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1. Molecular Modeling

Figure S1: A space-filling representation of the proposed metal organic nanotubes
potentially formed through the stacking of silver(I) or gold(I) planar MSPMs. This cartoon

was generated using Spartan 06 Essential Edition for Windows, Wavefunction, Irvine, CA.

QOO

Figure S2: Space-filling molecular models of the proposed solution structures of
[(L4)2Ag2](SbFe), (left), [(Ls)2Ag2](SbFe), (center) and [(L2)3Ag3](SbFe); (right). The counter
anions are omitted for clarity. These cartoons were generated using Spartan 06 Essential Edition
for Windows, Wavefunction, Irvine, CA.
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2. Selected NMR Spectra and Stacked Plots
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Figure S3: 'H (top) and Bc (bottom) NMR spectra (de-DMSO) of L;
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3. Selected HR-ESI Mass Spectra of the Gold(I) complexes.
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Figure S8: HR-ESI Mass Spectrum (+ve ion, MeCN) of [(L3),Au,](SbF),.
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Figure S9: a) experimental and b) theoretical isotope patterns for [(Lz),Au,SbFs]*
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4. Selected NMR Spectra and Stacked Plots of the Ag(I) complexes
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Figure S10: Stacked 'H NMR spectra (dg-acetone) of a) Ly and b) {[(L1Ag](SbF¢)},
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Figure S11: Stacked 'H NMR spectra (CD;CN) of a) L, and b) {[(L2Ag)](SbFe)},
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Figure S12: Stacked "H NMR spectra (CDs;CN) of a) L3 and b) [L3Ag]>(SbFs),
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S. Selected HR-ESI Mass Spectra of the Ag(I) complexes
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Figure S13: HR-ESI Mass Spectrum (+ve ion, MeCN) of [(Ls)>Ag>](SbFe),.
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Figure S14: a) experimental and b) theoretical isotope patterns for [(Ls),AgSbFs]*
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Figure S15: a) experimental and b) theoretical isotope patterns for [(Lg)Ag]*ion from a CH;CN
solution of [(L4),Ag>](BFy),.
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Figure S16: a) experimental and b) theoretical isotope patterns for [(L4)2Agz]2+ ion from a
CH;CN solution of [(Ly)2Agy](BEs),.
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Figure S17: a) experimental and b) theoretical isotope patterns for [(L3)Ag]" ion from a CH;CN
solution of [(L3)2Ag2]( ClOy)s.
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Figure S18: a) experimental and b) theoretical isotope patterns for [(L3)2Ag2]2+ ion from a
CH;CN solution of [(L3)2Ag2]( ClOy),.
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6. Proposed Structures of the metallomacrocycles
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Figure S19. Proposed structures of the metallomacrocycles.
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7. X-Ray Crystallography

7.1 Packing Diagrams for [(L3),Ag](ClO4),°3H,0.

Figure S20: Ball-and-stick and space-filling molecular diagrams of the structure of
[(L3)2Ag2](C104),°3H,0 showing the position of the ClO4 counter anions.
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Figure S21: Space-filling molecular diagrams of [(L3),Ag:](ClO4),°3H,O showing inter-
digitation of the step-wise layers. For clarity, individual layers are shown in different colors.
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[(L3)2Ag2](C104),°3H,0 showing the position of the disordered H,O within the nanotubes

Figure S22: Ball-and-



7.2 Packing Diagrams for {[LsAg](ClO4)eEt,0},.

Figure S23: Three representations of the polymeric structure of {[LsAg](ClO4)®0.5Et;,0},. For
clarity, individual layers are shown in different colors. Top, ball-and-stick and tube
representations of the ladder polymer structure formed by {[LsAg](ClO4)e 0.5Et,0},. The C104~
anions and diethyl ether molecules have been omitted for clarity. Bottom, a tube representation
of the ladder polymer structure of {[LsAg](ClOs)® 0.5Et,0}, showing the position of ClO4"
anions.
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7.3 Packing Diagrams for {[L3Ag](SbFe)2},.

3

Figure S24: Chemdraw structure of the disordered twined coordination polymer
{[L3Ag](SbF¢)},. In the crystal three disordered polymer strands are held together by additional
Ag(I) ions that bond to the L3 ligands alkyne units. Despite the disorder in the X-ray structure it
clearly indicates that the anion plays an important role in the formation of the final solid state
structure. When the C1O4 counter ion is used the macrocyclic structure is maintained in the solid
state. However, changing the counter ion to SbFs~ generates a ring opened disordered polymeric

structure in the solid state.

