Supporting Information for:

Development of the Intramolecular Prins Cyclization/Schmidt Reaction for the Synthesis of the Azaspiro[4,4]nonane: Application to the Formal Synthesis of (±)-Stemonamine

Zhi-Hua Chen, Yong-Qiang Tu,* Shu-Yu Zhang, and Fu-Min Zhang

State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou

University, Lanzhou 730000, P R China

E-mail: tuyq@lzu.edu.cn

Supporting Information

Experimental details for new compounds------S2-S11

X-Ray Ellipsoid Plots of 13 ------S12

Copies of ¹H and ¹³C spectra of new compounds------S13-S48

Experimental Details

General information

For product purification by flash column chromatography, silica gel (200~300 mesh) and light petroleum ether (bp. 60~90 °C) and ethyl acetate are used. All solvents were purified and dried by standard techniques, and distilled prior to use. All organic extracts were dried over MgSO4, unless otherwise noted. IR spectra were recorded on a fourier transform infrared spectrometer. ¹H and ¹³C NMR spectra were taken on a *Bruker*, AM-400 spectrometer with TMS as an internal standard and CDCl₃ (or Acetone-d6) as solvent. The MS data were obtained with EI (70 eV). HRMS data were determined on a *Bruker Daltonics* APEXII 47e FT-ICR spectrometer. Melting point was measured on a melting point apparatus and was uncorrected. Starting material **7** is known compound.

Procedure 1): To a solution of 174.0 mg (0.43 mmol) of **7** in THF (2 mL) at -78 °C under argon was added tert-butyllithium (1.6 M, 540 μ L, 0.86 mmol). After being stirred at -78 °C for 20 min, CeCl₃ (106.4 mg, 0.43 mmol) was added and the reaction mixture was stirred at -78 °C for another 20 min. Then, a solution of ketone **6** (63.0 mg. 0.43 mmol) in THF (2 mL) was added. The resulting mixture was stirred for 10 min and then quenched with water (1 mL). After being warmed up to room temperature, the reaction mixture was diluted with CH₂Cl₂ (5 mL) and water (1 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to afford the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved in THF (5 mL) at room temperature under argon, and then TBAF (225.0 mg, 0.86 mmol) was added. After being stirred at room temperature for 3.5 h, the reaction mixture was concentrated to give a yellow oil which was then purified via column chromatography (20% EtOAc/petroleum ether to 50% EtOAc/petroleum ether) to give compound **8** (84.2 mg, 84% yield, two steps) as a light yellow oil; ¹H NMR (400 MHz, Acetone-d6) δ 1.28 (s, 3H), 1.45-1.64 (m, 4H), 1.66-1.73 (m, 2H), 2.08-2.12 (t, *J* = 8.0 Hz, 2H), 3.22 (s, 6H), 3.53 (s, 1H), 3.57 (s, 2H), 4.29-4.31 (m, 1H), 4.81-4.82 (d, *J* = 1.6 Hz, 1H), 5.13 (s, 1H); ¹³C NMR (100 MHz, Acetone-d6) δ 28.1, 28.2, 28.7, 28.8, 32.9, 36.4, 36.5, 52.8, 62.3, 62.4, 75.0, 75.2, 105.8, 108.0, 155.9.

Procedure 1): A solution of **8** (80.0 mg, 0.34 mmol) in anhydrous $CH_2Cl_2(2 \text{ mL})$ under argon was treated with Et₃N (101 µL, 0.73 mmol) and methanesulfonyl chloride (32 µL, 0.41 mmol) at 0 °C. The reaction mixture was stirred for 2 min and then quenched with water (1 mL). The aqueous phase was extracted with CH_2Cl_2 (3 x 3 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved DMF (2 mL) under argon, and then NaN₃ (71.0 mg, 1.09 mmol) was added. After being stirred at 40 °C for 4 h, the solution was allowed to cool on ice-water bath. Then, the reaction mixture was diluted with Et₂O (10 mL) and quenched with water (5 mL). The aqueous phase was extracted with Et₂O (3 x 5 mL), and the combined organic phase was washed with water (2 x 5 mL). The organic phase was dried over MgSO₄, filtered and concentrated to yield a yellow oil which was purified via column chromatography (10% EtOAc/ petroleum ether to 20% EtOAc/petroleum ether) to give the desired azide compound **5'** (83.1 mg, 94% yield, two steps) as a light yellow oil; ¹H NMR (400 MHz, Acetone-d6) δ 1.30 (s, 3H), 1.49-1.65 (m, 4H), 1.77-1.85 (dt, J = 7.2Hz, 7.2 Hz, 2H), 2.13-2.16 (m, 2H), 3.24 (s, 6H), 3.38-3.41 (t, J = 6.8 Hz, 2H), 3.55 (s, 1H), 4.31 (s, 1H), 4.85-4.86 (d, J = 1.2 Hz, 1H), 5.16 (s, 1H); ¹³C NMR (100 MHz, Acetone-d6) δ 28.1, 28.7, 28.8, 29.0, 36.4, 36.5, 52.0, 52.8, 74.9, 75.0, 105.7, 108.6, 155.2.

