NMR Crystallography of Campho[2,3-c]pyrazole (Z' = 6): Combining High-Resolution ¹H-¹³C Solid-State MAS NMR Spectroscopy and GIPAW Chemical-Shift Calculations

Supporting Information

Amy L. Webber, Lyndon Emsley, Rosa M. Claramunt, Steven P. Brown

S1 Expanded regions for all resonances of the ¹³C CP MAS spectrum (Figure 1b)

Figure S1. Expanded regions of the ¹³C (125 MHz) CP MAS spectrum of campho[2,3-c]pyrazole for the protonated carbon atoms: CH; (a) C1 (b) C3; CH₃; (c) C11 & C10 (d) C8, CH₂; (e) C5 (f) C4. The resolved resonances are assigned to the six distinct molecules in the asymmetric unit cell (see Figure 1a) on the basis of experimental ¹H-¹³C MAS-*J*-HMQC spectra and GIPAW calculations (see Tables 1 and 2).

Figure S2. Expanded regions of the 13 C (125 MHz) CP MAS spectrum of campho[2,3-c]pyrazole given in Figure 1b for the non-protonated carbon atoms, (a) C7 (b) C2 (c) C9 (d) C6. The resolved resonances are assigned to the six distinct molecules in the asymmetric unit cell (see Figure 1a) on the basis of GIPAW calculations (see Table 3).

<u>S2 Calculated ¹³C</u>, ¹⁵N and ¹H chemical shifts determined using the "universal" referencing values

Table S1. Experimental and calculated (GIPAW, using "universal" referencing values)chemical shifts for campho[2,3-c]pyrazole

	Expt /ppm Molecule					Calculated ^a /ppm					
	13 0/15	1			¹³ C	/ ¹⁵ N			1	Н	
	C/ N	H		cryst ^b	mol ^c	mol ^d all opt	mol ^e opt H	cryst ^b	mol ^c	mol ^d all opt	mol ^e opt H
C1 ^f	122.2	7.4	С	124.4	117.3	118.1	117.6	7.8	7.3	7.4	7.4
H1	121.5	7.0	A	123.5	117.2	117.9	116.9	7.8	7.3	7.4	7.4
	120.5	6.6	F	122.6	117.0	117.5	116.5	7.3	7.3	7.4	7.4
	118.8	6.9	E	121.1	117.7	117.7	116.9	7.8	7.3	7.4	7.4
	118.8	6.9	В	121.0	117.3	117.8	116.9	7.8	7.4	7.4	7.4
	118.8	7.0	D	120.5	117.5	117.8	117.5	7.9	7.4	7.4	7.4
C3 ^f	48.2	2.5	A	50.7	50.4	50.6	50.6	2.8	2.6	2.6	2.6
Н3	48.1	2.1	С	51.0	50.7	50.8	50.9	2.2	2.6	2.6	2.6
	47.4	2.6	В	50.1	50.4	50.7	50.5	2.8	2.6	2.6	2.6
	47.4	1.9	D	50.7	51.1	50.7	51.0	2.3	2.6	2.6	2.6
	46.9	2.7	F	49.7	50.3	50.6	50.4	3.0	2.4	2.5	2.5
	46.9	2.5	E	50.0	50.1	50.9	50.1	2.9	2.5	2.5	2.5
C11 ^f	23.4	0.2	E	22.9	16.9	17.2	17.1	0.2	0.1	0.2	0.1
H11	21.3	0.0	В	21.3	16.7	17.4	17.0	-0.1	0.4	0.3	0.4
a-c ^g	21.3	0.0	F	20.5	17.6	17.4	17.6	0.0	0.3	0.3	0.3
	20.2	0.3	A	19.2	16.9	17.2	17.2	0.3	0.1	0.2	0.1
	20.2	0.3	С	18.6	15.9	16.7	16.4	0.6	0.2	0.2	0.2
	20.0	-0.2	D	19.5	17.0	17.4	17.1	-0.1	0.4	0.3	0.4
C10 ^f	21.3	0.4	В	20.8	16.6	16.6	16.8	0.5	0.7	0.6	0.7
H10	20.9	0.3	E	20.1	16.2	16.4	16.4	0.7	0.6	0.6	0.6
a-c ^g	20.9	-0.3	D	19.5	16.7	16.6	16.7	-0.2	0.7	0.6	0.6
	20.7	0.4	F	19.5	16.6	16.4	16.7	0.5	0.7	0.7	0.7
	18.9	0.3	С	18.1	16.0	16.4	16.3	0.6	0.6	0.6	0.6

