Supporting Information

Dihydrogen bonding vs. metal-sigma interaction in complexes between H_{2} and metal hydride

by
Ibon Alkorta, Jose Elguero, Mohammad Solimannejad, and Sławomir J. Grabowski

Pg. 2 Table S1. Geometrical parameters (in \AA) for complexes with two hydrogen molecules, $\mathrm{H}_{2}(\cdots \mathrm{M})$ designates the $\mathrm{H}-\mathrm{H}$ bond length for H_{2} molecule that are in contact with the metal centre, $\mathrm{H} \cdots \mathrm{M}$ is the hydrogen-metal distance, $\mathrm{H}_{2}(\cdots \mathrm{H})$ concerns the $\mathrm{H}-\mathrm{H}$ bond distance involved in DHB while $\mathrm{H} \cdots \mathrm{H}$ is the intermolecular distance for DHB . Bolded values correspond to trimers while non-bolded (in the second line) concern dimers.

Pg. 3 Table S2. The NBO charges (in au), A and C designate H_{2} molecules, A that one being in contact with Me while C that one participating in DHB, B is the metal hydride, NBO energies (in $\mathrm{kcal} / \mathrm{mol}$) are also included, bolded values concern trimers while those in the second line (non-bolded) concern dimmers.

Table S1. Geometrical parameters (in \AA) for complexes with two hydrogen molecules, $\mathrm{H}_{2}(\cdots \mathrm{M})$ designates the $\mathrm{H}-\mathrm{H}$ bond length for H_{2} molecule that are in contact with the metal centre, $\mathrm{H} \cdots \mathrm{M}$ is the hydrogen-metal distance, $\mathrm{H}_{2}(\cdots \mathrm{H})$ concerns the H-H bond distance involved in DHB while $\mathrm{H} \cdots \mathrm{H}$ is the intermolecular distance for DHB. Bolded values correspond to trimers while non-bolded (in the second line) concern dimers.

The level	$\mathrm{H}_{2}(\cdots \mathrm{M})$	$\mathrm{Me}-\mathrm{H}^{\wedge *}$	$\mathrm{H}^{\prime} \cdots \mathrm{M}^{*}$	$\mathrm{H}_{2}(\cdots \mathrm{H})$	$\mathrm{Me}-\mathrm{H}^{\mathrm{N} *}$	$\mathrm{H} \cdots \mathrm{H}$
$\mathrm{H}_{2} \cdots \mathrm{LiH} \cdots \mathrm{H}_{2}$						
MP2/aug-cc-	$\mathbf{0 . 7 4 1 2}$	$\mathbf{1 . 6 0 6 9}$	$\mathbf{2 . 1 8 1 8}$	$\mathbf{0 . 7 4 0 4}$	$\mathbf{1 . 6 0 6 9}$	$\mathbf{2 . 6 0 3 6}$
pVTZ	0.7412	1.6071	2.1809	0.7403	1.6039	2.6000
MP2/aug-cc-	$\mathbf{0 . 7 4 0 1}$	$\mathbf{1 . 6 0 5 7}$	$\mathbf{2 . 1 7 8 9}$	$\mathbf{0 . 7 3 9 3}$	$\mathbf{1 . 6 0 5 7}$	$\mathbf{2 . 6 0 6 1}$
pQTZ	0.7401	1.6060	2.1812	0.7392	1.6025	2.6004
CCSD/aug-cc-	$\mathbf{0 . 7 4 6 7}$	$\mathbf{1 . 6 1 1 6}$	$\mathbf{2 . 1 8 5 9}$	$\mathbf{0 . 7 4 5 6}$	$\mathbf{1 . 6 1 1 6}$	$\mathbf{2 . 6 2 4 6}$
pVTZ	0.7467	1.6123	2.1858	0.7455	1.6097	2.6366
$\mathrm{H}_{2} \cdots \mathrm{NaH}^{\prime} \cdots \mathrm{H}_{2}$						
MP2/aug-cc-	$\mathbf{0 . 7 3 9 5}$	$\mathbf{1 . 9 2 1 7}$	$\mathbf{2 . 7 5 8 0}$	$\mathbf{0 . 7 4 0 9}$	$\mathbf{1 . 9 2 1 7}$	$\mathbf{2 . 5 9 7 8}$
pVTZ	0.7394	1.9219	2.7626	0.7407	1.9187	2.6030
MP2/aug-cc-	$\mathbf{0 . 7 3 8 3}$	$\mathbf{1 . 9 2 1 0}$	$\mathbf{2 . 7 5 5 5}$	$\mathbf{0 . 7 3 9 8}$	$\mathbf{1 . 9 2 1 0}$	$\mathbf{2 . 6 0 0 1}$
pQTZ	0.7383	1.9214	2.7626	0.7397	1.9178	2.6037
CCSD/aug-cc-	$\mathbf{0 . 7 4 4 9}$	$\mathbf{1 . 9 2 9 1}$	$\mathbf{2 . 7 7 6 7}$	$\mathbf{0 . 7 4 5 8}$	$\mathbf{1 . 9 2 9 1}$	$\mathbf{2 . 6 5 5 6}$
pVTZ	0.7450	1.9294	2.7614	0.7457	1.9262	2.6609
$\mathrm{H}_{2} \cdots \mathrm{HBeH} \cdots \mathrm{H}_{2}$						
MP2/aug-cc-	$\mathbf{0 . 7 3 9 1}$	$\mathbf{1 . 3 2 9 9}$	$\mathbf{2 . 8 9 1 8}$	$\mathbf{0 . 7 3 8 1}$	$\mathbf{1 . 3 2 9 9}$	$\mathbf{2 . 6 5 9 6}$
pVTZ	0.7391	1.3301	2.8975	0.7381	1.3292	2.6718
MP2/aug-cc-	$\mathbf{0 . 7 3 8 3}$	$\mathbf{1 . 3 2 8 1}$	$\mathbf{2 . 8 6 1 9}$	$\mathbf{0 . 7 3 7 2}$	$\mathbf{1 . 3 2 8 1}$	$\mathbf{2 . 7 6 7 4}$
pQTZ	0.7380	1.3280	2.8975	0.7370	1.3274	2.6736
CCSD/aug-cc-	$\mathbf{0 . 7 4 4 4}$	$\mathbf{1 . 3 3 3 6}$	$\mathbf{2 . 9 2 7 6}$	$\mathbf{0 . 7 4 3 5}$	$\mathbf{1 . 3 3 3 6}$	$\mathbf{2 . 6 7 7 6}$
pVTZ	0.7445	1.3337	2.8981	0.7435	1.3328	2.6863