Procedure 3): A solution of **5'** (83.1 mg, 0.32 mmol) in DMF (2 mL) under argon was treated with imidazole (440.0 mg, 6.47 mmol) and chlorotrimethylsilane (408 μ L, 3.23 mmol) at room temperature. The reaction mixture was stirred for 10 h and then was diluted with Et₂O (5 mL) and water (1 mL). The aqueous phase was extracted with Et₂O (3 x 5 mL), and the combined organic phase was washed with water (2 x 5 mL). The organic phase was dried over MgSO₄, filtered and concentrated. The residue was purified via silica gel chromatography (2% EtOAc/petroleum ether to 4% EtOAc/petroleum ether) to give **5** (106.0 mg, 99% yield) as a light yellow oil; ¹H NMR (400 MHz, Acetone-d6) δ 0.13 (s, 9H), 1.41 (s, 3H), 1.44-1.69 (m, 4H), 1.72-1.87 (m, 2H), 2.10-2.19 (m, 2H), 3.23 (s, 3H), 3.24 (s, 3H), 3.38-3.41 (t, *J* = 6.8 Hz, 2H), 4.29-4.31 (t, *J* = 5.6 Hz, 1H), 4.86-4.87 (d, *J* = 1.2 Hz, 1H), 5.08 (s, 1H); ¹³C NMR (100 MHz, Acetone-d6) δ 2.6, 28.3, 28.4, 28.8, 28.9, 37.5, 52.1, 52.8, 53.0, 79.3, 105.6, 109.3, 154.5; IR (neat) 840, 1251, 1640, 2096 cm⁻¹; MS (EI) *m/z* 329, 286, 254, 212, 198, 129, 75; HRMS (ESI) Calcd. for C₁₅H₃₁N₃O₃SiNa (M+Na)⁺: 352.2027, Found 352.2034.

To a solution of 5 (112.3 mg, 0.34 mmol) in CH₂Cl₂ (3 mL) at -78 °C under argon was added TiCl₄ (751 µL, 1M in CH₂Cl₂). The result mixture was stirred at -78 °C for 15 minutes. After being warmed slowly to 10 °C for additional times (about 3 h), it was quenched with water (1 mL). The aqueous phase was extracted with CH_2Cl_2 (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give a yellow oil. Chromatography (60% EtOAc/petroleum ether to 80% EtOAc/petroleum ether) afforded 9a (24.7 mg, 37% yield) and 9b (33.2 mg, 49% yield) as light yellow oil, respectively; **9a**: ¹H NMR (400 MHz, CDCl₃) δ 1.49-1.68 (m, 3H), 1.79-1.99 (m, 4H), 2.01 (s, 3H), 2.17-2.26 (m, 1H), 2.31-2.39 (m, 1H), 2.62-2.67 (q, J = 6.8 Hz, 1H), 3.27 (s, 3H), 3.41-3.44 (t, J = 6.8 Hz, 2H), 4.05-4.10 (ddd, J = 4.2 Hz, 4.2 Hz, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) & 23.4, 24.4, 31.8, 34.8, 42.0, 43.1, 49.2, 56.4, 69.5, 82.3, 168.5; IR (neat) 1101, 1411, 1645, 2930 cm⁻¹; MS (EI) m/z 197, 182, 165, 138, 126, 106, 83; HRMS (ESI) Calcd. for C₁₁H₁₉NO₂Na $(M+Na)^+$: 220.1308, Found 220.1312. **9b**: ¹H NMR (400 MHz, CDCl₃) δ 1.34-1.41 (dt, J = 7.6 Hz, 12.8 Hz, 1H), 1.65-1.70 (q, J = 6.4 Hz, 1H), 1.74-1.82 (m, 4H), 1.84-2.00 (m, 2H), 2.01 (s, 3H), 2.58-2.70 (m, 2H), 3.28 (s, 3H), 3.37-3.46 (m, 2H), 3.67-3.74 (ddd, J = 15.6 Hz, 7.2 Hz, 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.1, 24.6, 30.1, 33.2, 40.8, 42.2, 49.2, 56.5, 68.5, 80.9, 168.5; IR (neat) 1101, 1411, 1645, 2930 cm⁻¹; MS (EI) *m/z* 197, 182, 165, 149, 124, 112, 96; HRMS (ESI) Calcd. for C₁₁H₁₉NO₂Na (M+Na)⁺: 220.1308, Found 220.1310.

