Table S3: Historical Regulatory Revisions of Chemical Contaminants [23] | SDWA Chemical
Contaminant | Initial standard (year) | MCL (year) | MCLG (current) | PQL (current) | Notes | |------------------------------|--|------------------------|----------------|-------------------|--| | 2,4,5-TP | 0.01 mg/L (1975); Proposed
MCL = MCLG = 0.05 mg/L
(1989) | 0.05 mg/L (1992) | 0.05 mg/L | 0.05 mg/L | Value of standard increased between 1975 and 1989. 1989 value adopted in 1992.Not identified as possibly subject to a toxicological review. | | 2,4-D | 0.1 mg/L (1975) | 0.07 mg/L (1991) | 0.07 mg/L | 0.05 mg/L | Not identified as possibly subject to a toxicological review. | | Arsenic | NIPDWR: 0.05 mg/L | 0.01 mg/L (2001) | zero | 0.03 mg/L | Regulation lowered from 0.05 to 0.01 mg/L on account of growing body of evidence suggesting old standard was inadequate to protect health. Note that reg > PQL. Question of cost/benefit. | | Barium | USPHS: 1.0 mg/L (1962)
NIPDWR: 1.0 mg/L; Proposed
MCL = MCLG = 5 mg/L
(1989); | 2 mg/L (1991) | 2 mg/L | 0.15 mg/L | Value of standard has increased since 1962. Not identified as possibly subject to a toxicological review. | | Cadmium | 0.01 mg/L (1975) | 0.005 mg/L (1991) | 0.005 mg/L | 0.002 mg/L | Standard lowered, but this followed a revision to the concentration considered to be protective of public health, not a significant improvement in detection ability | | Chromium | 0.05 mg/L (1975) | 0.1 mg/L (1991) | 0.1 mg/L | 0.1 mg/L | Value of standard has increased . | | Endrin | 0.0002 mg/L (1975) | 0.002 mg/L | 0.002 mg/L | 0.0001 mg/L | Value of standard has increased . | | Fluoride | 1.4 to 2.4 mg/L (1975) | 4 (1986) | 4 | 0.5 mg/L | Standards have been decided upon based on various health studies with variable importance being ascribed to sensitive populations and "cosmetic" impacts. Value of standard has | | Lead | 0.05 mg/L (1975) | (Treatment technology) | zero | 0.005 mg/L | Lead regulation has changed from a maximum concentration to a mandatory removal efficiency | | Lindane | 0.004 mg/L (1975) | 0.0002 mg/L | 0.0002 mg/L | 0.0002 mg/L | Value of standard has decreased . No information found tying re-regulation to detection capabilities | | Methoxychlor | 0.1 mg/L (1975) | 0.04 mg/L (1992) | 0.04 mg/L | 0.01 mg/L | Regulation has been lowered, but not to PQL.
Therefore, toxicological model or cost-benefit
analysis dominates the regulation. | | Nickel | 0.1 mg/L (1992) | N/A (1995) | 0.1 | N/A | Regulation remanded | | Selenium | 0.01 mg/L (1975) | 0.05 mg/L (1991) | 0.05 mg/L | 0.001 mg/L | Value of standard has increased . | | THMs | 0.1 mg/L (1979) | 0.8 (1998) | N/A | N/A | Value of standard has increased .THMs are regulated only to the extent to which implementation would not result in exceedences to microbiological drinking water standards. Regulations are function of competing risk models. | | Toxaphene | 0.005 mg/L (1975) | 0.003 mg/L (1991) | zero | 0.003 mg/L (1991) | Toxaphene MCL is tied to PQL. | USPHS : United States Public Health Service NPIDWR: National Interim Primary Drinking Water Regulations