Supporting Information

Direct patterning of covalent organic monolayers on silicon using nanoimprint lithography

W. Pim Voorthuijzen,^[a,b] M. Deniz Yilmaz,^[a] Alberto Gomez-Casado,^[a] Pascal Jonkheijm,^[a] Wilfred G. van der Wiel,^{[b]*} and Jurriaan Huskens^{[a]*}

 ^[a] Molecular Nanofabrication group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
^[b] NanoElectronics Group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
*Corresponding authors: j.huskens@utwente.nl & W.G.vanderWiel@utwente.nl

XPS measurements

A full monolayer of 1-hexadecene on hydrogen-terminated silicon was investigated by X-ray Photoelectron Spectroscopy (XPS). The quality of full monolayers can generally be assessed by absence of a band for SiO₂ around 103 eV in the XPS Si_{2p}-spectrum [12]. Figure S1 shows the Si_{2p}- and C_{1s}-spectra measured on a full hexadecyl monolayer. The maximum of the C_{1s}-spectrum was set at 284.8 eV, the peak for aliphatic carbon. The averaged, fitted C_{1s}-spectrum showed a ratio of C_{1s}-electrons with a low binding energy to aliphatic C_{1s}electrons of 1:15.6. This is indicative of formation of a Si-C-C bond. It must be noted however that the relative shift of C_{1s} -electrons with a low binding energy is very small and a visible peak for C_{1s} -electrons with a lower binding energy becomes much more apparent when the samples are prepared using 1-alkynes because of the relatively larger downfield shift [11].

Figure S1. XPS spectra of the C_{1s} region (a) and the Si_{2p} region (b) of a full hexadecyl monolayer on Si(111).

Figure S2. Contact mode AFM height (a; $30 \ \mu m \ x \ 30 \ \mu m$) with height profile (c) and corresponding friction image (b) of a 100-µm patterned dot where native SiO₂ surrounding the spacings is still present.

Figure S3. a) Optical microscopy images of 100-µm diameter dots (a), 100-µm lines (b), 3-µm lines (c), and HR-SEM image of 100-nm lines (d), all after NIL.