Supporting Information

Dihydrogen bonding vs. metal-sigma interaction in complexes between H₂ and metal hydride

by

Ibon Alkorta, Jose Elguero, Mohammad Solimannejad, and Sławomir J. Grabowski

Pg. 2 Table S1. Geometrical parameters (in Å) for complexes with two hydrogen molecules, $H_2(\cdots M)$ designates the H-H bond length for H_2 molecule that are in contact with the metal centre, H···M is the hydrogen-metal distance, $H_2(\cdots H)$ concerns the H-H bond distance involved in DHB while H···H is the intermolecular distance for DHB. Bolded values correspond to trimers while non-bolded (in the second line) concern dimers.

Pg. 3 Table S2. The NBO charges (in au), A and C designate H₂ molecules, A that one being in contact with Me while C that one participating in DHB, B is the metal hydride, NBO energies (in kcal/mol) are also included, bolded values concern trimers while those in the second line (non-bolded) concern dimmers.

Table S1. Geometrical parameters (in Å) for complexes with two hydrogen molecules, $H_2(\cdots M)$ designates the H-H bond length for H_2 molecule that are in contact with the metal centre, H···M is the hydrogen-metal distance, $H_2(\cdots H)$ concerns the H-H bond distance involved in DHB while H···H is the intermolecular distance for DHB. Bolded values correspond to trimers while non-bolded (in the second line) concern dimers.

The level	H ₂ (···M)	Me-H ^{^*}	H···M*	H ₂ (···H)	Me-H ^{^^} *	Н…Н			
H_2 ···Li H ··· H_2									
MP2/aug-cc-	0.7412	1.6069	2.1818	0.7404	1.6069	2.6036			
pVTZ	0.7412	1.6071	2.1809	0.7403	1.6039	2.6000			
MP2/aug-cc-	0.7401	1.6057	2.1789	0.7393	1.6057	2.6061			
pQTZ	0.7401	1.6060	2.1812	0.7392	1.6025	2.6004			
CCSD/aug-cc-	0.7467	1.6116	2.1859	0.7456	1.6116	2.6246			
pVTZ	0.7467	1.6123	2.1858	0.7455	1.6097	2.6366			
H_2 ···Na H ··· H_2									
MP2/aug-cc-	0.7395	1.9217	2.7580	0.7409	1.9217	2.5978			
pVTZ	0.7394	1.9219	2.7626	0.7407	1.9187	2.6030			
MP2/aug-cc-	0.7383	1.9210	2.7555	0.7398	1.9210	2.6001			
pQTZ	0.7383	1.9214	2.7626	0.7397	1.9178	2.6037			
CCSD/aug-cc-	0.7449	1.9291	2.7767	0.7458	1.9291	2.6556			
pVTZ	0.7450	1.9294	2.7614	0.7457	1.9262	2.6609			
H_2 ··· $HBeH$ ··· H_2									
MP2/aug-cc-	0.7391	1.3299	2.8918	0.7381	1.3299	2.6596			
pVTZ	0.7391	1.3301	2.8975	0.7381	1.3292	2.6718			
MP2/aug-cc-	0.7383	1.3281	2.8619	0.7372	1.3281	2.7674			
pQTZ	0.7380	1.3280	2.8975	0.7370	1.3274	2.6736			
CCSD/aug-cc-	0.7444	1.3336	2.9276	0.7435	1.3336	2.6776			
pVTZ	0.7445	1.3337	2.8981	0.7435	1.3328	2.6863			

^{*} mean values are included for H₂··· HBeH···H₂ complex where two H···M contacts and

Be-H bonds are not always equivalent

 $[\]hat{}$ non-bolded value for a complex with H_2 ···M interaction

^{^^} non-bolded value for a complex with H-H···H-M interaction

Table S2. The NBO charges (in au), A and C designate H₂ molecules, A that one being in contact with Me while C that one participating in DHB, B is the metal hydride, NBO energies (in kcal/mol) are also included, bolded values concern trimers while those in the second line (non-bolded) concern dimers.

				NBO energy	NBO energy
Complex	Charge - A	Charge - B	Charge - C	AB	BC
	0.0216	-0.0165	-0.0051	6.65	1.76
H_2 ···Li H ··· H_2	0.0216		-0.0050	6.61	1.65
	0.0080	-0.0001	-0.0079	2.75	2.19
H_2 ···Na H ··· H_2	0.0080		-0.0077	2.74	2.10
	0.0047	-0.0043	-0.0005	1.80	0.77
H_2 ··· $HBeH$ ··· H_2	0.0046		-0.0007	1.77	0.23