	18.2	-0.2	A	16.8	16.0	16.3	16.5	-0.1	0.6	0.6	0.6
C8 ^f	13.0	1.2	C	12.0	6.5	6.6	6.6	1.4	0.7	0.7	0.7
H8	12.1	1.1	F	11.6	7.0	6.8	6.9	1.4	0.8	0.8	0.8
a-c ^g	12.0	0.5	A	11.2	6.8	6.7	6.7	0.4	0.7	0.7	0.7
	11.8	0.6	D	11.1	6.7	6.6	6.7	0.7	0.8	0.8	0.8
	10.8	0.8	В	9.3	6.3	6.6	6.5	0.7	0.8	0.8	0.8
	10.1	0.2	E	8.5	6.4	6.7	6.6	0.0	0.7	0.7	0.7
C5 ^h	36.2	0.5	D	37.8	35.0	34.1	34.9	0.2	0.7	0.8	0.7
H5a,b		0.7						0.6	1.7	1.6	1.7
	35.3	0.7	B	36.6	33.7	34.1	33.8	0.6	0.7	0.8	0.6
		1.6						1.8	1.6	1.6	1.6
	34.9	1.3	F	34.6	34.1	34.2	34.1	0.8	0.8	0.8	0.8
		1.6						1.4	1.7	1.7	1.7
	33.6	1.2	С	36.3	34.3	34.5	34.5	1.2	0.8	0.8	0.8
		1.8						1.9	1.7	1.7	1.7
	33.2	1.4	\boldsymbol{A}	33.8	33.9	34.1	34.1	1.3	0.9	0.9	0.9
		1.6						1.4	1.8	1.7	1.8
	32.2	0.9	E	32.5	33.4	34.3	33.6	0.5	0.9	0.8	0.9
		1.1						0.9	1.8	1.8	1.8
C4 ^h	29.6	0.9	В	30.3	28.0	27.5	28.2	1.0	0.6	0.7	0.6
H4a,b		1.5						2.2	2.1	2.1	2.1
	28.9	0.4	D	28.7	27.3	27.5	27.4	0.5	0.7	0.7	0.7
		1.9						1.7	2.0	2.1	2.0
	28.7	1.6	С	29.3	26.9	27.3	27.1	1.5	0.8	0.8	0.8
		2.4						2.4	2.1	2.1	2.1
	28.6	0.9	E	28.5	27.0	27.6	27.2	0.9	0.9	0.8	0.9
		2.3						2.2	2.1	2.2	2.2
	28.2	1.1	A	28.5	26.8	27.3	27.1	0.8	0.9	0.9	1.0
		1.5						1.8	2.2	2.2	2.2
	27.4	0.6	F	28.0	27.4	27.4	27.5	0.5	0.8	0.8	0.8
		0.7						0.9	2.1	2.1	2.1
C7 ⁱ	166.9		A	171.6	170.7	170.7	171.2				

