4.16184 1.41001 -5.68095 2.84423 1.29738 -4.15681 4.08533 -1.04637 -5.88620 4.19692 -0.72545 -5.32180 2.39916 -2.44929 -6.12509 1.72879 -1.03862	
Pd N C C C C C C C H H H H H H H H H H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C C H H H H H H H H H H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCCC CCCCHHHHHHHHHHHHHCC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Pd NCCCCCCCC CCCCHHHHHHHHHHHH HHHHCCC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCCC CCCCHHHHHHHHHHHHHCC	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Pd NCCCCCCCC CCCCHHHHHHHHHHHH HHHHCCC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C C H H H H H H H H H H C C C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCHHHHHHHHHHHCCCCH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C C H H H H H H H H H H C C C H C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCHHHHHHHHHHCCCHCHHH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCCHHHHHHHHCCCCHCHHC	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCHHHHHHHHCCCHCHHCH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C H H H H H H H H H H C C C H C H H C H H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCHHHHHHHHCCCCHCHHCHHH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCHHHHHHHHHCCCHCHCHHCHHHN	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C H H H H H H H H H C C C H C H H C H H H N C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCCHHHHHHHHHHCCCHCHHCHHHNCH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd NCCCCCCHHHHHHHHHHCCCHCHHCHHHNCHH	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C H H H H H H H H H C C C H C H H C H H H N C H H C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C H H H H H H H H H H C C C H C H H C H H H N C H H C H H C H H H N C H H C H H C H H H N C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H C H C H H C H H C H H C H C H H C H H H C C C H C H C H H H H N C H H C H C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Pd N C C C C C C H H H H H H H H H C C C H C H H C H H H N C H H C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

H H Cl C H H H H H H	-1.07992 0.06742 0.78766 -1.10537 -1.80434 -2.73581 -3.88936 0.23487 -0.13574 -2.09844 -1.60482	-0.73586 -0.15499 -0.04794 0.40281 -3.08351 -2.31148 -2.95324 -2.61105 -2.19075 -3.26916 -4.06216	4.31439 3.07710 0.60275 -1.93933 2.85990 1.05971 2.23693 3.46208 1.79627 3.90306 2.41008
Dal	[(-)-sparte	inal(H.A)	
Pd	-1.79456	0.02749	² 0.29690
N	-3.48435	1.27319	0.41292
С	-3.06981	2.50499	1.22085
С	-4.06488	3.68172	1.04974
C	-4.35285	4.02438	-0.41471
C	-4.83454	2.77693	-1.15665
C C	-3.79886 -2.87194	1.65217 2.13410	-1.01706 2.70674
Н	-2.11213	2.81516	0.78420
Н	-3.62204	4.53865	1.56887
Н	-5.00650	3.46342	1.56264
Н	-3.45021	4.42044	-0.89815
Н	-5.10599	4.81606	-0.46571
Н	-4.95156	2.96944	-2.22856
Н	-5.81726	2.45372	-0.79559 -1.53063
H H	-4.11412 -2.86010	0.74030 2.01108	-1.44935
C	-4.62949	0.52334	1.03486
Č	-4.40559	0.21321	2.52054
C	-4.15312	1.51672	3.29220
Н	-2.62235	3.06454	3.22859
С	-1.69967	1.17539	2.96043
Н	-4.79065	-0.37747	0.43737
H C	-5.52861 -3.25820	1.14074 -0.77211	0.94165 2.80366
Н	-5.32185	-0.26802	2.80300
Н	-5.00527	2.19525	3.21212
Н	-4.02362	1.31270	4.36003
Ν	-1.91629	-0.19634	2.37526
С	-0.81110	-1.11891	2.84853
Н	-1.57062	1.05768	4.04384
H C	-0.75744 -3.45708	1.56161 -2.19589	2.55896 2.27128
Н	-3.18343	-0.84145	3.89964
C	-0.98439	-2.57639	2.41146
Н	-0.81941	-1.06666	3.94484
Н	0.13757	-0.69171	2.51580
0	0.23067	-0.90114	-0.12035
0	-1.60044	-0.10966	-1.89393
C H	-2.36050 -3.46942	-3.13228 -2.20278	2.79222 1.17226
Н	-4.44390	-2.20278	2.59790
Н	-0.18075	-3.15816	2.87539
Н	-0.86316	-2.67818	1.32507
Н	-2.48727	-4.13901	2.38505
Η	-2.43837	-3.22236	3.88278
Н	-1.86011	0.49313	-2.60413
Н Н	-0.74779	-0.50514	-2.13102
H H	0.46145 1.01495	-1.81001 -0.35725	0.12626 0.05158

