Supporting Information

for

N-Heterocyclic Carbene Catalyzed (4+2) Cycloaddition/Decarboxylation of Silyl Dienol Ethers with α , β -Unsaturated Acid Fluorides.

Sarah J. Ryan, Lisa Candish and David W. Lupton*

School of Chemistry, Monash University, Clayton 3800, Victoria, AUSTRALIA

SI-1. Experimental Procedures

Index

Ι	General experimental	S-1
II	Synthesis of acid fluorides	S-2
III	Synthesis of β-methyl enones	S-4
IV	Synthesis of TMS dienol ether	S-7
V	NHC catalyzed (4 + 2) cycloaddition/decarboxylation	S-10
VI	Derivatization studies	S-15
VII	Mechanistic studies	S-16
VIIII	¹ H and ¹³ C NMR spectra (including nOe, HSQC and HMBCs as appropriate)	S-19

I. General Procedures

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Varian Mercury 300 spectrometer operating at 300 MHz for proton and 75 MHz for carbon nuclei. 2D correlation spectra were recorded on a Bruker DRX400 spectrometer. Infrared spectra (v_{max}) were recorded on a Perkin-Elmer RXI FTIR Spectrometer. High resolution mass spectra (HRMS) (ESI) were recorded on a Bruker BioApex 47e FTMS fitted with an Analytical electrospray source using NaI for accurate mass calibration. High Resolution (EI) mass spectra were recorded on an Agilent 7890A GC, Waters GCT Premier TOF-MS with an ion source temperature of 200°C and electron impact energy (70eV). Flash column chromatography was performed on silica gel (Davisil LC60A, 40-63 µm silica media) using compressed air or nitrogen. Thin layer chromatography (TLC) was performed using aluminumbacked plates coated with 0.2 mm silica (Merck, DC-Platten, Kieselgel; 60 F_{254} plates). Eluted plates were visualized using a 254 nm UV lamp and/or by treatment with a suitable stain followed by heating. Starting materials and reagents were purchased from Sigma-Aldrich and were used as supplied or, in the case of some liquids, distilled. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl, dichloromethane was distilled from calcium hydride and diisopropylamine (DIPA) was distilled from sodium. Precursors to NHCs A1 and A2 were prepared using the procedure of Arduengo,¹ to **B** using the procedure of Grubbs.² The triazolium precursor to NHC C

¹ Arduengo, A. J; Krafczyk, R.; Schmutzler, R.; Craig, H. A.; Goerlich, J. R.; Marshall, W. J.; Unverzagt, M.

Tetrahedron 1999, 55, 14523

² Kuhn, K. M.; Grubbs, R. H. Org. Lett. **2008**, 10, 2075

was prepared using the procedure of Smith.³ **D1** was prepared according to Kotschy,⁴ and **D2** prepared using the procedure of Lyapkalo.⁵ (E)-((2,2-Dimethyl-6-methylenecyclohexylidene)methoxy)trimethylsilane was prepared according to the procedure of Fehr.⁶

II. Synthesis of acid fluorides

Following the procedure of Chen,⁷ a mixture of the appropriate carboxylic acid (10 mmol) and pyridine (2 mL) in CH₂Cl₂ (30 mL) was added to a stirred solution of 70% HF in pyridine (0.3 mL, 11 mmol) and DCC (2.06 g, 10 mmol) in CH₂Cl₂ (6 mL). The reaction mixture was stirred for 2 hours at room temperature, filtered and the volatiles removed *in vacuo*. The crude residue was purified *via* distillation under reduced pressure to provide acid fluorides in 32-75% yield. (*E*)-Cinnamoyl fluoride (**4a**)⁸ and (*E*)-3-(furan-2-yl)acryloyl fluoride (**4l**)⁷ have been reported previously.

α-D-(*E*)-Cinnamoyl fluoride (αD-4a)

IR v_{max} 1805, 1616, 1575, 1450 ¹H-NMR (300 MHz, CDCl₃) δ 7.82 (d, J = 2.1 Hz, 1H), 7.57-7.54 (m, 2H), 7.48-7.40 (m, 3H) ¹³C-NMR (75 MHz, CDCl₃) δ 156.2 (d, J = 336.2 Hz), 150.8 (d, 6.1 Hz), 132.6, 131.3, 128.7, 128.2, 111.6 (dt, J = 67.1, 19.8 Hz)

(*E*)-3-(2-Nitoxyphenyl)acryloyl fluoride (4j)

 $\begin{array}{l} & \text{IR } v_{\text{max}} \ 2927, \ 1806, \ 1627, \ 1525, \ 1355, \ 1261, \ 1197 \ ^1\text{H-NMR} \ (300 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \\ & 8.31 \ (\text{d}, \ J = 15.9 \ \text{Hz}, \ 1\text{H}), \ 8.14-8.11 \ (\text{m}, \ 1\text{H}), \ 7.44-7.12 \ (\text{m}, \ 1\text{H}), \ 7.68-7.65 \ (\text{m}, \ 2\text{H}), \\ & 6.31 \ (\text{dd}, \ J = 15.9, \ 8.7 \ \text{Hz}, \ 1\text{H}) \ ^{13}\text{C-NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 160.3, \ 155.8 \ (\text{d}, \ J = 336 \ \text{Hz}), \ 147.0 \ (\text{d}, \ J = 6.5 \ \text{Hz}), \ 134.0, \ 131.6, \ 129.3, \ 129.2, \ 125.2, \ 117.1 \ (\text{d}, \ J = 66 \ \text{Hz}) \ \text{HRMS} \ (\text{EI}) \\ & m/z \ \text{Found} \ (\text{M}^{\bullet})^{+}, \ 195.0324, \ \text{C}_{9}\text{H}_{6}\text{FNO}_{3} \ \text{requires} \ (\text{M}^{\bullet})^{+}, \ 195.0332 \end{array}$

(E)-3-(2-Methoxyphenyl)acryloyl fluoride (4k)

 $\begin{array}{c} & \text{IR } v_{\text{max}} \ 2939, \ 1794, \ 1624, \ 1599, \ 1489, \ 1467, \ 1326, \ 1255, \ 1111 \ ^1\text{H-NMR} \ (300 \ \text{MHz}, \\ \text{CDCl}_3) \ \delta \ 8.12 \ (\text{d}, \ J = 15.9 \ \text{Hz}, \ 1\text{H}), \ 7.52\text{-}7.40 \ (\text{m}, \ 2\text{H}), \ 7.02\text{-}6.94 \ (\text{m}, \ 2\text{H}), \ 6.48 \ (\text{dd}, \\ \ J = 15.9, \ 8.7 \ \text{Hz}, \ 1\text{H}), \ 3.91 \ (\text{s}, \ 3\text{H}) \ ^{13}\text{C-NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 159.1, \ 157.9 \ (\text{d}, \ J = 336 \ \text{Hz}), \ 147.1 \ (\text{d}, \ J = 6.5 \ \text{Hz}), \ 133.3, \ 130.0, \ 122.2, \ 121.0, \ 112.4 \ (\text{d}, \ J = 66 \ \text{Hz}), \ 111.5, \ 55.7 \ \text{HRMS} \ (\text{EI}) \ m/z \ \text{Found} \ M^{*^+}, \ 180.0526, \ C_{10}\text{H}_9\text{FO}_2 \ \text{requires} \ M^{*^+}, \ 180.0587 \end{array}$

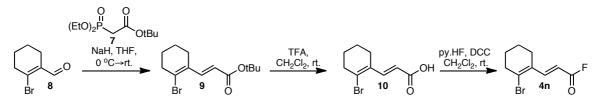
³ Thomson, J. E.; Rix, K.; Smith, A. D. Org. Lett. **2006**, *8*, 3785

⁴ Bostai, B.; Novák, Z.; Bényei, A.; Kotschy, A. Org. Lett. 2007, 9, 3437

⁵ Kunetskiy, R. A.; Císarová, I.; Saman, D.; Lyapkalo, I. M. Chem, Eur. J. 2009, 15, 9477

⁶ Fehr, C.; Jose, J. J. Org. Chem., 1988, 53, 1828

⁷ Chen, C.; Chien, C-T.; Su, C-H. J. Fluor. Chem. 2002, 115, 75


⁸ Bappert, E.; Müller, P.; Fu, G. C. Chem. Commun. 2006, 24, 2604

(E)-3-(3-Bromophenyl)acryloyl fluoride (4l)

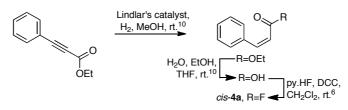
IR v_{max} 2930, 1799, 1634, 1562, 1218, 1191 ¹H-NMR (300 MHz, CDCl₃) δ 7.74 (d, J = 16.0 Hz, 1H), 7.69 (s, 1H), 7.59 (d, J = 7.9, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 6.36 (dd, J = 16.0, 6.9 Hz, 1H) ¹³C-NMR (75 MHz, CDCl₃) δ 159.1, 152.2 (d, J = 364 Hz), 149.8 (d, J = 6.0 Hz), 134.9, 131.6, 131.0, 127.6, 123.6, 114.0 (d, J = 68 Hz) HRMS (EI) Found M^{*+}, 227.9599, C₉H₆BrFO requires M^{*+}, 227.9586

