Supporting Information for:

Development of the Intramolecular Prins Cyclization/Schmidt Reaction for the Synthesis of the Azaspiro[4,4]nonane: Application to the Formal Synthesis of (\pm)-Stemonamine

Zhi-Hua Chen, Yong-Qiang Tu,* Shu-Yu Zhang, and Fu-Min Zhang

State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou

University, Lanzhou 730000, P R China

E-mail: tuyq@lzu.edu.cn

Supporting Information

Experimental details for new compounds-------------------------S2-S11

X-Ray Ellipsoid Plots of 13 ---------------------------------------

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of new compounds-------------------S13-S48

Experimental Details

General information

For product purification by flash column chromatography, silica gel (200~300 mesh) and light petroleum ether (bp. $60 \sim 90{ }^{\circ} \mathrm{C}$) and ethyl acetate are used. All solvents were purified and dried by standard techniques, and distilled prior to use. All organic extracts were dried over MgSO_{4}, unless otherwise noted. IR spectra were recorded on a fourier transform infrared spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken on a Bruker, AM-400 spectrometer with TMS as an internal standard and CDCl_{3} (or Acetone-d6) as solvent. The MS data were obtained with EI (70 eV). HRMS data were determined on a Bruker Daltonics APEXII 47e FT-ICR spectrometer. Melting point was measured on a melting point apparatus and was uncorrected. Starting material 7 is known compound.

Procedure 1): To a solution of $174.0 \mathrm{mg}(0.43 \mathrm{mmol})$ of $7 \mathrm{in} \mathrm{THF}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under argon was added tert-butyllithium ($1.6 \mathrm{M}, 540 \mu \mathrm{~L}, 0.86 \mathrm{mmol}$). After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min , $\mathrm{CeCl}_{3}(106.4 \mathrm{mg}, 0.43 \mathrm{mmol})$ was added and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 20 min . Then, a solution of ketone $6(63.0 \mathrm{mg} .0 .43 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added. The resulting mixture was stirred for 10 min and then quenched with water $(1 \mathrm{~mL})$. After being warmed up to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to afford the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved in THF (5 mL) at room temperature under argon, and then TBAF ($225.0 \mathrm{mg}, 0.86 \mathrm{mmol}$) was added. After being stirred at room temperature for 3.5 h , the reaction mixture was concentrated to give a yellow oil which was then purified via column chromatography ($20 \% \mathrm{EtOAc} /$ petroleum ether to $50 \% \mathrm{EtOAc} /$ petroleum ether) to give compound 8 ($84.2 \mathrm{mg}, 84 \%$ yield, two steps) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone-d6) $\delta 1.28(\mathrm{~s}, 3 \mathrm{H}$), $1.45-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 6 \mathrm{H}), 3.53(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}$, $2 \mathrm{H}), 4.29-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.82(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone-d6) $\delta 28.1,28.2,28.7,28.8,32.9,36.4,36.5,52.8,62.3,62.4,75.0,75.2,105.8,108.0,155.9$.

8

Procedure 1): A solution of $8(80.0 \mathrm{mg}, 0.34 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ under argon was treated with $\mathrm{Et} 3 \mathrm{~N}(101 \mu \mathrm{~L}, 0.73 \mathrm{mmol})$ and methanesulfonyl chloride $(32 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 min and then quenched with water $(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved DMF (2 mL) under argon, and then NaN_{3} $(71.0 \mathrm{mg}, 1.09 \mathrm{mmol})$ was added. After being stirred at $40{ }^{\circ} \mathrm{C}$ for 4 h , the solution was allowed to cool on ice-water bath. Then, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with water $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and the combined organic phase was washed with water ($2 \times 5 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered and concentrated to yield a yellow oil which was purified via column chromatography ($10 \% \mathrm{EtOAc} /$ petroleum ether to $20 \% \mathrm{EtOAc} /$ petroleum ether) to give the desired azide compound 5' ($83.1 \mathrm{mg}, 94 \%$ yield, two steps) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone-d6) $\delta 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.85(\mathrm{dt}$, $J=7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.16(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 6 \mathrm{H}), 3.38-3.41(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H})$, $4.31(\mathrm{~s}, 1 \mathrm{H}), 4.85-4.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone-d6) $\delta 28.1$, $28.7,28.8,29.0,36.4,36.5,52.0,52.8,74.9,75.0,105.7,108.6,155.2$.