Pd[(-)-sparteine](DMA)₂

Pd	-1.96082	-0.08441	0.29730
Ν	-3.90676	0.77185	0.50874
С	-3.70232	2.27547	0.68039
С	-4.99434	3.09927	0.45723

С	-5.71424	2.75978	-0.85113
C	-3./1424	2.13910	
С	-5.99016	1.25558	-0.90563
С	-4.67647	0.48076	-0.76039
С	-3.07301	2.57981	2.05838
Η	-2.99531	2.55130	-0.11229
Н	-4.70138	4.15501	0.47796
Н	-5.68950	2.95775	1.29055
Н	-5.09860	3.05556	-1.71163
Н	-6.64471	3.33080	-0.92155
Н	-6.42857	0.96662	-1.86723
Н	-6.71949	0.96584	-0.14042
Н	-4.82477	-0.60046	-0.80389
Η	-4.02359	0.75673	-1.58766
C			
С	-4.60655	0.14445	1.68284
С	-3.99688	0.52113	3.03952
С	-3.96746	2.04849	3.19064
Н	-2.98252	3.67009	2.12417
С	-1.65229	2.02624	2.25172
тт	4 (0222	0.02(00	1.51695
Н	-4.60332	-0.93608	
Η	-5.65215	0.46928	1.67769
С	-2.58424	-0.02931	3.29662
Н	-4.64503	0.07873	3.80443
Н	-4.97382	2.47124	3.14829
тт	2 55(11		
Η	-3.55611	2.32992	4.16579
Ν	-1.58229	0.52067	2.30086
С	-0.19124	0.12814	2.75276
Н	-1.26174	2.41018	3.20341
Η	-0.97130	2.36032	1.46255
С	-2.47518	-1.55167	3.41942
		-1.3310/	
Η	-2.27378	0.39134	4.26607
С	-0.01081	-1.36936	3.01010
Н	-0.00590	0.68434	3.68139
Н	0.51036	0.48702	1.99865
0	0.05373	-0.64106	-0.06588
Ō	-2.29177	-0.79664	-1.67855
С	-1.08669	-1.94745	3.93536
H	-2.67357	-2.03087	2.45095
Η	-3.25554	-1.89417	4.10770
Н	0.98851	-1.50797	3.43752
		-1.30/9/	
Η	-0.02596	-1.90779	2.06008
Η	-0.99173	-3.03583	3.99480
Η	-0.95598	-1.56637	4.95603
С	-1.79129	-0.40341	-2.78252
С	-1.00434	0.88596	-2.87054
Ν	-1.98947	-1.13319	-3.88479
С	-2.76164	-2.38286	-3.84480
С	-1.52062	-0.75752	-5.22501
Н	-1.54746	1.63231	-3.46032
Н	-0.02898	0.73918	-3.34160
	-0.84654	1.27808	-1.86681
Н			
Η	-2.18971	-3.17368	-4.33854
Н	-3.70651	-2.25239	-4.38194
11			
Н	-2.96590	-2.66072	-2.81430
	-1.04022	0.21724	-5.22782
Н			
Η	-2.37371	-0.72708	-5.90936
Н	-0.81105	-1.50618	
			-5.59119
С	0.55059	-1.73232	-0.50061
С	-0.25263	-3.01393	-0.51166
Ν	1.81608	-1.74164	-0.93116
C	2.53822	-2.94724	-1.35834
С	2.63572	-0.52203	-0.91545
Н	3.15337	-0.42833	-1.87392
Η	3.38627	-0.58576	-0.12081
Н	2.00512	0.34744	-0.74940
Н	1.90256	-3.82827	-1.33797
		-3.11519	-0.69461
Н	3.39221		
Н	2.91421	-2.80454	-2.37587
Н	0.17555	-3.74520	0.18199
Н	-0.27297	-3.47208	-1.50414
н	-1 27607	_7 70004	_0 20025
Н	-1.27607	-2.79994	-0.20925

ⁱ S. K. Mandal, D. R. Jensen, J. S. Pugsley, M. S. Sigman, *J. Org. Chem.* **2003**, *68*, 4600.