Procedure 1): To a solution of the mixture of **9a** and **9b** (21.6 mg, 0.11 mmol) in EtSH (3 mL) at room temperature under argon was added AlCl₃ (73.1 mg, 0.55 mmol). The reaction mixture was stirred for 3 h and then was diluted with CHCl₃ (5 mL) and water (1 mL). The aqueous phase was extracted with CHCl₃ (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): To a CH_2Cl_2 (3 mL) solution of the above crude product under argon at 0 °C was added Dess-Martin periodinane (140.0 mg, 0.33 mmol) followed by slow warming of the reaction mixture to room temperature. After being stirred for 3 h, the reaction was quenched via addition of

saturated aqueous NaHCO₃ (3 mL) and Na₂S₂O₃ (3 mL), and diluted with CH₂Cl₂ (5 mL). The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated to yield a yellow oil. Chromatography (50% EtOAc/petroleum ether to 70% EtOAc/petroleum ether) afforded **10** (18.1 mg, 91% yield, two steps) as light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.83-2.00 (m, 5H), 2.04 (s, 3H), 2.08-2.12 (d, *J* = 18 Hz, 1H), 2.18-2.27 (ddd, *J* = 9.2 Hz, 9.2 Hz, 9.2 Hz, 1H), 2.57-2.66 (m, 1H), 2.73-2.81 (m, 1H), 3.29-3.35 (m, 1H), 3.47-3.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 23.0, 24.1, 33.2, 37.9, 40.9, 48.4, 49.3, 67.2, 169.4, 216.4; IR (neat) 1160, 1635, 1739, 2925 cm⁻¹; MS (EI) *m/z* 181, 153, 138, 122, 110, 96, 83; HRMS (ESI) Calcd. for C₁₀H₁₅NO₂Na (M+Na)⁺: 204.0995, Found 204.0990.

Procedure 1): To a solution of 489.0 mg (1.22 mmol) of **7** in THF (3 mL) at -78 °C under argon was added tert-butyllithium (1.6 M, 1.52 mL, 2.43 mmol). After being stirred at -78 °C for 20 min, CeCl₃ (300.0 mg, 1.22 mmol) was added and the reaction mixture was stirred at -78 °C for another 20 min. Then, a solution of ketone **11** (209.0 mg. 1.22 mmol) in THF (2 mL) was added. The resulting mixture was stirred for 10 min and then quenched with water (1 mL). After being warmed up to room temperature, the reaction mixture was diluted with CH_2Cl_2 (5 mL) and water (1 mL). The aqueous phase was extracted with CH_2Cl_2 (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to afford the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved in THF (5 mL) at room temperature under argon, and then TBAF (635.0 mg, 2.43 mmol) was added. After being stirred at room temperature for 2.5 h, the reaction mixture was concentrated to give a yellow oil which was then purified via column chromatography (20% EtOAc/petroleum ether to 35% EtOAc/petroleum ether) to give compound **12a** (216.0 mg) and **12b** (40.4 mg, 82% combined yield, two steps) as light yellow oil, respectively; **12a:** ¹H NMR (400 MHz, CDCl₃) δ 1.47-1.68 (m, 4H), 1.70-1.97 (m, 8H), 2.02-2.14 (m, 3H), 3.28 (s, 3H), 3.29 (s, 3H), 3.66-3.69 (t, *J* = 6.0 Hz, 2H), 4.37-4.40 (dd, *J* = 4.0 Hz, 7.2 Hz, 1H), 4.94 (s, 1H), 5.21 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 27.3, 30.1, 31.7, 31.8, 39.9, 42.4, 52.4, 53.1, 62.1, 85.0, 104.0, 108.7, 152.3; **12b:** ¹H NMR (400 MHz, CDCl₃) δ 1.06-1.13 (dt, *J* = 14.4 Hz, 3.6 Hz, 1H), 1.49-1.56 (m, 2H), 1.62-1.68 (m, 1H), 1.72-1.86 (m, 4H), 1.99-2.19 (m, 6H), 2.28-2.36 (ddd, *J* = 6 Hz, 8 Hz, 8 Hz, 1H), 3.29 (s, 3H), 3.31 (s, 3H), 3.66-3.70 (dt, *J* = 8 Hz, 2 Hz, 2H), 4.34-4.36 (dd, *J* = 8 Hz, 8 Hz, 1H), 4.94 (s, 1H), 3.29 (s, 3H), 3.31 (s, 3H), 3.66-3.70 (dt, *J* = 8 Hz, 2 Hz, 2H), 4.34-4.36 (dd, *J* = 8 Hz, 8 Hz, 8 Hz, 1H), 3.29 (s, 3H), 3.31 (s, 3H), 3.66-3.70 (dt, *J* = 8 Hz, 2 Hz, 2H), 4.34-4.36 (dd, *J* = 8 Hz, 8 Hz, 9 Hz