Procedure 3): A solution of 5' ($83.1 \mathrm{mg}, 0.32 \mathrm{mmol}$) in DMF (2 mL) under argon was treated with imidazole ($440.0 \mathrm{mg}, 6.47 \mathrm{mmol}$) and chlorotrimethylsilane ($408 \mu \mathrm{~L}, 3.23 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 10 h and then was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 5 \mathrm{~mL})$, and the combined organic phase was washed with water ($2 \times 5 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered and concentrated. The residue was purified via silica gel chromatography ($2 \% \mathrm{EtOAc} /$ petroleum ether to $4 \% \mathrm{EtOAc} /$ petroleum ether) to give $5\left(106.0 \mathrm{mg}, 99 \%\right.$ yield) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone-d6) $\delta 0.13(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.19(\mathrm{~m}, 2 \mathrm{H})$, $3.23(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.41(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.29-4.31(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.87(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, Acetone-d6) $\delta 2.6,28.3,28.4,28.8,28.9,37.5,52.1$, 52.8, 53.0, 79.3, 105.6, 109.3, 154.5; IR (neat) $840,1251,1640,2096 \mathrm{~cm}^{-1}$; MS (EI) m/z 329, 286, 254, 212, 198, 129, 75; HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 352.2027$, Found 352.2034.

5

$9 a, 9 b(\alpha, \beta)$

To a solution of $5(112.3 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{TiCl}_{4}\left(751 \mu \mathrm{~L}, 1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The result mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes. After being warmed slowly to $10{ }^{\circ} \mathrm{C}$ for additional times (about 3 h), it was quenched with water (1 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to give a yellow oil. Chromatography ($60 \% \mathrm{EtOAc} /$ petroleum ether to 80% EtOAc/petroleum ether) afforded 9a ($24.7 \mathrm{mg}, 37 \%$ yield) and $\mathbf{9 b}$ ($33.2 \mathrm{mg}, 49 \%$ yield) as light yellow oil, respectively; 9a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.99(\mathrm{~m}$, $4 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.67(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H})$, 3.41-3.44 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.05-4.10 (ddd, $J=4.2 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 23.4,24.4,31.8,34.8,42.0,43.1,49.2,56.4,69.5,82.3,168.5$; IR (neat) 1101, 1411, 1645, $2930 \mathrm{~cm}^{-1}$; MS (EI) m / z 197, 182, 165, 138, 126, 106, 83; HRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+}: 220.1308$, Found 220.1312. 9b: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.34-1.41(\mathrm{dt}, J=7.6 \mathrm{~Hz}$, $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.70(\mathrm{q}, ~ J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.84-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H})$, 2.58-2.70 (m, 2H), 3.28 (s, 3H), 3.37-3.46 (m, 2H), 3.67-3.74 (ddd, $J=15.6 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 23.1,24.6,30.1,33.2,40.8,42.2,49.2,56.5,68.5,80.9,168.5$; IR (neat) 1101, 1411, 1645, $2930 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 197,182,165,149,124,112,96$; HRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 220.1308$, Found 220.1310.

Procedure 1): To a solution of the mixture of $9 \mathbf{9}$ and $\mathbf{9 b}(21.6 \mathrm{mg}, 0.11 \mathrm{mmol})$ in EtSH (3 mL) at room temperature under argon was added $\mathrm{AlCl}_{3}(73.1 \mathrm{mg}, 0.55 \mathrm{mmol})$. The reaction mixture was stirred for 3 h and then was diluted with $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ solution of the above crude product under argon at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($140.0 \mathrm{mg}, 0.33 \mathrm{mmol}$) followed by slow warming of the reaction mixture to room temperature. After being stirred for 3 h , the reaction was quenched via addition of
saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 5 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated to yield a yellow oil. Chromatography ($50 \% \mathrm{EtOAc} /$ petroleum ether to 70% EtOAc/petroleum ether) afforded 10 ($18.1 \mathrm{mg}, 91 \%$ yield, two steps) as light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.83-2.00(\mathrm{~m}, 5 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.12(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.27$ (ddd, J $=9.2 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.58(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.0,24.1,33.2,37.9,40.9,48.4,49.3,67.2,169.4,216.4$; IR (neat) $1160,1635,1739,2925 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 181,153,138,122,110,96,83$; HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 204.0995$, Found 204.0990.