(*E*)-3-(4-Methoxyphenyl)acryloyl fluoride (4m)⁹

(E)-3-(2-Bromocyclohex-1-en-1-yl)acryloyl fluoride (4n)

t-Butyl phosphonate 7¹⁰ (2.52 g, 10 mmol) was slowly added to a stirred solution of NaH (400 mg of a 60% dispersion in mineral oil, 10 mmol) in THF (20 mL) at 0 °C. The mixture was maintained at this temperature for 15 minutes after which time bromo aldehyde **8**¹¹ (1.88 g, 10 mmol) was added and the mixture allowed to warm to room temperature. The reaction was quenched with NH₄Cl (5 mL of a saturated aqueous solution), extracted with CH₂Cl₂ (3 x 20 mL), dryed (MgSO₄), filtered, concentrated, and the crude residue purified *via* flash column chromatography (1:9, v/v EtOAc : hexanes) to provide *t*-butyl ester **9** in 87% yield IR v_{max} 2933, 1708, 1621, 1312, 1292 ¹H-NMR (300 MHz, CDCl₃) δ 7.77 (d, *J* = 15.9 Hz, 1H), 5.82 (d, *J* = 15.9 Hz, 1H), 2.66-2.65 (m, 2H), 2.25-2.22 (m, 2H), 1.73-1.68 (m, 4H), 1.48 (s, 9H) ¹³C-NMR (75 MHz, CDCl₃) δ 166.4, 143.3, 132.0, 131.1, 120.6, 80.3, 38.0, 28.1, 27.1, 24.3, 21.8 HRMS (EI) *m/z* Found M^{*+}, 286.0567, C₁₃H₁₉BrO₂ requires M^{*+}, 286.0568

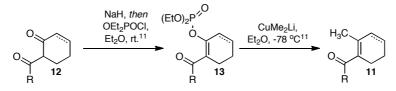
t-Butyl ester **9** (2.30 g, 8 mmol) was dissolved in CH₂Cl₂ (4 mL) and TFA (8 mL) added. The mixture was stirred for 1 hour at room temperature, and the volatiles removed *in vacuo*. The crude solid was converted to acid fluoride **4n** without purification using the general procedure IR v_{max} 2939, 1799, 1614, 1201, 1116 ¹H-NMR (300 MHz, CDCl₃) δ 7.51 (d, *J* = 15.9 Hz, 1H), 5.82 (dd, *J* = 15.9,


⁹ Lin, F. F. S.; Servis, K. L. J. Am. Chem. Soc. 1972, 94, 5794

¹⁰ Shelkov, R.; Nahmany, M.; Melman, A. Org. Biomol. Chem. 2004, 2, 397

¹¹ Harrowven, D. C.; Pascoe, D. D. Angew. Chem. Int. Ed. 2007, 46, 425

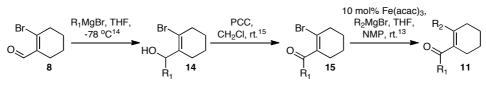
8.7 Hz, 1H), 2.73-2.71 (m, 2H), 2.29-2.25 (m, 2H), 1.77-1.73 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 157.2 (d, *J* = 337 Hz), 150.7 (d, *J* = 6.0 Hz), 137.1, 131.0, 112.5 (d, *J* = 66 Hz), 38.4, 26.9, 24.0, 21.5 HRMS (EI) *m/z* Found M^{•+}, 231.9926, C₉H₁₀BrFO requires M^{•+}, 231.9899


(Z)-Cinnamoyl fluoride (cis-4a)

(*Z*)-Cinnamic acid was prepared from ethyl phenylpropiolate following the procedure of Nagasawa.¹² The acid was subjected to a modified version of the general method for acid fluoride synthesis. It was found that removal of pyridine was necessary to avoid isomerization to the (*E*) isomer. IR v_{max} 1802, 1630, 1204, 1107 ¹H-NMR (300 MHz, CDCl₃) δ 7.69-7.66 (m, 2H), 7.49-7.42 (m, 3H), 7.30 (dd, *J* = 12.9, 6.3 Hz, 1H), 5.92 (d, *J* = 12.9 Hz, 1H) ¹³C-NMR (75 MHz, CDCl₃) δ 157.4 (d, *J* = 364 Hz), 151.3 (d, *J* = 13 Hz), 130.5, 130.2, 128.7, 128.3, 112.8 (d, *J* = 74 Hz)

III. Synthesis of β -methyl enones

Procedure A: Preparation of β -alkyl enones 11 from β -diketones 12


Scheme 1: General strategy for β -methyl enones from β -diketones¹³

β-Methyl ketones **11** were prepared according to the procedure of Weiler,¹¹ from the corresponding phosphonate intermediate **13**. Thus, MeLi (4.0 eq. of a 1.6M solution in Et₂O) was added to a stirred solution of CuI (2.0 eq.) in dry Et₂O at 0 °C. The resulting clear solution was cooled to -78 °C and phosphonate **13** (1.0 eq.), itself prepared from the corresponding β-diketone **12**,¹⁴ slowly added. The mixture was maintained at this temperature for 1 hour after which time it was quenched with NH₄Cl (saturated aqueous solution), extracted with Et₂O, washed with dilute NH₃ in brine, then brine. The organics were dried (MgSO₄), filtered, concentrated, and the crude residue purified *via* flash column chromatography.

¹² Ueda, S.; Okada, T.; Nagasawa, H. Chem. Commun. 2010, 46, 2462

¹³ Sum, F-W.; Weiler, L. Can. J. Chem. 1979, 57, 1431

¹⁴ Fos, E.; Borràs, L.; Gasull, M.; Mauleón, D.; Carganico, G. J. Heteroyclic Chem. 1992, 29, 203

Scheme 2: General strategy for β -alkyl enones from β -halo enals

β-Alkyl ketones **11** were prepared according to Cahiez,¹⁵ through iron catalyzed coupling with the corresponding β-bromo ketones **15**. Hence, R₂MgBr (1.5 eq.) was slowly added to a stirred solution of Fe(acac)₃ (0.01 eq.), NMP (9.0 eq.) and β-bromoketone **15** (1.0 eq.), itself prepared from the corresponding aldehyde **8** *via* Grignard addition and oxidation,^{16,17} in THF at room temperature. The mixture was stirred at room temperature for 1 hour then quenched with HCl (1M aqueous solution) and the phases separated. The aqueous layer was extracted with Et₂O and washed with NaHCO₃ (saturated aqueous solution). The combined organic layers were dryed (MgSO₄), filtered, concentrated, and the crude residue purified *via* flash column chromatography

(2-Methylenecyclohex-1-en-1-yl)(phenyl)methanone (11a)¹⁸

The title compound was prepared using both procedure A and B.

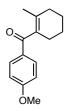
 $\begin{array}{c} O_{\text{Ph}} & R_f \ 0.3 \ (1:9, \ v/v \ \text{EtOAc} : \text{hexanes}) \ \text{IRv}_{\text{max}} \ 2931, \ 1664, \ 1596, \ 1580, \ 1448, \ 1280, \ 1249 \\ ^{1}\text{H-NMR} \ (300 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 7.88-7.85 \ (m, \ 2\text{H}), \ 7.52-7.48 \ (m, \ 1\text{H}), \ 7.45-7.39 \ (m, \ 2\text{H}), \\ 2.20-2.19 \ (m, \ 2\text{H}), \ 2.08-2.04 \ (m, \ 2\text{H}), \ 1.71-1.66 \ (m, \ 4\text{H}), \ 1.51 \ (t, \ J = 0.6 \ \text{Hz}, \ 3\text{H}) \ ^{13}\text{C-NMR} \ (75 \ \text{MHz}, \\ \text{CDCl}_3) \ \delta \ 201.5, \ 137.0, \ 134.7, \ 133.0, \ 132.4, \ 129.3, \ 128.7, \ 31.2, \ 27.5, \ 22.6, \ 22.3, \ 21.2 \end{array}$

(3-Bromoyphenyl)(2-methylcyclohex-1-en-1-yl)methanone (11b)

The title compound was prepared following procedure A.