	166.0		В	170.6	169.9	170.7	170.4				
	165.5		E	169.8	170.1	170.9	170.4				
	165.3		F	169.5	169.6	170.6	170.2				
	165.2		D	169.4	169.3	170.7	169.7				
	165.0		С	169.1	169.9	170.6	170.1				
C2 ⁱ	126.3		D	132.4	130.1	130.3	130.5				
	125.6		E	131.3	130.4	130.6	130.8				
	125.4		A	131.2	129.9	130.6	130.4				
	125.3		F	131.0	130.0	130.8	130.5				
	125.0		В	130.7	129.4	130.3	129.8				
	124.9		С	130.4	129.6	130.5	130.2				
C9 ^{<i>i</i>}	62.9		Ε	69.1	65.4	65.4	65.9				
	62.4		F	68.4	65.6	65.5	65.5				
	62.2		A	68.3	65.8	65.7	65.9				
	61.5		С	67.4	64.8	64.8	64.7				
	61.0		D	66.7	64.0	65.0	63.9				
	60.8		В	66.4	63.7	65.0	63.8				
C6 ⁱ	51.0		A	55.5	53.9	53.9	53.8				
	50.8		С	54.7	53.0	53.7	53.1				
	50.6		В	54.6	53.2	53.6	53.2				
	50.4		E	54.6	53.6	53.8	53.5				
	49.8		D	53.9	53.4	53.6	53.4				
	49.7		F	55.0	53.8	53.7	53.7				
NH ^{j, k}	-177.2	13.6	D	-170.7	-193.9	-199.0	-198.5	15.2	10.0	9.3	9.4
			В	-170.7	-193.9	-199.0	-197.8	14.9	9.9	9.3	9.4
			С	-170.8	-194.6	-198.6	-199.3	15.0	9.9	9.3	9.4
			F	-171.1	-195.7	-199.4	-200.0	14.8	9.9	9.3	9.3
			A	-171.3	-196.2	-199.6	-200.7	15.6	9.9	9.3	9.3
			Ε	-172.9	-197.1	-199.4	-201.0	15.1	9.8	9.3	9.3
N ^k	-107.4		E	-111.1	-91.1	-96.8	-92.1				
			A	-112.3	-91.8	-96.2	-92.3				
			В	-112.7	-91.6	-96.9	-92.0				

D -114.3 -91.2 -96.9 -91.8 F -114.6 -91.6 -96.1 -91.8
F -114.6 -91.6 -96.1 -91.8
C -115.7 -91.9 -97.0 -93.0

^a Universal reference determined by extrapolation of experimental vs calculated (full crystal structure) chemical shifts plot to pass through the origin (¹H slope 1.105, ¹³C slope 1.035): σ_{ref} (¹H) = 30.7 ppm, σ_{ref} (¹³C) = 172.2 ppm, or such that the mean of experimental and calculated (¹⁵N) chemical shifts coincide: σ_{ref} (¹⁵N) = 160.2 ppm.

^b Calculation for full crystal structure, geometrically optimized with all atoms allowed to relax.

^c Calculation for isolated molecule extracted from geometrically optimized full crystal, with no further geometry optimization.

^d Calculation for isolated molecule extracted from geometrically optimized full crystal, geometrically optimized with all atoms allowed to relax.

^e Calculation for isolated molecule extracted from geometrically optimized full crystal, geometrically optimized with only H atoms allowed to relax.

^f Experimental values taken from ¹H-¹³C MAS-*J*-HMQC spectrum ($\tau = 2.4$ ms).

^g Average calculated ¹H chemical shift over the three CH₃ protons.

^h Experimental values taken from ¹H-¹³C MAS-J-HMQC spectrum ($\tau = 0.9$ ms).

ⁱ Experimental values taken from ¹³C CP MAS spectrum (Figure S2).

^j Experimental value taken from ¹H DQ MAS spectrum (Figure 4) (only one resonance is resolved).