Procedure 1): To a solution of $489.0 \mathrm{mg}(1.22 \mathrm{mmol})$ of 7 in THF $(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added tert-butyllithium ($1.6 \mathrm{M}, 1.52 \mathrm{~mL}, 2.43 \mathrm{mmol}$). After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min , $\mathrm{CeCl}_{3}(300.0 \mathrm{mg}, 1.22 \mathrm{mmol})$ was added and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 20 min . Then, a solution of ketone $\mathbf{1 1}(209.0 \mathrm{mg} .1 .22 \mathrm{mmol})$ in THF (2 mL) was added. The resulting mixture was stirred for 10 min and then quenched with water $(1 \mathrm{~mL})$. After being warmed up to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to afford the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved in THF (5 mL) at room temperature under argon, and then TBAF ($635.0 \mathrm{mg}, 2.43 \mathrm{mmol}$) was added. After being stirred at room temperature for 2.5 h , the reaction mixture was concentrated to give a yellow oil which was then purified via column chromatography ($20 \% \mathrm{EtOAc} /$ petroleum ether to $35 \% \mathrm{EtOAc} /$ petroleum ether) to give compound 12a $(216.0 \mathrm{mg})$ and $\mathbf{1 2 b}$ ($40.4 \mathrm{mg}, 82 \%$ combined yield, two steps) as light yellow oil, respectively; 12a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.97(\mathrm{~m}, 8 \mathrm{H}), 2.02-2.14(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H})$, $3.29(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.69(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.37-4.40(\mathrm{dd}, J=4.0 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9,27.3,30.1,31.7,31.8,39.9,42.4,52.4,53.1,62.1,85.0$, 104.0, 108.7, 152.3; 12b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.06-1.13(\mathrm{dt}, J=14.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.49-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.99-2.19(\mathrm{~m}, 6 \mathrm{H}), 2.28-2.36(\mathrm{ddd}, \mathrm{J}=16$ $\mathrm{Hz}, 8 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.70(\mathrm{dt}, J=8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.36(\mathrm{dd}, J=8$
$\mathrm{Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.6,27.4,28.8,31.5,34.8$, $35.8,44.1,52.9,53.1,62.0,87.3,104.0,110.8,150.8$.

Procedure 1): A solution of 12a ($220.2 \mathrm{mg}, 0.85 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under argon was treated with $\mathrm{Et} 3 \mathrm{~N}^{\mathrm{N}}(238 \mu \mathrm{~L}, 1.71 \mathrm{mmol})$ and methanesulfonyl chloride $(80 \mu \mathrm{~L}, 1.03 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 min and then quenched with water $(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 3 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved DMF (3 mL) under argon, and then NaN_{3} ($166.4 \mathrm{mg}, 2.56 \mathrm{mmol}$) was added. After being stirred at $40{ }^{\circ} \mathrm{C}$ for 3.5 h , the solution was allowed to cool on ice-water bath. Then, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with water (5 mL). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and the combined organic phase was washed with water ($2 \times 5 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered and concentrated to yield a yellow oil which was purified via column chromatography ($10 \% \mathrm{EtOAc}$ / petroleum ether to $20 \% \mathrm{EtOAc} /$ petroleum ether) to give the desired azide compound 12a' (221.3 mg , 92% yield, two steps) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45-1.53(\mathrm{~m}, 2 \mathrm{H})$, $1.55-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.93(\mathrm{~m}, 6 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.10(\mathrm{dd}, J=8.8 \mathrm{~Hz}$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.38(\mathrm{dd}, J=7.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 21.9,28.1,28.6,30.1,31.7,40.0,42.6$, 51.2, 52.5, 52.8, 84.7, 103.8, 109.0, 151.8.