 $R_f 0.3$ (1:9, v/v EtOAc : hexanes) IR v_{max} 2931, 1666, 1565, 1419, 1279, 1240 ¹H-NMR (300 MHz, CDCl₃) δ 7.95 (t, J = 1.5 Hz, 1H), 7.73 (dt, J = 7.5, 1.5 Hz, 1H), 7.61 (dt, J = 7.5, 1.5 Hz, 1H), 7.28 (tt, J = 7.5, 1.5 Hz, 1H), 2.19-2.12 (m, 2H), 2.09-

2.01 (m, 2H), 1.68-1.64 (m, 4H), 1.49 (brs, 3H) ¹³C-NMR (75 MHz, CDCl₃) δ 199.6, 138.8, 135.9, 135.6, 131.8, 131.6, 130.1, 127.7, 122.8, 31.1, 27.2, 22.3, 22.0, 21.2 HRMS (ESI) *m/z* Found (M+H)⁺, 279.0382, C₁₄H₁₅BrO requires (M+H)⁺, 279.0385


¹⁵ Cahiez, G.; Avedissian, H. Synthesis, **1998**, *8*, 1199

¹⁶ Murai, M.; Yoshida, S.; Miki, K.; Ohe, K. Chem. Commun. 2010, 46, 3366

¹⁷ Tang, J-M.; Bhunia, S.; Sohel, S. M. A.; Lin, M-Y.; Liao, H-Y.; Datta, S.; Das, A.; Liu, R-S. J. Am. Chem. Soc. **2007**, 129, 15677

¹⁸ Dufort, N.; Jodoin, B.; Lafontaine, J. Can. J. Chem. 1971, 49, 1785

(4-Methoxyphenyl)(2-methylcyclohex-1-en-1-yl)methanone (11c)

The title compound was prepared following procedure B.

R_f 0.3 (1:9, v/v EtOAc : hexanes) IR v_{max} 2931, 1651, 1599, 1255, 1168 ¹H-NMR (300 MHz, CDCl₃) δ 7.85 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 2.19-2.17 (m, 2H), 2.05 (brs, 2H), 1.70-1.66 (m, 4H), 1.50-1.48 (m, 3H) ¹³C-NMR (75 MHz, CDCl₃) δ 200.4, 163.6, 133.4, 132.4, 131.7, 129.7, 113.9, 55.5, 31.0, 27.5, 22.7, 22.3,

21.1 HRMS (ESI) *m/z* Found (M+H)⁺, 231.1379, C₁₅H₁₈O₂ requires (M+H)⁺, 231.1385

2-Methyl-1-(2-methylenecyclohex-1-en-1-yl)propan-1-one (11d)¹⁹

The title compound was prepared following procedure B.

 $\begin{array}{c} \begin{array}{c} \label{eq:relation} R_f 0.3 \ (1:9, \ v/v \ EtOAc : hexanes) \ IR \ v_{max} \ 2932, \ 1686, \ 1449, \ 1381, \ 1216, \ 1152 \ ^1 \text{H-NMR} \\ (300 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 2.81 \ (p, \ J = 6.9 \ \text{Hz}, \ 1\text{H}), \ 2.12\mbox{-}2.11 \ (m, \ 2\text{H}), \ 1.97\mbox{-}1.95 \ (m, \ 2\text{H}), \\ 1.64\mbox{-}1.62 \ (m, \ 3\text{H}), \ 1.56\mbox{-}1.52 \ (m, \ 4\text{H}), \ 1.00 \ (d, \ J = 6.6 \ \text{Hz}, \ 6\text{H}) \ ^{13}\mbox{C-NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 212.2, \\ 137.0, \ 133.3, \ 38.3, \ 32.0, \ 26.8, \ 22.33, \ 22.30, \ 21.1, \ 18.1 \end{array}$

(2-Methylenecyclohexa-1,3-dien-1-yl)(phenyl)methanone (11e)

The title compound was prepared following procedure A.

^O ^{Ph} ^R 0.3 (1:9, v/v EtOAc : hexanes) IR v_{max} 2929, 1663, 1595, 1579, 1448, 1245 ¹H-NMR (300 MHz, CDCl₃) δ 7.85-7.80 (m, 2H), 7.53-7.49 (m, 1H), 7.46-7.40 (m, 2H), 6.10-6.04 (m, 1H), 5.94-5.90 (m, 1H), 2.42-2.35 (m, 2H), 2.26-2.18 (m, 2H), 1.70 (d, J = 1.8 Hz, 3H) ¹³C-NMR (75 MHz, CDCl₃) δ 200.0, 138.4, 135.7, 132.8, 130.7, 130.3, 129.7, 129.2, 128.7, 25.7, 23.1, 20.0 HRMS (ESI) *m/z* Found (M-H)⁻, 197.0957, C₁₄H₁₄O requires (M-H)⁻, 197.0972

(2-Methyl-3,4-dihydronaphthalen-1-yl)(phenyl)methanone (11f)

The title compound was prepared following procedure B.

 $\begin{array}{c} \mathsf{R}_{f} \ 0.3 \ (1:9, \ v/v \ \text{EtOAc} : \text{hexanes}) \ \text{IR} \ v_{\text{max}} \ 3062, \ 2930, \ 2833, \ 1659, \ 1448, \ 1259 \\ \ ^{1}\text{H-NMR} \ (300 \ \text{MHz}, \ \text{CDCl}_{3}) \ \delta \ 8.06-8.02 \ (m, \ 2\text{H}), \ 7.58-7.52 \ (m, \ 1\text{H}), \ 7.46-7.41 \ (m, \ 2\text{H}), \ 7.20 \ (d, \ J = 7.5 \ \text{Hz}, \ 1\text{H}), \ 7.12 \ (dt, \ J = 7.5, \ 1.2 \ \text{Hz}, \ 1\text{H}), \ 7.06 \ (dt, \ J = 7.5, \ 1.2 \ \text{Hz}, \ 1\text{H}), \ 6.84 \ (d, \ J = \ 7.5 \ \text{Hz}, \ 1\text{H}), \ 2.97 \ (t, \ J = \ 7.5 \ \text{Hz}, \ 2\text{H}), \ 2.42 \ (t, \ J = \ 7.5 \ \text{Hz}, \ 2\text{H}), \ 1.85 \ (s, \ 3\text{H}) \ ^{13}\text{C-NMR} \ (75 \ \text{MHz}, \ \text{CDCl}_{3}) \ \delta \ 199.3, \ 136.9, \ 136.6, \ 133.7, \ 133.3, \ 133.1, \ 132.7, \ 129.3, \ 128.5, \ 127.4, \ 126.5, \ 126.3, \ 124.0, \ 29.5, \ 27.7, \ 20.8 \ \text{HRMS} \ (\text{ESI}) \ m/z \ \text{Found} \ (M+\text{H})^{+}, \ 249.1270, \ C_{18}\text{H}_{16}\text{O} \ \text{requires} \ (M+\text{H})^{+}, \ 249.1279 \end{array}$

¹⁹ Ha, H-J.; Park, K-P. Bull. Kor. Chem. Soc. 1988, 9, 411

(2-Methylcyclohept-1-en-1-yl)(phenyl)methanone (11g)

The title compound was prepared following procedure B. R_f 0.3 (1:9, v/v EtOAc : hexanes) IR v_{max} 2964, 2877, 1713, 1492, 1448, 1183 ¹H-NMR (300 MHz, CDCl₃) δ 7.89-7.86 (m, 2H), 7.53-7.41 (m, 3H), 2.36-2.28 (m, 3H), 1.83-1.77 (m, 3H), 1.69-1.56 (m, 4H), 1.63 (s, 3H) ¹³C-NMR (75 MHz, CDCl₃) δ 201.4, 142.8, 137.3, 137.1, 132.7, 129.3, 128.5, 36.3, 32.2, 31.2, 26.9, 25.6, 23.4 HRMS (ESI) *m/z* Found (M+H)⁺, 215.1424, C₁₅H₁₈O requires (M+H)⁺, 215.1430

(2-Ethylcyclohex-1-en-1-yl)(phenyl)methanone (11h)²⁰

The title compound was prepared following procedure B.

 $R_{f} 0.3 (1:9, v/v EtOAc : hexanes) IR v_{max} 2933, 1664, 1596, 1579, 1148, 1278, 1246$ ¹H-NMR (300 MHz, CDCl₃) δ 7.92-7.88 (m, 2H), 7.56-7.50 (m, 1H), 7.47-7.41 (m, 2H), 2.20-2.18 (m, 2H), 2.14-2.09 (m, 2H), 1.90 (q, J = 7.5 Hz, 2H), 1.74-1.69 (m, 4H), 0.87

(t, J = 7.5 Hz, 3H) ¹³C-NMR (75 MHz, CDCl₃) δ 201.6, 139.4, 136.9, 133.1, 132.0, 129.4, 128.6, 28.1, 27.8, 27.6, 22.6, 22.3, 12.7

(2-Ethylcyclohex-1-en-1-yl)(phenyl)methanone (11i)

The title compound was prepared following procedure B.