^k Experimental ¹⁵N values taken from ¹⁵N CP MAS spectrum in Figure 4a of Ref. ³⁹ (only one resonance is resolved for each chemically distinct nitrogen, with the linewidths (full width at half-maximum height) being approximately 8 ppm for both sites)

S3 H-H distances involving aromatic CH and NH protons

Table S2. H-H distances (under 3 Å, as extracted from the geometry-optimised crystal structure) for the aromatic CH (H1) and NH protons in campho[2,3-c]pyrazole

H-	H proximity	H-H distances /Å
CH(H1)-	CH ₃ (H8,H10,H11)	2.38 - 2.99
	CH ₂ (H4)	2.36 - 2.78
	CH(H3)	2.55 - 2.99
	NH	2.55 - 2.77
NH-	CH(H1)	2.55 - 2.77
	CH(H3)	2.61
	CH ₂ (H4,H5)	2.72 - 2.81
	NH	2.81 - 2.99
	CH ₃ (H8,H10)	2.74 - 2.94

S4 Calculated and experimental ¹H and ¹⁵N chemical shifts for the N and NH sites

Table S3.	Experimental	and	calculated	(GIPAW)	Η	chemical	shifts	for	the	NH	proton	in
campho[2,	3-c]pyrazole											

Expt ^a /ppm	Molecule	Calculated ^b /ppm	
$^{1}\mathrm{H}$		$^{1}\mathrm{H}$	
		cryst ^c	mol ^d
13.6	A	14.1	8.4
	D	13.7	8.5
	E	13.6	8.3
	С	13.5	8.4
	В	13.4	8.4
	F	13.3	8.4

^a As determined from the ¹H DQ MAS spectrum in Figure 4 (only one resonance is resolved). ^b σ_{ref} (¹H) = 29.2 ppm.

^c Calculation for full crystal structure, geometry optimized with all atoms allowed to relax.

^d Calculation for isolated molecule extracted from geometry optimized full crystal.

	Expt ^a /ppm Molecule		Calculated ^b /ppm			
	¹⁵ N		15	Ň		
			cryst ^c	mol ^d		
NH	-177.2	D	-176.7	-199.9		
		В	-176.7	-199.9		
		С	-176.8	-200.6		
		F	-177.1	-201.7		
		A	-177.3	-202.2		
		Ε	-178.9	-203.1		
Ν	-107.4	Ε	-105.1	-85.1		
		A	-106.3	-85.8		
		В	-106.7	-85.6		
		D	-108.3	-85.2		
		F	-108.6	-85.6		
		С	-109.7	-85.9		

Table S4. Experimental and calculated (GIPAW) ¹⁵N chemical shifts for campho[2,3-c]pyrazole

^a As determined from the ¹⁵N CP MAS spectrum in Figure 4a of Ref. ³⁹ (only one resonance is resolved for each chemically distinct nitrogen, with the linewidths (full width at half maximum height) being approximately 8 ppm for both sites).

^b σ_{ref} (¹⁵N) = -154.2 ppm (N), -166.2 ppm (NH)

^c Calculation for full crystal structure, geometry optimized with all atoms allowed to relax.

^d Calculation for isolated molecule extracted from geometry optimized full crystal.

Table S5. Calculated crystal-to-molecule changes in ¹H, ¹³C and ¹⁵N chemical shifts (see Tables 1, 2, 3, S3, S4) for campho[2,3-c]pyrazole

	Molecule	$^{13}C/^{15}N \Delta \delta^{cryst-mol} / ppm$		${}^{1}\mathrm{H}\Delta\delta^{\mathrm{cryst-mol}}$ / ppm		
		geom. o	ptim. (mol)	geom. op	otim. (mol)	
		no ^a	all atoms ^b	no ^a	all atoms ^b	
C1, H1	С	7.1	6.3	0.5	0.4	
	A	6.3	5.6	0.5	0.4	
	F	5.6	5.1	0.0	-0.1	
	E	3.4	3.4	0.5	0.4	
	В	3.7	3.2	0.4	0.4	
	D	3.0	2.7	0.5	0.5	
С3, Н3	A	0.3	0.1	0.2	0.2	
	С	0.3	0.2	-0.4	-0.4	
	В	-0.3	-0.6	0.2	0.2	
	D	-0.4	0.0	-0.3	-0.3	
	F	-0.6	-0.9	0.6	0.5	
	E	-0.1	-0.9	0.4	0.4	
C11, H11a-c ^c	E	6.0	5.7	0.1	0.0	
	В	4.6	3.9	-0.5	-0.4	
	F	2.9	3.1	-0.3	-0.3	
	A	2.3	2.0	0.2	0.1	
	С	2.7	1.9	0.4	0.4	
	D	2.5	2.1	-0.5	-0.4	
C10, H10a-c ^c	В	4.2	4.2	-0.2	-0.1	
	E	3.9	3.7	0.1	0.1	
	D	2.8	2.9	-0.9	-0.8	
	F	2.9	3.1	-0.2	-0.2	
	С	2.1	1.7	0.0	0.0	
	A	0.8	0.5	-0.7	-0.7	
C8, H8a-c [°]	С	5.5	5.4	0.7	0.7	
	F	4.6	4.8	0.6	0.6	