Procedure 3): A solution of 12a' ($190.0 \mathrm{mg}, 0.67 \mathrm{mmol}$) in DMF (4 mL) under argon was treated with imidazole $(915.0 \mathrm{mg}, 13.4 \mathrm{mmol})$ and chlorotrimethylsilane ($848 \mu \mathrm{~L}, 6.71 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 10 h and then was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and the combined organic phase was washed with water ($2 \times 5 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered and concentrated. The residue was purified via silica gel chromatography ($2 \% \mathrm{EtOAc} /$ petroleum ether to $9 \% \mathrm{EtOAc} /$ petroleum ether) to give 2a ($236.0 \mathrm{mg}, 99 \%$ yield) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.09(\mathrm{~s}, 9 \mathrm{H}), 1.36-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.89(\mathrm{~m}$, $2 \mathrm{H}), 1.95-2.03(\mathrm{~m}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.33(\mathrm{~m}, 5 \mathrm{H}), 4.35-4.38$ (dd, $J=7.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.90-4.91 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.0,22.0,28.5,28.7,29.7$,
$31.1,36.7,44.4,51.3,51.7,53.1,88.0,104.1,110.6,150.7$; IR (neat) $840,1063,2096,2927 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 355,312,252,237,208,155,109$; HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}$: 378.2183, Found 378.2179.

To a solution of 2a $(242.1 \mathrm{mg}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{TiCl}_{4}\left(1.50 \mathrm{~mL}, 1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The result mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 minutes. After being warmed slowly to $10{ }^{\circ} \mathrm{C}$ for additional times (about 3 h), it was quenched with water (2 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to give a yellow oil. Chromatography ($50 \% \mathrm{EtOAc} /$ petroleum ether to 80% EtOAc/petroleum ether) afforded 4 (a mixture of epimers in the ratio of 1:0.84, 125.2 mg , 82% yield) as light yellow oil; 4: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51-1.80(\mathrm{~m}, 15 \mathrm{H}), 1.81-1.94(\mathrm{~m}$, $4 \mathrm{H}), 1.98-2.11(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.37(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.65(\mathrm{dt}, J=13.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.22(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.36(\mathrm{~m}, 5 \mathrm{H}), 3.60-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.85-3.87(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.7,17.9,21.4,21.5,22.6,23.2,33.0,33.7,33.8,41.3,41.4,43.0,43.6,45.0,45.3,47.7$, $47.8,55.8,57.2,68.1,70.5,78.5,80.3,171.1,171.3$; IR (neat) $1458,1636,2360,2923 \mathrm{~cm}^{-1}$; MS (EI) $m / z 223,208,192,151,136,123,96$; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 224.1645$, Found 224.1651 .

Procedure 1): A solution of $\mathbf{1 2 b}(81.3 \mathrm{mg}, 0.32 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ under argon was treated with $\operatorname{Et3} \mathrm{N}(88 \mu \mathrm{~L}, 0.63 \mathrm{mmol})$ and methanesulfonyl chloride ($29 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 min and then quenched with water $(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 3 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): The above crude product was dissolved DMF (2 mL) under argon, and then NaN_{3}
$(62.0 \mathrm{mg}, 0.95 \mathrm{mmol})$ was added. After being stirred at $40{ }^{\circ} \mathrm{C}$ for 3.5 h , the solution was allowed to cool on ice-water bath. Then, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and quenched with water (3 mL). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and the combined organic phase was washed with water ($2 \times 3 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered and concentrated to yield a yellow oil which was purified via column chromatography ($10 \% \mathrm{EtOAc}$ / petroleum ether to $15 \% \mathrm{EtOAc} /$ petroleum ether) to give the desired azide compound $\mathbf{1 2 b}^{\prime}(78.5 \mathrm{mg}$, 88% yield, two steps) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05-1.12(\mathrm{~m}, 1 \mathrm{H})$, $1.46-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.89(\mathrm{~m}, 6 \mathrm{H}), 1.97-2.14(\mathrm{~m}, 4 \mathrm{H}), 2.26-2.34(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.33(\mathrm{~m}, 8 \mathrm{H})$, $4.32-4.35(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.6$, $27.8,28.9,34.7,36.0,44.1,51.3,53.0,53.1,86.8,103.9,110.6,150.5$.