 $\begin{array}{c} R_{f} \ 0.3 \ (1:9, \ v/v \ EtOAc : hexanes) \ IR \ v_{max} \ 2931, \ 1664, \ 1596, \ 1580, \ 1148, \ 1279, \ 1247 \\ \ ^{1}H-NMR \ (300 \ MHz, \ CDCl_{3}) \ \delta \ 7.90-7.87 \ (m, \ 2H), \ 7.56-7.50 \ (m, \ 1H), \ 7.46-7.41 \ (m, \ 2H), \\ \ 5.67-5.54 \ (m, \ 1H), \ 4.90-4.61 \ (m, \ 2H), \ 2.20-1.94 \ (m, \ 8H), \ 1.73-1.67 \ (m, \ 4H) \ ^{13}C-NMR \\ \ (75 \ MHz, \ CDCl_{3}) \ \delta \ 201.4, \ 138.1, \ 137.4, \ 136.8, \ 133.2, \ 133.1, \ 129.4, \ 128.6, \ 114.7, \ 34.4, \ 32.3, \ 28.4, \\ \ 27.7, \ 22.6, \ 22.2 \ HRMS \ (ESI) \ m/z \ Found \ (M+H)^{+}, \ 241.1593, \ C_{17}H_{20}O \ requires \ (M+H)^{+}, \ 241.1592 \end{array}$

IV. Synthesis of TMS dienol ethers

Procedure A

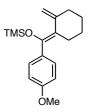
n-BuLi (1.6 M in hexane, 1.1 equivalent) was added to a stirred solution of DIPA (1.1 equivalents) in THF at -78 °C. The mixture was stirred at this temperature for 20 minutes after which time the appropriate ketone (1.0 equivalent) was added. Stirring was continued for an additional 15 minutes then TMSCl (1.1 equivalent) added and the mixture allowed to warm slowly to room temperature. The volatiles were removed *in vacuo* and the crude residue purified *via* distillation under reduced pressure.

Procedure B:

n-BuLi (1.6M solution in hexane, 1.1 equivalents) was added to a stirred solution of DIPA (1.1 equivalents) in THF at 0 °C. The mixture was stirred for 10 minutes after which time ketone (1.0

²⁰ Jin, T.; Yamamota, Y. Org. Lett. 2007, 9, 5259

equivalents) was added. Following a further 30 minutes of continued stirring TMSCl (1.1 equivalents) was added and the solution allowed to slowly warm to room temperature. The volatiles were removed *in vacuo* and the crude residue purified *via* distillation under reduced pressure.


(Z)-Trimethyl((2-methylenecyclohexylidene)(phenyl)methoxy)silane (5a)

Following procedure A the title compound was prepared in 76% yield. TMSO Ph Following procedure A the title compound was prepared in 76% yield. IR v_{max} 2930, 1635, 1444, 1273, 1251, 1139, 1105 ¹H-NMR (300 MHz, CDCl₃) δ 7.33-7.23 (m, 5H), 5.09 (s, 2H), 2.29 (t, J = 5.7 Hz, 2H), 2.15 (t, J = 5.7 Hz, 2H), 1.69-1.62 (m, 2H), 1.58-1.52 (m, 2H), -0.03 (s, 9H) ¹³C-NMR (75 MHz, CDCl₃) δ 145.2, 143.3, 139.1, 129.5, 127.9, 127.6, 120.6, 111.8, 37.1, 31.1, 27.9, 27.3, 0.7 HRMS (ESI) *m/z* Found (M+H)⁺, 273.1669, C₁₇H₂₄OSi requires (M+H)⁺, 273.1675

(Z)-((3-Bromophenyl)(2-methylenecyclohexylidene)methoxy)trimethylsilane (5b)

Following procedure A the title compound was prepared in 52% yield. IR v_{max} 2929, 1636, 1590, 1560, 1470, 1251, 1140 ¹H-NMR (300 MHz, CDCl₃) δ 7.47 (t, *J* = 1.5 Hz, 1H), 7.40 (dt, *J* = 7.5, 1.5 Hz, 1H), 7.27-7.17 (m, 2H), 5.08-5.05 (m, 2H), 2.27 (t, *J* = 6.3 Hz, 2H), 2.13 (t, *J* = 6.3 Hz, 2H), 1.67-1.51 (m, 4H), -0.02 (s, 9H) ¹³C-NMR (75 MHz, CDCl₃) δ 144.7, 141.5, 141.0, 132.2, 130.5, 129.3, 127.8, 121.8, 121.5, 112.0, 36.9, 30.9, 27.6, 27.1, 0.51 HRMS (ESI) *m/z* Found (M+H)⁺, 351.0773, C₁₇H₂₃BrOSi requires (M+H)⁺, 351.0780

(Z)-((4-Methoxyphenyl)(2-methylenecyclohexylidene)methoxy)trimethylsilane (5c)

Following procedure A the title compound was prepared in 46% yield.

IR v_{max} 2931, 1599, 1255, 1445, 1250, 1168 ¹H-NMR (300 MHz, CDCl₃) δ 7.24 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.07 (s, 2H), 3.82 (s, 3H), 2.28 (t, *J* = 6.3 Hz, 2H), 2.15 (t, *J* = 6.3 Hz, 2H), 1.65-1.62 (m, 2H), 1.55-1.51 (m, 2H), -0.03 (s, 9H) ¹³C-NMR (75 MHz, CDCl₃) δ 159.0, 145.3, 143.0, 131.5, 130.7, 120.1, 113.2, 111.6,

55.3, 37.1, 31.1, 27.9, 27.3, 0.70 HRMS (ESI) *m/z* Found (M+H)⁺, 303.1793, C₁₈H₂₆O₂Si requires (M+H)⁺, 303.1780

(Z)-Trimethyl(2-methylenecyclohexylidene)propoxy)silane (5d)

Following procedure A the title compound was prepared in 29% yield. IR v_{max} 2961, 2930, 1637, 1445, 1290, 1250, 1230, 1143, 1080 ¹H-NMR (300 MHz, CDCl₃) δ 4.97-4.95 (m, 1H), 4.90 (d, J = 2.7 Hz, 1H), 2.81 (p, J = 6.9 Hz, 1H), 2.16 (t, J = 6.0 Hz, 4H), 1.64-1.47 (m, 4H), 1.00 (d, J = 6.9 Hz, 6H), 0.14 (s, 9H) ¹³C-NMR (75 MHz, CDCl₃) δ 148.5, 145.6, 116.9, 113.2, 37.0, 30.3, 29.3, 28.2, 27.7, 20.5, 1.24 HRMS (ESI) *m/z* Found (M+H)⁺, 239.1824, C₁₄H₂₆OSi requires (M+H)⁺, 239.1831

(Z)-Trimethyl((2-methylenecyclohex-3-en-1-ylidene)(phenyl)methoxy)silane (5e)

Following procedure A the title compound was prepared in 58% yield. IR v_{max} 2960, 1641, 1599, 1490, 1445, 1251, 1111, 844 ¹H-NMR (300 MHz, CDCl₃) δ 7.45-7.26 (m, 5H), 6.14 (d, J = 9.6 Hz, 1H), 5.83 (dt, J = 9.6, 3.9 Hz, 1H), 5.67 (s,

1H), 5.22 (s, 1H), 2.28 (t, J = 5.7 Hz, 2H), 2.17 (t, J = 5.7 Hz, 2H) -0.02 (s, 9H) δ HRMS (ESI) m/zFound (M+H)⁺, 271.1507, C₁₇H₂₂OSi requires (M+H)⁺, 271.1518

(E)-Trimethyl((2-methylene-3,4-dihydronaphthalen-1(2H)-ylidene)(phenyl)methoxy)silane (5f)

Following procedure A the title compound was prepared in 47% yield. The product was contaminated by an inseparable impurity that had no affect on the subsequent step.

IR v_{max} 3021, 2944, 2838, 1556, 1487, 1236 ¹H-NMR (300 MHz, CDCl₃) δ 7.52-7.48 (m, 1H), 7.22-7.13 (m, 4H), 7.13 (d, J = 7.5 Hz, 1H), 7.02 (td, J = 7.5, 1.5 Hz, 1H), 6.80 (td, J = 7.5, 1.5 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 5.85 (q, J = 2.1 Hz, 1H), 5.36 (q, J = 2.1 Hz, 1H), 2.82-2.77 (m, 2H), 2.68-2.65 (m, 2H) 0.05 (s, 9H) HRMS (ESI) *m*/*z* Found (M+H)⁺, 321.1673, C₂₁H₂₄OSi requires (M+H)⁺, 321.1675

(Z)-Trimethyl((2-methylenecycloheptylidene)(phenyl)methoxy)silane (5g)

Following procedure A the title compound was prepared in 41% yield. IR v_{max} 3060, 2923, 2851, 1443, 1250, 1153 ¹H-NMR (300 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 5.30 (d, J = 3.0 Hz, 1H), 5.14 (d, J = 3.0 Hz, 1H), 2.40-2.37 (m, 2H), 2.22-2.21 (m, 2H), 1.67-1.52 (m, 6H), -0.04 (s, 9H) ¹³C-NMR (75 MHz, CDCl₃) δ 148.2, 139.4, 129.1, 128.5, 127.7, 127.5, 122.6, 113.4, 37.5, 31.2, 29.8, 29.7, 29.3, 0.50 HRMS (EI) *m/z* Found (M[•])⁺, 286.1750, C₁₈H₂₆OSi requires (M[•])⁺, 286.1753

((Z)-((E)-2-Ethylideneclohexylidene(phenyl)methoxy)trimethylsilane (5h)

Following procedure B the title compound was prepared in 35% yield. The product was contaminated by an inseparable impurity that had no affect on the subsequent step.