	A	4.4	4.5	-0.3	-0.3
	D	4.4	4.5	-0.1	-0.1
	В	3.0	2.7	-0.1	-0.1
	E	2.1	1.8	-0.7	-0.7
C5, H5a,b	D	2.8	3.7	-0.1	0.3
		0.0	0.0	-0.4	0.8
	В	2.9	2.5	0.7	0.7
		0.0	0.0	2.1	1.9
	С	2.0	1.8	1.8	1.4
		0.0	0.0	2.2	2.0
	F	0.5	0.4	1.0	1.0
		0.0	0.0	1.2	1.5
	A	-0.1	-0.3	1.9	1.5
		0.0	0.0	1.1	1.6
	E	-0.9	-1.8	0.3	0.8
		0.0	0.0	0.1	1.1
C4, H4a,b	В	2.3	2.8	1.5	1.0
		0.0	0.0	2.1	2.1
	D	1.4	1.2	0.4	0.6
		0.0	0.0	1.2	1.5
	С	2.4	2.0	2.3	1.6
		0.0	0.0	2.5	2.2
	\boldsymbol{E}	1.5	0.9	1.0	1.1
		0.0	0.0	2.1	1.9
	A	1.7	1.2	0.8	0.9
		0.0	0.0	1.2	1.6
	F	0.6	0.6	0.3	0.7
		0.0	0.0	-0.5	0.7
C7	A	0.9	0.9		
	В	0.7	-0.1		
	Ε	-0.3	-1.1		
	F	-0.1	-1.1		

	D	0.1	-1.3		
	С	-0.8	-1.5		
C2	D	2.3	2.1		
	E	0.9	0.7		
	A	1.3	0.6		
	F	1.0	0.2		
	В	1.3	0.4		
	С	0.8	-0.1		
С9	E	3.7	3.7		
	F	2.8	2.9		
	A	2.5	2.6		
	С	2.6	2.6		
	D	2.7	1.7		
	В	2.7	1.4		
C6	A	1.6	1.6		
	С	1.7	1.0		
	В	1.4	1.0		
	E	1.0	0.8		
	D	0.5	0.3		
	F	0.0	0.1		
NH	D	23.2	28.3	5.2	5.9
	В	23.2	28.3	5.0	5.6
	С	23.8	27.8	5.1	5.7
	F	24.6	28.3	4.9	5.5
	A	24.9	28.3	5.7	6.3
	E	24.2	26.5	5.3	5.8
Ν	E	-20.0	-14.3		
	A	-20.5	-16.1		
	В	-21.1	-15.8		
	D	-23.1	-17.4		
	F	-23.0	-18.5		
	С	-23.8	-18.7		

^a Difference between calculation for full geometrically optimized crystal structure and isolated molecule extracted from geometrically optimized full crystal, with no further geometry optimization.

^b Difference between calculation for full geometrically optimized crystal structure and isolated molecule extracted from geometrically optimized full crystal, geometrically optimized with all atoms allowed to relax.

^c Average calculated ¹H chemical shift over the three CH₃ protons.