Procedure 3): A solution of 12b' ($61.0 \mathrm{mg}, 0.22 \mathrm{mmol}$) in DMF (2 mL) under argon was treated with imidazole ($294.0 \mathrm{mg}, 4.32 \mathrm{mmol}$) and chlorotrimethylsilane ($273 \mu \mathrm{~L}, 2.16 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 1.5 h and then was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and water (3 mL). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$, and the combined organic phase was washed with water ($2 \times 3 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, filtered and concentrated. The residue was purified via silica gel chromatography ($2 \% \mathrm{EtOAc} /$ petroleum ether to $9 \% \mathrm{EtOAc} /$ petroleum ether) to give $\mathbf{2 b}\left(73.9 \mathrm{mg}, 97 \%\right.$ yield) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.94-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.84(\mathrm{~m}, 5 \mathrm{H})$, 1.91-2.09 (m, 4H), 2.27-2.35 (m, 1H), 3.29-3.35 (m, 8H), 4.30-4.33 (q, J=3.6 Hz, 1H), 4.87 (s, 1H), $4.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.8,20.3,27.0,27.8,28.4,33.8,34.1,45.4,51.6,53.0$, 53.1, 89.6, 104.2, 110.1, 150.6; IR (neat) 839, 1063, 1251, $2096 \mathrm{~cm}^{-1}$; MS (EI) m/z 355, 312, 296, 238, 210, 196, 155; HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+}: 378.2183$, Found 378.2178.

To a solution of $\mathbf{2 b}(27.5 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon was added $\mathrm{TiCl}_{4}\left(171 \mu \mathrm{~L}, 1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The result mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes. After being warmed slowly to $10{ }^{\circ} \mathrm{C}$ for additional times (about 3 h), it was quenched with water (1 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to give a yellow oil. Chromatography ($50 \% \mathrm{EtOAc} /$ petroleum ether to $80 \% \mathrm{EtOAc} /$ petroleum ether) afforded 4 (a mixture of epimers in the ratio of $1: 0.53,13.7 \mathrm{mg}$, 79% yield) as light yellow oil; 4: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53-1.84(\mathrm{~m}, 25 \mathrm{H}), 1.88-1.96(\mathrm{~m}$,
$6 \mathrm{H}), 2.01-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 7 \mathrm{H}), 2.60-2.68(\mathrm{dt}, J=$ $13.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 6 \mathrm{H}), 3.31-3.39(\mathrm{~m}, 6 \mathrm{H}), 3.62-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.87-3.89(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.7,17.9,21.5,21.6,22.5,23.1,32.9,33.0,33.7,33.8,41.2,41.3$, $43.0,43.6,45.1,45.3,47.8,47.9,55.9,57.3,68.1,70.6,78.5,80.3,171.2,171.4$; IR (neat) 1458,1636 , 2360, $2923 \mathrm{~cm}^{-1}$; MS (EI) m/z 223, 208, 192, 151, 136, 123, 96; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 224.1645$, Found 224.1651.

Procedure 1): To a solution of the mixture of epimers 4 ($100.2 \mathrm{mg}, 0.45 \mathrm{mmol}$) in EtSH (5 mL) at room temperature under argon was added $\mathrm{AlCl}_{3}(300.0 \mathrm{mg}, 2.25 \mathrm{mmol})$. The reaction mixture was stirred for 1.5 h and then was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}(3 \times 10 \mathrm{~mL})$, then the combined organic extracts were dried over MgSO_{4}, filtered and concentrated to give the crude product as a yellow oil.