IR v_{max} 2927, 1599, 1491, 1444, 1294, 1250 ¹H-NMR (300 MHz, CDCl₃) δ 7.37-7.20 (m, 5H), 5.62 (q, J = 6.9 Hz, 1H), 2.29 (t, J = 6.0 Hz, 2H), 2.14 (t, J = 6.0 Hz, 2H), 1.73 (d, J = 6.9 Hz, 3H), 1.63-1.49 (m, 4H), -0.03 (s, 9H) HRMS (ESI) m/z Found (M+H)⁺, 287.1826, C₁₈H₂₆OSi requires (M+H)⁺, 287.

((Z)-((E)-2-(But-3-en-1-ylidene)cyclohexylidene)(phenyl)methoxy)trimethylsilane (5i)

Following procedure B the title compound was prepared in 27% yield. The product was contaminated by an inseparable impurity that had no affect on the subsequent step.

 $^{1}_{Ph}$ IR v_{max} 2927, 1640, 1599, 1492, 1445, 1251, 1140 ¹H-NMR (300 MHz, CDCl₃) δ 7.39-7.21 (m, 5H), 5.93-5.83 (m, 1H), 5.59 (t, *J* = 7.5 Hz, 1H), 5.14-5.08 (m, 1H), 5.04-4.97 (m, 1H), 2.92 (t, *J* = 7.5 Hz, 2H), 2.31-2.21 (m, 2H), 2.14 (t, *J* = 7.2 Hz, 2H), 1.64-1.48 (m, 4H), -0.05 (s, 9H) HRMS (EI) *m/z* Found M^{*+}, 312.1916, C₂₀H₂₈OSi requires M^{*+}, 312.1909

(Z)-Trimethyl((3-methyl-1-phenylbuta-1,3-dien-1-yl)oxy)silane

TMSC

Following procedure A the title compound was prepared in 71% yield.

TMSO IR v_{max} 2962, 1631, 1339, 1252, 1080, 845 ¹H-NMR (300 MHz, CDCl₃) δ 7.51-7.48 (m, 2H), 7.34-7.28 (m, 3H), 5.66 (s, 1H), 5.20 (q, J = 0.9 Hz, 1H), 4.94 (q, J = 0.9 Hz, 1H), 2.06 (t, J = 0.9 Hz, 3H), 0.12 (s, 9H) ¹³C-NMR (75 MHz, CDCl₃) δ 150.5, 140.5, 140.1, 128.1, 128.0, 126.5, 114.5, 112.9, 23.6, 0.90 HRMS (ESI) m/z Found (M+H)⁺, 233.1352, C₂₄H₂₀OSi requires (M+H)⁺, 233.1362

V. NHC catalyzed (4 + 2) cycloaddition/decarboxylation

A solution of IPrMe **D2** (0.3 mL of a 0.1 M solution in THF, 0.03 mmol) was added to a stirred solution of acid fluoride **4** (0.3 mmol) and TMS dienol ether **5** (0.3 mmol) in THF (4 mL) at -78 °C. While both substrates tolerate low levels of moisture the reaction is highly sensitive to any trace of water, hence freshly prepared substrates are recommended. The mixture was stirred for 1 hour, allowing the temperature to slowly rise to -10 $^{\circ}$ C. The volatiles were then evaporated and the crude residue purified *via* flash column chromatography

6,8-Diphenyl-1,2,3,4,5,6-hexahydronaphthalene (3a)

Ph R_f 0.3 (1:99, v/v EtOAc : hexanes) IR v_{max} 2926, 1601, 1491, 1450 ¹H-NMR (300 MHz, CDCl₃) δ 7.36-7.27 (m, 10H), 5.76 (d, J = 3.3 Hz, 1H), 3.71 (ddd, J = 12.3, 9.3, 3.3 Hz, 1H), 2.40-2.24 (m, 4H), 2.10-2.03 (m, 2H), 1.87-1.60 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 145.9, 141.7, 141.4, 131.6, 128.6, 128.5, 127.9, 127.7, 127.2, 127.0, 126.7, 126.3, 41.2, 38.1, 31.0, 27.5, 23.6, 23.1 HRMS (EI) *m/z* Found M^{*+}, 286.1685, C₂₂H₂₂ requires M^{*+}, 286.1722

(Z)-(2-Methylenecyclohexylidene)(phenyl)methyl cinnamate (6a)

$$Ph \underbrace{\qquad }_{O \ Ph} Ph \underbrace{\qquad }_{O \ Ph} R_{f} 0.3 (1:19, v/v \text{ EtOAc} : \text{hexanes}) \text{ IR } v_{\text{max}} 2931, 2856, 1729, 1635, 1447, 1310, 1229, 1200, 1136 1H-NMR (300 \text{ MHz, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 1H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 1229, 1200, 1136 ^{1}H-NMR (300 \text{ MHz}, CDCl}_3) \delta 7.71 (d, J = 15.9 \text{ Hz}, 1310, 120$$

1H), 7.54-7.51 (m, 2H), 7.46-7.43 (m, 2H), 7.40-7.26 (m, 6H), 6.49 (d, J = 15.9 Hz, 1H), 4.97 (s, 2H), 2.41 (t, J = 5.4 Hz, 2H), 2.34 (t, J = 5.4 Hz, 2H), 1.72-1.64 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 155.8, 145.8, 145.3, 139.4, 135.8, 134.4, 130.5, 130.3, 129.2, 129.0, 128.8, 128.3, 128.2, 117.9, 111.2, 36.5, 31.4, 27.8, 27.2 HRMS (ESI) *m/z* Found (M+Na)⁺, 353.1518, C₂₃H₂₂O₂ requires (M+Na)⁺, 353.1518

8-(3-Bromophenyl)-6-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3b)

Ph $R_f 0.3 (1:99, v/v EtOAc : hexanes)$ IR $v_{max} 2926, 1592, 1557, 1471, 1451, 1070$ ¹H-NMR (300 MHz, CDCl₃) δ 7.42-7.38 (m, 2H), 7.33-7.26 (m, 4H), 7.26-7.22 (m, 1H), 7.19-7.17 (m, 2H), 5.72 (d, J = 3.6 Hz, 1H), 3.67 (ddd, J = 12.6, 9.6, 3.6 Hz, 1H), 2.36-2.22 (m, 4H), 2.06-1.96 (m, 2H), 1.84-1.56 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 145.3, 143.4, 140.4, 132.0, 131.4, 129.5, 129.3, 128.4, 127.7, 127.6, 127.1, 126.5, 126.3,

121.9, 40.9, 37.7, 30.8, 27.3, 23.4, 22.8 MS (EI) m/z Found M^{*+}, 364.0648, C₂₂H₂₁Br requires M^{*+}, 364.0827

8-Isopropyl-6-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3d)

Ph R_f 0.3 (1:99, v/v EtOAc : hexanes) IR v_{max} 2927, 1601, 1492, 1451, 1382, 1076 ¹H-NMR (300 MHz, CDCl₃) δ 7.34-7.22 (m, 5H), 5.50 (d, J = 3.0 Hz, 1H), 3.74 (brt, J = 9.9 Hz, 1H), 2.58 (p, J = 6.9 Hz, 1H), 2.18-2.15 (m, 6H), 1.77-1.50 (m, 4H), 1.06 (d, J = 6.9 Hz, 6H) ¹³C-NMR (75 MHz, CDCl₃) δ 146.7, 145.4, 130.9, 128.4, 127.9, 127.8, 126.1, 119.9, 40.7, 38.4, 31.0, 27.9, 25.1, 23.7, 23.6, 22.9, 22.5 HRMS (EI) *m*/*z* Found M^{*+}, 252.1809, C₁₉H₂₄ requires M^{*+}, 252.1878

2,4-Diphenyl-1,2,5,6-tetrahydronaphthalene (3e)

Ph $R_f 0.3 (1:99, v/v \text{ EtOAc} : \text{hexanes})$ IR $v_{\text{max}} 3029, 2930, 2922, 1603, 1493, 1454$ ¹H-NMR (300 MHz, CDCl₃) δ 7.39-7.23 (m, 10H), 5.98 (d, J = 9.3 Hz, 1H), 5.91-5.86 (m, 1H), 5.88 (d, J = 3.3 Hz, 1H), 3.78 (ddd, J = 13.2, 9.0, 3.3 Hz, 1H), 2.55-2.50 (m, 2H), 2.33-2.04 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 145.3, 141.1, 140.5, 128.9, 128.7, 128.6, 128.4, 128.3, 127.9, 127.7, 127.4, 126.8, 126.5, 126.3, 41.4, 35.9, 24.4, 23.6, HRMS (EI) *m/z* Found M^{*+}, 284.1542, C₂₂H₂₀ requires M^{*+}, 284.1565