* mean values are included for $\mathrm{H}_{2} \cdots \mathrm{HBeH} \cdots \mathrm{H}_{2}$ complex where two $\mathrm{H} \cdots \mathrm{M}$ contacts and $\mathrm{Be}-\mathrm{H}$ bonds are not always equivalent
non-bolded value for a complex with $\mathrm{H}_{2} \cdots \mathrm{M}$ interaction
^non-bolded value for a complex with $\mathrm{H}-\mathrm{H} \cdots \mathrm{H}-\mathrm{M}$ interaction

Table S2. The NBO charges (in au), A and C designate H_{2} molecules, A that one being in contact with Me while C that one participating in DHB, B is the metal hydride, NBO energies (in $\mathrm{kcal} / \mathrm{mol}$) are also included, bolded values concern trimers while those in the second line (non-bolded) concern dimers.

				NBO energy	NBO energy
Complex	Charge - A	Charge - B	Charge - C	AB	BC
	$\mathbf{0 . 0 2 1 6}$	$\mathbf{- 0 . 0 1 6 5}$	$\mathbf{- 0 . 0 0 5 1}$	$\mathbf{6 . 6 5}$	$\mathbf{1 . 7 6}$
$\mathrm{H}_{2} \cdots \mathrm{LiH} \cdots \mathrm{H}_{2}$	0.0216		-0.0050	6.61	1.65
	$\mathbf{0 . 0 0 8 0}$	$\mathbf{- 0 . 0 0 0 1}$	$\mathbf{- 0 . 0 0 7 9}$	$\mathbf{2 . 7 5}$	$\mathbf{2 . 1 9}$
$\mathrm{H}_{2} \cdots \mathrm{NaH} \cdots \mathrm{H}_{2}$	0.0080		-0.0077	2.74	2.10
	$\mathbf{0 . 0 4 7}$	$\mathbf{- 0 . 0 0 4 3}$	$\mathbf{- 0 . 0 0 0 5}$	$\mathbf{1 . 8 0}$	$\mathbf{0 . 7 7}$
$\mathrm{H}_{2} \cdots \mathrm{HBeH} \cdots \mathrm{H}_{2}$	0.0046		-0.0007	1.77	0.23