Procedure 2): To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ solution of the above crude product under argon at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane ($572.0 \mathrm{mg}, 1.35 \mathrm{mmol}$) followed by slow warming of the reaction mixture to room temperature. After being stirred for 2.5 h , the reaction was quenched via addition of saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated to yield a yellow oil. Chromatography ($50 \% \mathrm{EtOAc} /$ petroleum ether to 70% EtOAc/petroleum ether) afforded $13(81.0 \mathrm{mg}, 87 \%$ yield, two steps) as a white crystalline solid: mp $157-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.86-2.06(\mathrm{~m}, 4 \mathrm{H})$, 2.19-2.32 (m, 3H), 2.41-2.46 (m, 1H), 2.52-2.69 (m, 3H), 3.44-3.52 (dt, $J=11.6 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78-3.84 (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.1,20.5,31.3,36.5,43.6,44.7,45.6$, 47.4, 49.1, 67.1, 172.4, 214.3; IR (neat) 1456, 1625, 1743, $2925 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z} 207,164,150,136$, 127, 110, 83; HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 208.1332$, Found 208.1326.

A solution of $\mathbf{1 3}(25.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ under argon was treated with $\mathrm{PhI}(\mathrm{OAc})_{2}(47.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{KOH}(24.3 \mathrm{mg}, 0.43 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h and then concentrated. The residue was purified via silica gel chromatography (50% EtOAc/petroleum ether to $70 \% \mathrm{EtOAc} /$ petroleum ether) to give $14(26.0 \mathrm{mg}, 80 \%$ yield $)$ as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.98(\mathrm{~m}, 4 \mathrm{H})$, 2.10-2.15 (ddd, $J=10.4 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.25(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.36(\mathrm{~m}, 1 \mathrm{H})$, 2.46-2.53 (m, 1H), 2.60-2.65 (m, 1H), 2.76 (brs, 1 H$), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.39(\mathrm{~m}, 1 \mathrm{H})$, 3.73-3.77 (m, 1H), 4.16-4.17 (d, $J=6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.4,21.1,25.7,38.1$, $42.3,42.5,48.6,49.3,49.4,50.4,65.9,76.1,104.8,173.6$; IR (neat) $1129,1457,1616,2360 \mathrm{~cm}^{-1}$; MS (EI) $m / z 269,238,191,152,122,110,89$; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 270.1700$, Found 270.1700.

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ solution of alcohol $14(18.5 \mathrm{mg}, 0.07 \mathrm{mmol})$ under argon at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaHCO}_{3}(57.8 \mathrm{mg}, 0.69 \mathrm{mmol})$ and Dess-Martin periodinane ($87.5 \mathrm{mg}, 0.21 \mathrm{mmol}$) followed by slow warming of the reaction mixture to room temperature. After being stirred for 5.5 h , the reaction was quenched via addition of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$, and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated to yield a yellow oil. Chromatography ($50 \% \mathrm{EtOAc} /$ petroleum ether to $70 \% \mathrm{EtOAc} /$ petroleum ether) afforded ketone 15 ($16.5 \mathrm{mg}, 90 \%$ yield) as a light yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 5 \mathrm{H}), 2.18-2.32(\mathrm{~m}$, $3 \mathrm{H}), 2.35-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.79(\mathrm{dd}, \mathrm{J}=5.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.3 .42(\mathrm{~m}, 4 \mathrm{H})$, 3.74-3.79 (dd, $J=11.6 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.2,19.9,21.0,33.4,44.6$, $46.0,47.4,49.1,50.5,50.7,62.6,101.9,170.7,207.6$; IR (neat) $1457,1616,2925 \mathrm{~cm}^{-1}$; MS (EI) m / z 267, 239, 211, 169, 127, 99, 71; HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 268.1543$, Found 268.1547.

Procedure 1): To a solution of the ketone $15(12.0 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF (3 mL) at $-78{ }^{\circ} \mathrm{C}$ under argon was added $\operatorname{KHMDS}(0.91 \mathrm{M}, 99 \mu \mathrm{~L}, 0.09 \mathrm{mmol})$. After being stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , $\mathrm{PhN}(\mathrm{Tf})_{2}(40.1 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added. The resulting mixture was stirred for 30 min and then quenched with water $(1 \mathrm{~mL})$. After being warmed up to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5$ mL), then the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Flash column Chromatography ($50 \% \mathrm{EtOAc} /$ petroleum ether to $70 \% \mathrm{EtOAc} /$ petroleum ether) afforded crude product as a yellow oil.