2,4-Diphenyl-1,2,9,10-tetrahydrophenanthrene (3f)

2H) ¹³C-NMR (75 MHz, CDCl₃) δ 144.8, 141.3, 139.3, 138.4, 136.2, 133.6, 130.9, 129.2, 128.5, 128.0, 127.7, 127.3, 127.0, 126.5, 126.4, 126.2, 125.4, 125.3, 41.0, 38.0, 29.5, 28.8 HRMS (EI) *m/z* Found M^{•+}, 334.1729 C₂₆H₂₂, requires M^{•+}, 334.1722

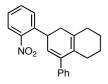
2,4-Diphenyl-2,5,6,7,8,9-hexahydro-1H-benzo[7]annulene (3g)

Ph $R_f 0.2 (1:99, v/v EtOAc : hexanes) IR v_{max} 2922, 2847, 1600, 1493, 1451, 1260$ ¹H-NMR (300 MHz, CDCl₃) δ 7.36-7.22 (m, 10H), 5.78 (d, J = 3.6, 1H), 3.62 (ddd, J = 12.3, 9.3, 3.6 Hz, 1H), 2.49-2.43 (m, 2H), 2.37-2.12 (m, 4H), 1.79-1.70 (m, 3H), 1.57-1.53 (m, 1H), 1.52-1.48 (m, 2H) ¹³C-NMR (75 MHz, CDCl₃) δ 145.4, 143.0, 141.8, 138.1, 133.3, 128.3, 128.1, 127.9, 127.7, 126.8, 126.5, 126.2, 41.5, 40.5, 36.1, 32.2, 30.4, 27.2, 26.1 HRMS (EI⁺) *m/z* Found M⁺⁺, 300.1915 C₂₃H₂₄, requires M⁺⁺, 300.1878

(5R,6S)-5-Methyl-6,8-diphenyl-1,2,3,4,5,6-hexahydronaphthalene and (5S,6R)-5-Methyl-6,8diphenyl-1,2,3,4,5,6-hexahydronaphthalene (3h)

 $R_f 0.3 (1:99, v/v EtOAc : hexanes)$ IR $v_{max} 2927, 1600, 1491, 1450, 1250$ ¹H-NMR (300 MHz, CDCl₃) δ 7.30-7.26 (m, 10H), 5.67 (d, J = 5.7 Hz, 1H), 3.27 (dd, J = 5.7, 3.9 Hz, 1H), 2.21-1.44 (m, 9H), 1.18 (d, J = 7.2 Hz, 3H) ¹³C-NMR (75 MHz, CDCl₃)

δ 144.5, 141.6, 140.9, 135.7, 128.5, 128.4, 128.0, 127.9, 126.7, 126.3, 125.9, 124.3, 46.9, 41.1, 29.6, 27.7, 23.5, 23.2, 18.8 HRMS (EI) *m/z* Found M^{*+}, 300.1833, C₂₃H₂₄ requires M^{*+}, 300.1878

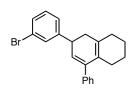

(5*R*,6*S*)-5-Allyl-6,8-diphenyl-1,2,3,4,5,6-hexahydronaphthalene and (5*S*,6*R*)-5-Allyl-6,8diphenyl-1,2,3,4,5,6-hexahydronaphthalene (3i)

 $R_f 0.3$ (1:99, v/v EtOAc : hexanes) IR v_{max} 2928, 1720, 1638, 1599, 1490, 1448, 1250 ¹H-NMR (300 MHz, CDCl₃) δ 7.42-7.18 (m, 10H), 5.96-5.86 (m, 1H), 5.65 (d, *J* = 6.3

Ph Hz, 1H), 5.14-5.06 (m, 2H), 3.46 (d, J = 6.3 Hz, 1H), 2.35-2.02 (m, 7H), 1.81-1.38 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 143.7, 141.3, 141.2, 137.3, 133.8, 128.2(8), 128.2(7), 127.8, 127.7, 126.6, 126.5, 126.1, 123.5, 116.7, 46.5, 41.8, 36.6, 30.3, 27.5, 23.4, 22.9 HRMS (EI) m/z Found M^{•+}, 326.2028, C₂₅H₂₆ requires M^{•+}, 326.2035.

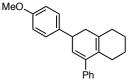
6-(2-Nitrophenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3j)

 R_f 0.3 (1:19, v/v EtOAc : hexanes) IR v_{max} 2929, 1606, 1525, 1444. 1352 ¹H-NMR (300 MHz, CDCl₃) δ 7.80 (dd, J = 7.8, 1.5 Hz, 1H), 7.66 (dd, J = 7.8, 1.5 Hz, 1H), 7.52 (td, J = 7.8, 1.5 Hz, 1H), 7.37-7.22 (m, 6H), 5.59 (d, J = 3.6 Hz, 1H), 4.23 (ddd, J = 12.3, 8.1, 3.6 Hz, 1H), 2.59-2.50 (m, 1H), 2.40-2.18 (m, 3H), 2.02-1.97 (m, 2H), 1.83-1.54 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 149.6, 142.6, 140.8, 140.0, 132.5, 131.1, 130.3, 128.4, 127.8, 127.0, 126.9, 126.7, 125.1, 124.0, 37.1, 35.9, 30.8, 27.3, 23.3, 22.8 HRMS (EI) *m/z* Found M^{•+}, 331.1572, C₂₂H₂₁NO₂ requires M^{•+}, 331.1572


6-(2-Methoxyphenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3k)

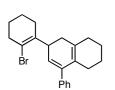
R_f 0.3 (1:99, v/v EtOAc : hexanes) IR v_{max} 2928, 1599, 1493. 1463, 1438, 1240 ¹H-NMR (300 MHz, CDCl₃) δ 7.37-7.19 (m, 7H), 6.96-6.88 (m, 2H), 5.71 (d, J =3.6 Hz, 1H), 4.15 (ddd, J = 12.3, 8.1, 3.6 Hz, 1H), 3.87 (s, 3H), 2.38-2.20 (m, 4H), 2.05-1.99 (m, 2H), 1.87-1.56 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 157.0, 141.7,

133.6, 131.6, 128.6, 128.5, 127.8, 127.3, 127.2, 126.9, 126.5, 120.6, 110.4, 55.5, 36.1, 33.5, 31.0, 27.6, 23.6, 23.1 (one signal overlapping) HRMS (EI) *m/z* Found M^{•+}, 316.1826, C₂₃H₂₄O requires M^{•+}, 316.1827


6-(3-Bromophenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (31)

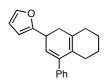
 $R_f 0.3 (1:99, v/v EtOAc : hexane)$ IR $v_{max} 2927, 1593, 1475, 1319, 1251, 1071$ ¹H-NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.37-7.16 (m, 8H), 5.67 (d, J = 3.6Hz, 1H), 3.65 (dt, J = 10.4, 3.6 Hz, 1H), 2.33 (d, J = 10.4 Hz, 1H), 2.26-2.18 (m, 1H), 2.05-1.99 (m, 2H), 1.86-1.75 (m, 1H), 1.75-1.57 (m, 5H) ¹³C-NMR

(100 MHz, CDCl₃) δ 148.0, 142.1, 141.0, 131.3, 130.8, 129.9, 129.3, 128.4, 127.8, 126.7, 126.3, 125.8, 125.8, 122.4, 40.7, 37.7, 30.8, 27.3, 23.5, 22.9 MS Found M^{•+}, 364.1, C₂₂H₂₁Br requires M^{•+}, 364.1


6-(4-Methoxyphenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3m)

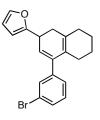
R_f 0.1 (1:99, v/v EtOAc : hexane) **IR** v_{max} 2929, 1513, 1442, 1249, 1037 ¹**H**-**NMR** (300 MHz, CDCl₃) δ 7.36-7.25 (m, 7H), 6.88 (d, *J* = 9.0 Hz, 2H), 5.72 (d, *J* = 3.0 Hz, 1H), 3.82 (s, 3H), 3.65 (dt, *J* = 9.0, 3.0 Hz, 1H), 2.33 (d, *J* = 12.0 Hz, 2H), 2.30-2.23 (m, 1H), 2.08-2.00 (m, 2H), 1.86-1.56 (m, 5H) ¹³C-

NMR (100 MHz, CDCl₃) δ 158.0, 143.0, 138.4, 134.9, 133.3, 129.6, 128.4, 128.0, 127.7, 126.3, 124.2, 113.8, 55.2, 41.0, 40.1, 39.0, 27.8, 26.0, 23.4 HRMS (EI) Found M⁺⁺, 316.1823, C₂₃H₂₄O requires M⁺⁺, 316.1827