Hz, 3.6 Hz, 1H), 4.94 (s, 1H), 5.05 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.6, 27.4, 28.8, 31.5, 34.8, 35.8, 44.1, 52.9, 53.1, 62.0, 87.3, 104.0, 110.8, 150.8.

Procedure 1): A solution of **12a** (220.2 mg, 0.85 mmol) in anhydrous CH₂Cl₂ (5 mL) under argon was treated with Et₃N (238 μ L, 1.71 mmol) and methanesulfonyl chloride (80 μ L, 1.03 mmol) at 0 °C. The reaction mixture was stirred for 2 min and then quenched with water (1 mL). The aqueous phase was extracted with CH₂Cl₂ (5 x 3 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved DMF (3 mL) under argon, and then NaN₃ (166.4 mg, 2.56 mmol) was added. After being stirred at 40 °C for 3.5 h, the solution was allowed to cool on ice-water bath. Then, the reaction mixture was diluted with Et₂O (10 mL) and quenched with water (5 mL). The aqueous phase was extracted with Et₂O (3 x 5 mL), and the combined organic phase was washed with water (2 x 5 mL). The organic phase was dried over MgSO₄, filtered and concentrated to yield a yellow oil which was purified via column chromatography (10% EtOAc/ petroleum ether to 20% EtOAc/petroleum ether) to give the desired azide compound **12a'** (221.3 mg, 92% yield, two steps) as a light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.45-1.53 (m, 2H), 1.55-1.62 (m, 2H), 1.64-1.73 (m, 1H), 1.74-1.93 (m, 6H), 1.95-2.05 (m, 1H), 2.06-2.10 (dd, *J* = 8.8 Hz, 6.8 Hz, 2H), 3.26 (s, 3H), 3.28 (s, 3H), 3.29-3.33 (t, *J* = 6.8 Hz, 2H), 4.35-4.38 (dd, *J* = 7.2 Hz, 4.0 Hz, 1H), 4.90 (s, 1H), 5.20 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 28.1, 28.6, 30.1, 31.7, 40.0, 42.6, 51.2, 52.5, 52.8, 84.7, 103.8, 109.0, 151.8.

Procedure 3): A solution of **12a'** (190.0 mg, 0.67 mmol) in DMF (4 mL) under argon was treated with imidazole (915.0 mg, 13.4 mmol) and chlorotrimethylsilane (848 μ L, 6.71 mmol) at room temperature. The reaction mixture was stirred for 10 h and then was diluted with Et₂O (10 mL) and water (5 mL). The aqueous phase was extracted with Et₂O (3 x 10 mL), and the combined organic phase was washed with water (2 x 5 mL). The organic phase was dried over MgSO₄, filtered and concentrated. The residue was purified via silica gel chromatography (2% EtOAc/petroleum ether to 9% EtOAc/petroleum ether) to give **2a** (236.0 mg, 99% yield) as a light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.09 (s, 9H), 1.36-1.49 (m, 2H), 1.61-1.69 (m, 2H), 1.70-1.79 (m, 4H), 1.80-1.89 (m, 2H), 1.95-2.03 (m, 3H), 3.23 (s, 3H), 3.29-3.33 (m, 5H), 4.35-4.38 (dd, *J* = 7.6 Hz, 4.4 Hz, 1H), 4.90-4.91 (d, *J* = 1.2 Hz, 1H), 5.17 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 2.0, 22.0, 28.5, 28.7, 29.7,