Procedure 2): The above crude product was dissolved in THF (3 mL) under argon, followed by addition of $\mathrm{LiCl}(9.6 \mathrm{mg}, 0.23 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5.3 \mathrm{mg}, 0.005 \mathrm{mmol})$. After being stirred at room temperature for $30 \mathrm{~min}, \mathrm{CH}_{3} \mathrm{MgBr}(1 \mathrm{M}, 225 \mu \mathrm{~L}, 0.23 \mathrm{mmol})$ was added. The reaction mixture was stirred for 30 min and then quenched with water $(1 \mathrm{~mL})$. The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and treated with 1 N HCl to $\mathrm{PH}=2$. The biphasic mixture was vigorously stirred at room temperature for 30 min and then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated to yield a yellow oil. Chromatography ($50 \% \mathrm{EtOAc} /$ petroleum ether to $70 \% \mathrm{EtOAc} /$ petroleum ether) afforded enone 16 ($8.4 \mathrm{mg}, 85 \%$ yield, two steps) as a white amorphous solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.55-1.59$ $(\mathrm{m}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.96-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.37(\mathrm{~m}, 3 \mathrm{H})$, 2.56-2.66 (m, 2H), 2.80-2.85 (dd, $J=12.8 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.71(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 8.0,21.5,22.3,23.7,32.8,40.6,47.0,49.7,69.7,136.3,171.0,171.2,203.5$; IR (neat) 1629 , $1700 \mathrm{~cm}^{-1}$; MS (EI) m/z 219, 204, 191, 176, 163, 148, 135; HRMS (ESI) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 220.1332$, Found 220.1332.

13

The structure of our synthetic tricyclic compound 13 was corroborated by single-crystal. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: 801019.

(

26° ぁL
万0． $5 L \longrightarrow$
ZL•SOL
$79 \cdot 80 L$

 $0 て \cdot 6 ヵ \longrightarrow$
 $9 \varepsilon \cdot 9 \mathrm{~S}$

$97 \cdot 69$
$89 \cdot 9 L$
$00 \cdot L L$
$Z \varepsilon \cdot L L$
LE. Z8
$87 \cdot 89$ L

OMe

$60 \cdot \varepsilon z$
$29^{\circ} \circ \mathrm{Z}$
$0 \tau \cdot 0 \varepsilon$
$9 \tau \cdot \varepsilon \varepsilon$
$\angle L \cdot O も=$
$0 て \cdot$ Zも
$8 士 \cdot 67$

EG•9G
$\boxed{ } 5 \cdot 89$
$69 \cdot 9 L$
$00 \cdot \angle L$
$2 \varepsilon \cdot L L$
$G 8 \cdot 08$

চG•89T

$6 \tau \cdot \varepsilon \varepsilon$
$06^{\circ}\llcorner\varepsilon=$
$\varepsilon 6^{\circ} 0 \square=$
$8 \varepsilon \cdot 8 \square$
$0 \varepsilon \cdot 6 \square$
$L I \cdot \angle 9$
$69 \cdot 9 L$
$00 \cdot \angle L$
$Z \varepsilon \cdot L L$
Iも・69T

(

$\stackrel{m}{\square}$
$0 \tau \cdot 0 Z$
LG：0Z
Ш६•โ $โ$
Lठ•9ع

しO 67
$\angle O^{\circ} \angle 9$
$89^{\circ} 9 \mathrm{~L}$
$00^{\circ} \mathrm{LL}$
$Z \varepsilon^{\circ} \mathrm{LL}$

$\stackrel{\downarrow}{+}$ \square

$8 \varepsilon \cdot 0 Z$
玉 $5 \cdot \mathrm{LZ} \longrightarrow$
IL•Sて——

68° S9