6-(2-Bromocyclohex-1-en-1-yl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3n)

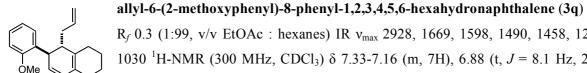
R_f 0.3 (1:99, v/v EtOAc : hexanes) IR v_{max} 2930, 1648, 1490, 1441, 1332, 1260 ¹H-NMR (300 MHz, CDCl₃) δ 7.32-7.18 (m, 5H), 5.40 (d, J = 3.3 Hz, 1H), 3.91 (ddd, J = 11.1, 8.1, 3.3 Hz, 1H), 2.55-2.51 (m, 2H), 2.29-2.15 (m, 5H), 2.08-1.94 (m, 3H), 1.73-1.49 (m, 8H) ¹³C-NMR (75 MHz, CDCl₃) δ 141.6, 141.3, 138.1,

131.6, 128.4, 127.7, 126.6, 126.4, 124.8, 119.2, 41.8, 37.0, 32.2, 30.8, 28.2, 27.4, 24.5, 23.4, 22.9, 22.7 MS (EI) *m/z* Found M^{•+}, 368.1, C₂₂H₂₅Br requires M^{•+}, 368.1


2-(4-Phenyl-1,2,5,6,7,8-hexahydronaphthalen-2-yl)furan (30)

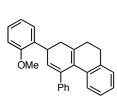
 $R_f 0.3$ (1:99, v/v EtOAc : hexanes) IR v_{max} 2928, 1598, 1505, 1493, 1443, 1013 ¹H-NMR (300 MHz, CDCl₃) δ 7.34-7.20 (m, 6H), 6.30 (dd, J = 3.0, 1.8 Hz, 1H), 6.07 (dd, J = 3.0, 0.9 Hz, 1H), 5.73 (d, J = 3.6 Hz, 1H), 3.74 (ddd, J = 12.6, 8.7, 3.6 Hz, 1H), 2.40-1.49 (m, 10H) ¹³C-NMR (75 MHz, CDCl₃) δ 158.3, 141.9, 141.2,

131.8, 128.6, 127.9, 127.4, 126.8, 123.5, 110.2, 104.3, 34.4, 34.2, 31.0, 27.5, 23.5, 23.0 (one signal overlapping) HRMS (ESI) *m/z* Found (M+H)⁺, 277.1584, C₂₀H₂₀O requires (M+H)⁺, 277.1592


2-(4-(3-Bromophenyl)-1,2,5,6,7,8-hexahydronaphthalene-2-yl)furan (3p)

 $R_f 0.3$ (1:99, v/v EtOAc : hexanes) IR v_{max} 2928, 2858, 1583, 1445, 1259, 1071 ¹H-NMR (300 MHz, CDCl₃) δ 7.41-7.37 (m, 2H), 7.34 (dd, *J* = 2.1, 0.9 Hz, 1H), 7.20-7.14 (m, 2H), 6.30 (dd, J = 3.3, 2.1 Hz, 1H), 6.06 (dd, J = 3.3, 0.9 Hz, 1H), 5.73 (d, J = 3.6 Hz, 1H), 3.73 (ddd, J = 12.6, 8.4, 3.6 Hz, 1H), 2.42-1.49 (m, 10H) ¹³C-NMR (75 MHz, CDCl₃) δ 157.7, 143.2, 141.2, 140.6, 132.2, 131.4, 129.7,

129.3, 127.1, 126.6, 124.2, 121.9, 110.1, 104.2, 34.2, 33.9, 30.8, 27.2, 23.3, 22.8 HRMS (EI) m/z Found M^{•+}, 354.0648, C₂₀H₁₉BrO requires M^{•+}, 354.0619


(5R,6S)-5-Allyl-6-(2-methoxyphenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene and (5R,6S)-5-

R_f 0.3 (1:99, v/v EtOAc : hexanes) IR v_{max} 2928, 1669, 1598, 1490, 1458, 1240, 1030 ¹H-NMR (300 MHz, CDCl₃) δ 7.33-7.16 (m, 7H), 6.88 (t, J = 8.1 Hz, 2H), 6.03-5.92 (m, 1H), 5.57 (d, J = 6.3 Hz, 1H), 5.12-5.04 (m, 2H), 3.94 (d, J = 6.3 Hz,

1H), 3.85 (s, 3H), 2.34 (t, *J* = 7.2 Hz, 2H), 2.22-2.04 (m, 4H), 2.01 (t, *J* = 7.2 Hz, 1H), 1.71-1.34 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 156.7, 141.8, 141.5, 137.8, 134.3, 130.9, 128.4, 128.3, 127.7, 127.0, 126.5, 126.2, 123.2, 120.2, 115.7, 110.3, 55.3, 44.5, 37.0, 34.6, 30.4, 27.5, 23.5, 23.0 HRMS (EI) *m/z* Found M^{•+}, 356.2119 C₂₆H₂₈O, requires M^{•+}, 356.2140

2-(2-Methoxyphenyl)-4-phenyl-1,2,9,10-tetrahydrophenanthrene (3r)

 $R_f 0.3$ (1:99, v/v EtOAc : hexanes) IR v_{max} 2928, 2812, 1560, 1490, 1240 ¹H-NMR (300 MHz, CDCl₃) δ 7.36 (dd, J = 7.8, 1.8 Hz, 1H), 7.26-7.21 (m, 6H), 7.15 (d, J = 6.6 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 7.5 Hz, 1H), 6.91 (d, J = 7.5 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.50 (d, J = 7.5 Hz, 1H), 6.20 (d, J= 4.5 Hz, 1H), 4.26-4.18 (m, 1H), 3.78 (s, 3H), 2.88-2.78 (m, 2H), 2.62-2.54 (m,

2H), 2.32-2.23 (m, 2H) ¹³C-NMR (75 MHz, CDCl₃) δ 156.9, 141.6, 139.6, 138.4, 136.2, 133.8, 132.3, 131.0, 128.7, 128.2, 127.9, 127.2(6), 127.2(5), 126.9, 126.4, 126.2, 125.4, 125.1, 120.5, 110.3, 55.4, 36.1, 33.4, 29.6, 28.9 HRMS (EI) *m/z* Found M^{*+}, 364.1827 C₂₇H₂₄O, requires M^{*+}, 364.1827

7-Deutero-6,8-diphenyl-1,2,3,4,5,6-hexahydronaphthalene (7D-3a)

Ph Ph Ph Ph Ph R_f 0.3 (1:99, v/v EtOAc : hexanes) IR v_{max} 2926, 1857, 1602, 1490, 1451, 1073, 1030 ¹H-NMR (300 MHz, CDCl₃) δ 7.36-7.24 (m, 10H), 3.70 (dd, J = 12.0, 9.6 Hz, 1H), 2.38-2.23 (m, 3H), 2.07-2.01 (m, 2H), 1.87-1.60 (m, 5H) ¹³C-NMR (75 MHz, CDCl₃) δ 145.7, 141.5, 141.3, 131.4, 128.7, 128.5, 128.4, 127.7, 127.6, 127.2 (t, J = 12.0 Hz), 126.5, 126.2, 40.9, 37.9, 30.8, 27.4, 23.4, 22.9 HRMS (EI) *m*/*z* Found M⁺⁺, 287.1773, C₂₂H₂₁D requires M⁺⁺, 287.1784

VI. Derivatization studies

i) Diels Alder Reaction

Maleic anhydride (39 mg, 0.4 mmol) was added to a stirred solution of diene **3a** or **b** (0.2 mmol) in toluene (1 mL). The flask was fitted with a condenser and heated to reflux for 16 hours. After cooling to room temperature the volatiles were evaporated and the crude residue purified *via* flash column chromatography (1:5, v/v EtOAc : hexanes) to yield tricyclic compounds **8a** and **8b** in 58 and 47 % yield respectively.