31.1, 36.7, 44.4, 51.3, 51.7, 53.1, 88.0, 104.1, 110.6, 150.7; IR (neat) 840, 1063, 2096, 2927 cm⁻¹; MS (EI) m/z 355, 312, 252, 237, 208, 155, 109; HRMS (ESI) Calcd. for $C_{17}H_{33}N_3O_3SiNa$ (M+Na)⁺: 378.2183, Found 378.2179.

To a solution of **2a** (242.1 mg, 0.68 mmol) in CH₂Cl₂ (7 mL) at -78 °C under argon was added TiCl₄ (1.50 mL, 1M in CH₂Cl₂). The result mixture was stirred at -78 °C for 15 minutes. After being warmed slowly to 10 °C for additional times (about 3 h), it was quenched with water (2 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give a yellow oil. Chromatography (50% EtOAc/petroleum ether to 80% EtOAc/petroleum ether) afforded **4** (a mixture of epimers in the ratio of 1:0.84, 125.2 mg, 82% yield) as light yellow oil; **4**: ¹H NMR (400 MHz, CDCl₃) δ 1.51-1.80 (m, 15H), 1.81-1.94 (m, 4H), 1.98-2.11 (m, 4H), 2.13-2.17 (m, 2H), 2.26-2.37 (m, 4H), 2.57-2.65 (dt, *J* = 13.2 Hz, 7.2 Hz, 1H), 3.22 (s, 3H), 3.29-3.36 (m, 5H), 3.60-3.68 (m, 3H), 3.85-3.87 (t, *J* = 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.7, 17.9, 21.4, 21.5, 22.6, 23.2, 33.0, 33.7, 33.8, 41.3, 41.4, 43.0, 43.6, 45.0, 45.3, 47.7, 47.8, 55.8, 57.2, 68.1, 70.5, 78.5, 80.3, 171.1, 171.3; IR (neat) 1458, 1636, 2360, 2923 cm⁻¹; MS (EI) *m/z* 223, 208, 192, 151, 136, 123, 96; HRMS (ESI) Calcd. for C₁₃H₂₂NO₂ (M+H)⁺: 224.1645, Found 224.1651.

Procedure 1): A solution of **12b** (81.3 mg, 0.32 mmol) in anhydrous CH₂Cl₂ (3 mL) under argon was treated with Et₃N (88 μ L, 0.63 mmol) and methanesulfonyl chloride (29 μ L, 0.38 mmol) at 0 °C. The reaction mixture was stirred for 2 min and then quenched with water (1 mL). The aqueous phase was extracted with CH₂Cl₂ (5 x 3 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved DMF (2 mL) under argon, and then NaN₃

(62.0 mg, 0.95 mmol) was added. After being stirred at 40 °C for 3.5 h, the solution was allowed to cool on ice-water bath. Then, the reaction mixture was diluted with Et₂O (5 mL) and quenched with water (3 mL). The aqueous phase was extracted with Et₂O (3 x 5 mL), and the combined organic phase was washed with water (2 x 3 mL). The organic phase was dried over MgSO₄, filtered and concentrated to yield a yellow oil which was purified via column chromatography (10% EtOAc/ petroleum ether to 15% EtOAc/petroleum ether) to give the desired azide compound **12b'** (78.5 mg, 88% yield, two steps) as a light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.05-1.12 (m, 1H), 1.46-1.55 (m, 2H), 1.60-1.89 (m, 6H), 1.97-2.14 (m, 4H), 2.26-2.34 (m, 1H), 3.28-3.33 (m, 8H), 4.32-4.35 (dd, *J* = 8.0 Hz, 4.4 Hz, 1H), 4.90 (s, 1H), 5.03 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.6, 27.8, 28.9, 34.7, 36.0, 44.1, 51.3, 53.0, 53.1, 86.8, 103.9, 110.6, 150.5.

