Supplementary Information

Alteration of the H-Bond to the A_{1A} Phylloquinone in Photosystem I: Influence on the Kinetics and Energetics of Electron Transfer

Nithya Srinivasan¹, Stefano Santabarbara², Fabrice Rappaport², Donatella Carbonera³, Kevin Redding⁴, Art van der Est^{5,*}, and John H. Golbeck^{1,6,*}

¹Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA

²Institut de Biologie Physico-Chimique, UMR 7141 CNRS/Paris 6, 13 Rue Pierre et Marie Curie, 75005 Paris, France

³Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padova, Italy

⁴Depatment of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 USA

⁵Department of Chemistry, Brock University, 500 Glenridge Ave., St. Catharines, ON

L2S 3A1, Canada

⁶Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA

*To whom correspondence should be addressed: AvdE: tel: 1 905 688 5550; fax: 1 905 682 9020; e-mail: <u>avde@brocku.ca</u>, JHG: tel: 1 814 865 1163; fax: 1 814 863 7024; e-mail: <u>jhg5@psu.edu</u>

Figure S1. The |D|-|E| (A, C) and |D|+|E| (B, D) FDMR resonance transitions of isolated thylakoids from the wild type (A, B) and the L722W_{PstA} variant (C, D) recorded at 720 nm. |D| and |E| are the two zero-field splitting parameters that define the difference in the energy levels of the triplet state. Open symbols: untreated, illuminated thylakoids; Closed symbols: thylakoids pre-reduced with 10 mM sodium dithionite and illuminated for 5 minutes at room temperature. The solid lines are fits to the data with a sum of Gaussian line-widths as described in refs. 1,2. Both samples display resonance transitions with maxima at ~715 MHz (|D| - |E|) and ~940 MHz (|D| + |E|) previously assigned to ${}^{3}P_{700}$.³ The FDMR intensity found under reducing conditions represents triplet formation in all of the PS I complexes and the ratio of the intensities for the two sets of conditions. 9 to 12% of the PS I complexes from the L722W_{Psta} variant generate triplets compared to the 2 to 4% of PS I complexes from the wild type. Gaussian components: 709/948 MHz; 716/952 MHz; 733/958 MHz. Experimental conditions: emission wavelength, 720 nm; phase, -106° ; gain, 100 µV; temperature, 1.8 K; amplitude modulation, 33 Hz.

Figure S2. Comparison of the out-of-phase echo modulation of $P_{700}^+ A_{1A}^-$ in PS I from wild type (A) and L722W_{PsaA} (B). Open symbols: experimental data; solid lines: fit; closed symbols: reconstruction of the spectrometer dead time; dashed line: baseline. Fits of the modulation curves as described in ref. 4 yield the following parameters: wild type: dipolar coupling, D = -169.6 µT; exchange coupling, J = 1.68 µT; L722W_{PsaA}: D = -169.8 µT; J = 1.70 µT. The dipolar couplings for the wild type and the L722W_{PsaA} variant correspond to distances of 25.42 Å and 25.41 Å between P_{700}^+ and A_{1A}^- , respectively

Figure S3. Pump-probe spectroscopy of whole cells of the wild type (closed) and the L722W_{PsaA} variant (open). Spectra of the exponential decays normalized to the initial absorbance change at time zero are shown. Panel A depicts the fast phase due to A_{1B}^- to F_X electron transfer; panel B depicts the slow phase due to A_{1A}^- to F_X electron transfer; panel C shows the reduction of P_{700}^+ together with the non-decaying component; and panel D shows the normalized initial spectra extrapolated to time zero (t_0). The 6-µs component depicted in panel C is attributed to the reduction of P_{700}^+ based on its typical bleaching at 430 nm. The presence of 'Chl-like' bleaching in the ns components of the L722W_{PsaA} variant is due to contribution from P_{700}^+ A_0^- recombination. The DAS obtained with whole cells are similar to those obtained from PS I particles (compare with Fig. 4).

Reference

- (1) Santabarbara, S.; Bordignon, E.; Jennings, R. C.; Carbonera, D. Biochemistry 2002, 41, 8184.
- (2) Santabarbara, S.; Agostini, G.; Heathcote, P.; Carbonera, D. Photosynth. Res. 2005, 86, 283.
- (3) Carbonera, D.; Collareta, P.; Giacometti, G. Biochim. Biophys. Acta 1997, 1322, 115
- (4) Santabarbara, S.; Kuprov, I.; Hore, P. J.; Casal, A.; Heathcote, P.; Evans, M. C. *Biochemistry* **2006**, *45*, 7389.