Figure S25: A ball and stick representation of the structure of the disordered twined
coordination polymer {[L3Ag](SbF¢)},.
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Figure S26: A ball and stick representation showing the high symmetry of the disordered
twined coordination polymer {[L3Ag](SbF¢)},. Three independent polymer strands are held in
close proximity by alkyne bonded disordered Ag" ions.
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8. X-ray Crystallographic Data
8.1 X-ray data collection and refinement

X-ray data for {[L3Ag](SbFe)}, were collected at 123 K on a Rigaku Spider diffractometer
equipped with a copper rotating anode X-ray source and a curved image plate detector.
Structures were solved by direct methods, and refined against F* using anisotropic thermal
displacement parameters for all non-hydrogen atoms. Hydrogen atoms were placed in
calculated positions and refined using a riding model (except where noted below).

Using XPREP, the data merged poorly (R(int) = 0.18) into the obvious primitive
trigonal/hexagonal cell. Data merged satisfactorily (R(int) = 0.074) into monoclinic P or
equivalent C lattice, or into an orthorhombic C-centered lattice. A satisfactory solution could
only be extracted in space group Cccm. An SbFg anion with badly disordered F atoms sits on
a special position (2/m symmetry) leading to a total of [four SbFs per unit cell, and hence to
a total count of four Ag" ions per cell. The expected bis-alkyne moiety (py-==-Ph-==-py,
where == denotes the alkyne bond, Ph a bis-meta-substituted phenyl group and py a meta-
substituted pyridyl group) was not to be found (in this or any other space group attempted
including C1). Rather, the structure is comprised of an apparently oligomeric alkyne and
stacked but disordered pyridyl groups. Pairs of pyridyl groups are bridged by
substoichiometric amounts of Ag" ions (total 2 per cell), giving linear N-Ag-N moieties.
Pairs of apparent alkyne oligomers are bridged by substoichiometric amounts of Ag" ions to
give linear bis-alkyne Ag moieties; and an alkyne chain is bridged to the pyridyl chain
through by substoichiometric amounts of Ag® ions. Application of space-group symmetry
operations creates linear zig-zag chains of the pyridyl-Ag moieties and of apparently

oligomeric alkyne-phenyl groups. However, a fourth crystallographically distinct Ag" sits
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essentially between the two alkyne carbon atoms. Initial models focussed on polymeric
alkynyl-phenyl chain with pyridyl groups as polymer chain terminators.

However, as there was little chemical evidence of polymerisation having taken place, we
turned to a model wherein the py-==-Ph-==-py units are disordered by +/- 1/3, noting that
the PyN..Npy separation was essentially identical to the distance spanned by the -==- moiety
and the 120 deg angles created by meta substitution. Accordingly, with respect to the py-==-
Ph-==-py moiety, each aromatic ring is 2/3 pyridyl and 1/3 phenyl. This leaves the alkynyl
group with occupancy of 2/3 and the two crystallographically independent nitrogen sites in
this moiety with an occupancy of 1/6. The asymmetric unit comprises an alkynyl moiety and
two half rings sitting perpendicular to crystallographic mirror planes with two of the
substoichiometric silver ions in general positions [one coordinated linearly by a pair of
pyridyl nitrogens, present in 1/48 of full occupancy (1/3 per cell) and the other associated
asymmetrically with alkynyl groups and the separate pyridyl group, present in 1/24 of full
occupancy (2/3 per cell)] and the third Ag" sitting on a two-fold axis [bridging linearly two
alkynyl groups, present in 1/8 of full occupancy (1 Ag® per cell)]. Completing the
asymmetric unit, the separate pyridyl rings have crystallographically imposed mirror
symmetry about a plane perpendicular to the molecular plane and the substoichiometric Ag"
ion sits on a two-fold axis with 1/4 of full site occupancy (2 per cell). Thus, the composition
of the unit cell is non-stoichiometric. The structure is also significantly twinned with
hexagonal twin law (0.5 0.5 0/ 1.5 -0.5 0/ 0 0 1) yielding a a final twin component of

0.130(12).
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Table S1: Crystallographic data for {[L3Ag](SbF¢)},.

Compound

Formula

Formula weight

Crystal system

Space group

a, A

b, A

¢, A

@

=

Vv, A3

Z

Cryst. size,

color, habit

Peatc, Mg/ mm’

p, mm-1

Reflections collected
Independent reflections (R;,)
Data/restraints/parameters
Goodness-of-fit on F*

Final R, and wR, indexes [[>20 (I)]
Final R, and wR, indexes [all data]

Largest difference in peak and hole (eA?)

{[L3Ag](SbFe)},
C14HoF,SbAgsN;
1741.78

Orthorhombic

Ccem

12.9114(17)

22.3632(17)

11.9153(8)

90.

90.

90.

3440.4(6)

2

0.35x0.21 x 0.17 mm,
pale yellow , block
1.681

11.359

22241

1542[R(int) = 0.1053]
1542/150/178

1.020

R, =0.0635, wR, = 0.1800
R, =0.0740, wR, = 0.1955
1.004 and -1.298
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