Procedure 3): A solution of **12b'** (61.0 mg, 0.22 mmol) in DMF (2 mL) under argon was treated with imidazole (294.0 mg, 4.32 mmol) and chlorotrimethylsilane (273 μ L, 2.16 mmol) at room temperature. The reaction mixture was stirred for 1.5 h and then was diluted with Et₂O (5 mL) and water (3 mL). The aqueous phase was extracted with Et₂O (3 x 5 mL), and the combined organic phase was washed with water (2 x 3 mL). The organic phase was dried over MgSO₄, filtered and concentrated. The residue was purified via silica gel chromatography (2% EtOAc/petroleum ether to 9% EtOAc/petroleum ether) to give **2b** (73.9 mg, 97% yield) as a light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.07 (s, 9H), 0.94-1.01 (m, 1H), 1.36-1.42 (m, 1H), 1.45-1.51 (m, 1H), 1.66-1.84 (m, 5H), 1.91-2.09 (m, 4H), 2.27-2.35 (m, 1H), 3.29-3.35 (m, 8H), 4.30-4.33 (q, *J* = 3.6 Hz, 1H), 4.87 (s, 1H), 4.98 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 1.8, 20.3, 27.0, 27.8, 28.4, 33.8, 34.1, 45.4, 51.6, 53.0, 53.1, 89.6, 104.2, 110.1, 150.6; IR (neat) 839, 1063, 1251, 2096 cm⁻¹; MS (EI) *m/z* 355, 312, 296, 238, 210, 196, 155; HRMS (ESI) Calcd. for C₁₇H₃₃N₃O₃SiNa (M+Na)⁺: 378.2183, Found 378.2178.

To a solution of **2b** (27.5 mg, 0.08 mmol) in CH₂Cl₂ (2 mL) at -78 °C under argon was added TiCl₄ (171 μ L, 1M in CH₂Cl₂). The result mixture was stirred at -78 °C for 15 minutes. After being warmed slowly to 10 °C for additional times (about 3 h), it was quenched with water (1 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give a yellow oil. Chromatography (50% EtOAc/petroleum ether to 80% EtOAc/petroleum ether) afforded **4** (a mixture of epimers in the ratio of 1:0.53, 13.7 mg, 79% yield) as light yellow oil; **4**: ¹H NMR (400 MHz, CDCl₃) δ 1.53-1.84 (m, 25H), 1.88-1.96 (m,

6H), 2.01-2.09 (m, 3H), 2.10-2.16 (m, 2H), 2.17-2.20 (m, 2H), 2.30-2.40 (m, 7H), 2.60-2.68 (dt, J = 13.2 Hz, 7.2 Hz, 1H), 3.25 (s, 6H), 3.31-3.39 (m, 6H), 3.62-3.71 (m, 4H), 3.87-3.89 (t, J = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 17.7, 17.9, 21.5, 21.6, 22.5, 23.1, 32.9, 33.0, 33.7, 33.8, 41.2, 41.3, 43.0, 43.6, 45.1, 45.3, 47.8, 47.9, 55.9, 57.3, 68.1, 70.6, 78.5, 80.3, 171.2, 171.4; IR (neat) 1458, 1636, 2360, 2923 cm⁻¹; MS (EI) *m*/*z* 223, 208, 192, 151, 136, 123, 96; HRMS (ESI) Calcd. for C₁₃H₂₂NO₂ (M+H)⁺: 224.1645, Found 224.1651.

Procedure 1): To a solution of the mixture of epimers 4 (100.2 mg, 0.45 mmol) in EtSH (5 mL) at room temperature under argon was added AlCl₃ (300.0 mg, 2.25 mmol). The reaction mixture was stirred for 1.5 h and then was diluted with CH_2Cl_2 (10 mL) and water (3 mL). The aqueous phase was extracted with CH_2Cl (3 x 10 mL), then the combined organic extracts were dried over MgSO₄, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): To a CH₂Cl₂ (7 mL) solution of the above crude product under argon at 0 °C was added Dess-Martin periodinane (572.0 mg, 1.35 mmol) followed by slow warming of the reaction mixture to room temperature. After being stirred for 2.5 h, the reaction was quenched via addition of saturated aqueous NaHCO₃ (5 mL) and Na₂S₂O₃ (5 mL), and diluted with CH₂Cl₂ (10 mL). The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated to yield a yellow oil. Chromatography (50% EtOAc/petroleum ether to 70% EtOAc/petroleum ether) afforded **13** (81.0 mg, 87% yield, two steps) as a white crystalline solid: mp 157-159 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.49-1.59 (m, 1H), 1.65-1.83 (m, 3H), 1.86-2.06 (m, 4H), 2.19-2.32 (m, 3H), 2.41-2.46 (m, 1H), 2.52-2.69 (m, 3H), 3.44-3.52 (dt, *J* = 11.6 Hz, 7.2 Hz, 1H), 3.78-3.84 (t, *J* = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.1, 20.5, 31.3, 36.5, 43.6, 44.7, 45.6, 47.4, 49.1, 67.1, 172.4, 214.3; IR (neat) 1456, 1625, 1743, 2925 cm⁻¹; MS (EI) *m/z* 207, 164, 150, 136, 127, 110, 83; HRMS (ESI) Calcd. for C₁₂H₁₈NO₂ (M+H)⁺: 208.1332, Found 208.1326.

A solution of **13** (25.0 mg, 0.12 mmol) in anhydrous MeOH (2 mL) under argon was treated with PhI(OAc)₂ (47.0 mg, 0.15 mmol) and KOH (24.3 mg, 0.43 mmol) at 0 °C. The reaction mixture was stirred for 2 h and then concentrated. The residue was purified via silica gel chromatography (50% EtOAc/petroleum ether to 70% EtOAc/petroleum ether) to give **14** (26.0 mg, 80% yield) as a light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.49-1.60 (m, 2H), 1.66-1.73 (m, 2H), 1.81-1.98 (m, 4H), 2.10-2.15 (ddd, *J* = 10.4 Hz, 5.2 Hz, 5.2 Hz, 1H), 2.22-2.25 (d, *J* = 13.2 Hz, 1H), 2.34-2.36 (m, 1H), 2.46-2.53 (m, 1H), 2.60-2.65 (m, 1H), 2.76 (brs, 1H), 3.24 (s, 3H), 3.32 (s, 3H), 3.33-3.39 (m, 1H), 3.73-3.77 (m, 1H), 4.16-4.17 (d, *J* = 6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.4, 21.1, 25.7, 38.1, 42.3, 42.5, 48.6, 49.3, 49.4, 50.4, 65.9, 76.1, 104.8, 173.6; IR (neat) 1129, 1457, 1616, 2360 cm⁻¹; MS (EI) *m*/z 269, 238, 191, 152, 122, 110, 89; HRMS (ESI) Calcd. for C₁₄H₂₄NO₄ (M+H)⁺: 270.1700, Found 270.1700.

To a CH₂Cl₂ (2 mL) solution of alcohol **14** (18.5 mg, 0.07 mmol) under argon at 0 °C was added NaHCO₃ (57.8 mg, 0.69 mmol) and Dess-Martin periodinane (87.5 mg, 0.21 mmol) followed by slow warming of the reaction mixture to room temperature. After being stirred for 5.5 h, the reaction was quenched via addition of saturated aqueous NaHCO₃ (2 mL) and Na₂S₂O₃ (2 mL), and diluted with CH₂Cl₂ (5 mL). The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated to yield a yellow oil. Chromatography (50% EtOAc/petroleum ether to 70% EtOAc/petroleum ether) afforded ketone **15** (16.5 mg, 90% yield) as a light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.55-1.64 (m, 1H), 1.66-1.76 (m, 1H), 1.80-1.96 (m, 5H), 2.18-2.32 (m, 3H), 2.35-2.41 (m, 2H), 2.77-2.79 (dd, *J* = 5.2 Hz, 3.2 Hz, 1H), 3.19 (s, 3H), 3.34-3.3.42 (m, 4H), 3.74-3.79 (dd, *J* = 11.6 Hz, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 17.2, 19.9, 21.0, 33.4, 44.6, 46.0, 47.4, 49.1, 50.5, 50.7, 62.6, 101.9, 170.7, 207.6; IR (neat) 1457, 1616, 2925 cm⁻¹; MS (EI) *m/z* 267, 239, 211, 169, 127, 99, 71; HRMS (ESI) Calcd. for C₁₄H₂₂NO₄ (M+H)⁺: 268.1543, Found 268.1547.

Procedure 1): To a solution of the ketone **15** (12.0 mg, 0.04 mmol) in THF (3 mL) at -78 °C under argon was added KHMDS (0.91 M, 99 μ L, 0.09 mmol). After being stirred at -78 °C for 1 h, PhN(Tf)₂ (40.1 mg, 0.15 mmol) was added. The resulting mixture was stirred for 30 min and then quenched with water (1 mL). After being warmed up to room temperature, the reaction mixture was diluted with CH₂Cl₂ (5 mL) and water (1 mL). The aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL), then the combined organic extracts were dried over Na₂SO₄, filtered and concentrated. Flash column Chromatography (50% EtOAc/petroleum ether to 70% EtOAc/petroleum ether) afforded crude product as a yellow oil.

Procedure 2): The above crude product was dissolved in THF (3 mL) under argon, followed by addition of LiCl (9.6 mg, 0.23 mmol) and Pd(PPh₃)₄ (5.3 mg, 0.005mmol). After being stirred at room temperature for 30 min, CH₃MgBr (1M, 225 μ L, 0.23 mmol) was added. The reaction mixture was stirred for 30 min and then quenched with water (1 mL). The resulting mixture was diluted with CH₂Cl₂ (5 mL) and treated with 1N HCl to PH = 2. The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated to yield a yellow oil. Chromatography (50% EtOAc/petroleum ether to 70% EtOAc/petroleum ether) afforded enone **16** (8.4 mg, 85% yield, two steps) as a white amorphous solid; ¹H NMR (400 MHz, CDCl₃) δ 1.55-1.59 (m, 1H), 1.78 (s, 3H), 1.87-1.95 (m, 2H), 1.96- 2.08 (m, 2H), 2.14-2.23 (m, 1H), 2.26-2.37 (m, 3H), 2.56-2.66 (m, 2H), 2.80-2.85 (dd, *J* = 12.8 Hz, 8.8 Hz, 1H), 3.56-3.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 8.0, 21.5, 22.3, 23.7, 32.8, 40.6, 47.0, 49.7, 69.7, 136.3, 171.0, 171.2, 203.5; IR (neat) 1629, 1700 cm⁻¹; MS (EI) *m/z* 219, 204, 191, 176, 163, 148, 135; HRMS (ESI) Calcd. for C₁₃H₁₈NO₂ (M+H)⁺: 220.1332, Found 220.1332.

The structure of our synthetic tricyclic compound **13** was corroborated by single-crystal. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: 801019.

		L L L L L L L L L L L L L L L L L L L
		0
		- 1
		50
		30
		20
		09
	_	
		80
		06
		100
		110
		120
		130
		40
		50
		69
		70
		80
		-06
₹		00
		10 20
gb de		3 1

_____53.09 40.77 8T.6₽-----

					udd
					- 0
					- 9
06.12					5
58.09 58.26 30.07 31.67					- 8
26.95 72,25					40
21.18					20
LL 25-					- 09
89°9/.~					- 20
00 · <i>LL</i> 32 · <i>LL</i> · 25					80
					- 6
18°201 ——					100
66.801 ——					110
					120
					130
					140
82.IZI ——					150
					160
					170
					180
	Me) ₂				190
	J ₃)H(O				200
	Ц Н Ц Ц Ц Ц С Ц С Ц С С	12a'	S30		210

					mdd
20.2					0
					- 9
£0.22					5
28.62 79.62 79.62 79.62				=	30
02.98					40
ν ν ν ν ν ν ν ν ν ν ν ν ν ν					20
50 ES -					- 09
89.9/ ~					70
25. <i>TT</i>					80
20.88					6
80.401					- 10
09.011					110
					120
					130
					140
ZL.OZI					150
					160
					170
					180
	le) ₂				190
	T(ON				200
	Ċ Ċ	2a			210
	OSMT		S32	Maryare	Ę

F

27:71 28:22 22:22

>1/1:00 7/1:00 7/1:30

£6.501 —— ₽9.011 -----

20°.77.00 77.00 77.32 £8·98 ——

L0.44. 23.04 53.04 53.04

527.83 99.46 76.35

95.02----

bpm Ē

S36

					mdd
					0
28.I					
					- 9
62.02 —					20
512-87 512-87 512-28					30
34.08					40
8E'GÞ ——					0
23.05					5
					- 9
69°9L —					70
28. <i>TT</i> .00					80
85.68					6
					0
104.23					- 0
θι·οιι ——					
					120
					130
					140
LS.021					50
					1
					16
					170
					180
	1e) ₂				190
	ON ON				00
	CH ²	0			0
	$\widehat{f}_{\underline{k}}$	2t			21
	S O D		S38	ŧ	F
	₽ F				

S40

Ó

S42

Ó