(3aS,9aS,9bS,11R)-5,11-diphenyl-3a,4,6,7,8,9-hexahydro-1H-4,9a-ethanonaphtho[1,2-c]furan-1,3(9bH)-dione and (3aR,9aR,9bR,11S)-5,11-diphenyl-3a,4,6,7,8,9-hexahydro-1H-4,9a-ethanonaphtho[1,2-c]furan-1,3(9bH)-dione (8a)

 R_f 0.3 (1:5, v/v EtOAc : hexanes) IR v_{max} 2937, 1777, 1223, 1079, 938 ¹H-NMR (300 MHz, CD Cl₃) δ 7.34-7.27 (m, 3H), 7.18-7.15 (m, 2H), 7.11-7.08 (m, 2H), 6.48-6.45 (m, 2H), 3.50-3.44 (m, 2H), 3.26 (ddd, J = 9.9, 4.8, 2.1 Hz, 1H), 3.04 (d, J = 8.4 Hz, 1H), 2.82 (ddd, J = 17.0, 11.1, 5.2 Hz, 1H), 2.61 (ddd, J = 15.8, 5.6, 4.1 Hz, 1H),

2.35 (17.0, 11.1, 5.6 Hz, 1H), 2.10 (dd, J = 14.1, 4.8 Hz, 1H), 1.95-1.57 (m, 7H) ¹³C-NMR (75 MHz, CDCl₃) δ 171.7, 171.4, 144.1, 140.3, 128.3, 133.6, 128.7, 128.6, 128.0, 127.9, 127.0, 126.8, 48.9, 46.8, 46.7, 43.0, 41.0, 38.2, 27.9, 24.8, 20.4, 18.2 HRMS (ESI) *m/z* Found (M+H)⁺, 385.1800, C₂₆H₂₄O₃ requires (M+H)⁺, 385.1804

(3aS,9aS,9bS)-5-(3-bromophenyl)-11-phenyl-3a,4,6,7,8,9-hexahydro-1H-4,9a-

ethanonaphtho[1,2-c]furan-1,3(9bH)-dione and (3a*R*,9a*R*,9b*R*)-5-(3-bromophenyl)-11-phenyl-3a,4,6,7,8,9-hexahydro-1H-4,9a-ethanonaphtho[1,2-c]furan-1,3(9bH)-dione (8b)

Br R_f 0.3 (1:5, v/v EtOAc : hexanes) IR v_{max} 2938, 1841, 1770, 1557, 1229, 1078, 939 ¹H-NMR (300 MHz, CDCl₃) δ 7.33-7.25 (m, 3H), 7.21 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.15-7.11 (m, 2H), 6.95 (t, *J* = 15.6 Hz, 1H), 6.40 (d, *J* = 7.8 Hz, 1H), 6.31 (t, *J* = 1.8 Hz, 1H), 3.47 (dd, *J* = 9.0, 3.3 Hz, 1H), 3.37 (t, *J* = 2.7 Hz, 1H), 3.27 (ddd, *J* = 9.9, 4.5, 2.7 Hz, 1H), 3.02 (d, *J* = 9.0 Hz, 1H), 2.80 (ddd, *J* = 16.0, 10.8, 5.7 Hz, 1H), 2.54 (ddd, *J* = 16.0, 5.7, 4.5 Hz, 1H), 2.38-2.20 (m, 2H), 2.11 (dd, *J* = 13.8, 4.5 Hz, 1H), 1.96-1.54 (m, 5H) ¹³C-NMR (75 MHz, CDCl₃) δ 171.7, 171.2, 143.7, 141.6, 140.3, 132.3, 130.8, 129.8, 129.4, 128.8, 127.8, 127.2, 126.6, 122.1, 48.8, 46.8, 46.5, 42.8, 41.0, 37.5, 27.8, 24.8, 20.3, 18.1 HRMS (ESI) *m/z* Found (M+Na)⁺, 485.0726, C₂₆H₂₃BrO₃ requires (M+Na)⁺, 485.0728

ii) Aromatization

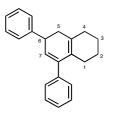
DDQ (50 mg, 0.22 mmol) was added to a stirred solution of 3a or 3e (0.20 mmol or in the case of triene 3e 0.10 mmol) in toluene (1 mL). The mixture was stirred for 2 hours at room temperature, after which time the volatiles were evaporated. The crude residue was purified *via* flash column chromatography (1:99, v/v EtOAc : hexanes) to provide compounds 7a and 7e in 75% and 92% yield. Naphthalene 7e was consistent with previously reported data from the litrature.²¹

5,7-diphenyl-1,2,3,4-tetrahydronaphthalene (7a)

Ph Ph Ph Ph R_f 0.3 (1:99, v/v EtOAc : hexanes) IR v_{max} 2930, 1599, 1567, 1497, 1561, 1439, 908 ¹H-NMR (300 MHz, CDCl₃) δ 7.66-7.63 (m, 2H), 7.47-7.34 (m, 10H), 2.97 (t, J = 6.3 Hz, 2H), 2.68 (t, J = 6.3 Hz, 2H), 1.89-1.76 (m, 4H) ¹³C-NMR (75 MHz, CDCl₃) δ 142.8, 142.2, 141.2, 138.4, 138.1, 134.3, 130.3, 129.5, 128.9, 128.3, 127.7, 127.3, 127.0, 126.2, 30.4, 28.3, 23.7, 23.2 HRMS (EI) *m/z* Found M^{*+}, 284.1554, C₂₂H₂₀ requires M^{*+}, 284.1565

²¹ Kabalka, G. W.; Ju, Y.; Wu, Z. J. Org. Chem., 2003, 68, 7195

VII. Mechanistic studies


Cross over experiment

IPrMe **D2** (0.5 mL of a 0.1M solution, 0.05 mmol) was added to a stirred solution of TMS ether **5a** (1 equivalent, 137 mg, 0.5 mmol), (α -D)cinnamoyl fluoride α D-**4a** (0.5 equivalents, 38 mg, 0.25 mmol) and (*E*)-3-(4-methoxyphenyl)acryloyl fluoride **4m** (0.5 equivalents, 45 mg, 0.25 mmol) in THF (5 mL) at -78 °C. The temperature was allowed to slowly rise to -10 °C at which point the volatiles were evaporated. The crude residue was purified *via* gradient flash column chromatography (1:99 \rightarrow 1:19, v/v EtOAc: hexanes) to afford only deuterated cyclohexadiene 7D-**3a** and protio cyclohexadiene **3m**.

Kinetic Isotope Effect

Using approaches developed by Singleton²² kinetic isotope effects (KIEs) were determined through the comparison of ¹²C enriched samples on reactions taken to 10% conversions^{22b,23} with those taken to complete conversion. From these studies KIEs for the carbons from the α , β -unsaturated acid fluoride **4a** could be determined. Thus, IPrMe **D2** (0.5 mL of a 0.1M solution, 0.05 mmol) was added to a stirred solution of cinnamoyl fluoride (**4a**) (10 equivalents, 750 mg, 5.0 mmol) and TMS ether **5a** (1 equivalent, 137 mg, 0.5 mmol) in THF (20 mL) at -78 °C. The temperature was allowed to slowly rise to -10 °C over 1 hour. The volatiles were then evaporated and the crude residue purified *via* flash column chromatography (1:99, v/v EtOAc: hexanes) to provide the ¹²C enriched product **3a**.

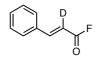
The ¹³C-NMR spectra from the enriched product were compared to that of a standard product made from the same batch of TMS ether and acid fluoride. Samples for analysis were prepared in the same manner using 30 mg of cyclohexadiene **3a** and 0.6 mL CDCl₃. The ¹³C NMR spectra were recorded at 75MHz on a Bruker DPX300 spectrometer with a 40 second delay between pulses using protocols similar to those reported by Denmark.²³ This allowed analysis with only very minor decomposition by aromatization. Integration was measured at 10Hz for each peak except that at 127.0 which was

measured at 6 Hz due to close proximity of peaks. The peak at 27.5 ppm was set at 1.000 as its isotopic composition was assumed to remain consistent throughout the reaction. Assignment of carbons was made based on HSQC and HMBC analysis. KIEs were calculated based on the ratio of standard to enriched^{22b} and standard deviations were determined using the formula Δ KIE =

ratio[$(\Delta enriched/enriched)^2 + (\Delta standard/standard)^2$]^{1/2}.^{22,23}

²² (a) Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. **1995**, 117, 9357 (b) Frantz, D. E.; Singleton, D. A. J. Am. Chem. Soc. **2000**, 122, 3288

²³ Denmark, S. E.; Pham, S. M.; Stavenger, R. A.; Su, X.; Wong, K.-T.; Nishigaichi, Y. J. Org. Chem. 2007, 71, 3904


Table 1. Integrations and deviations with the standard

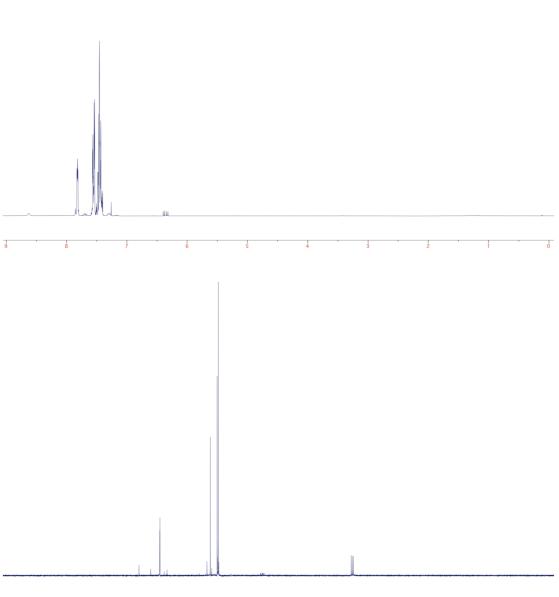
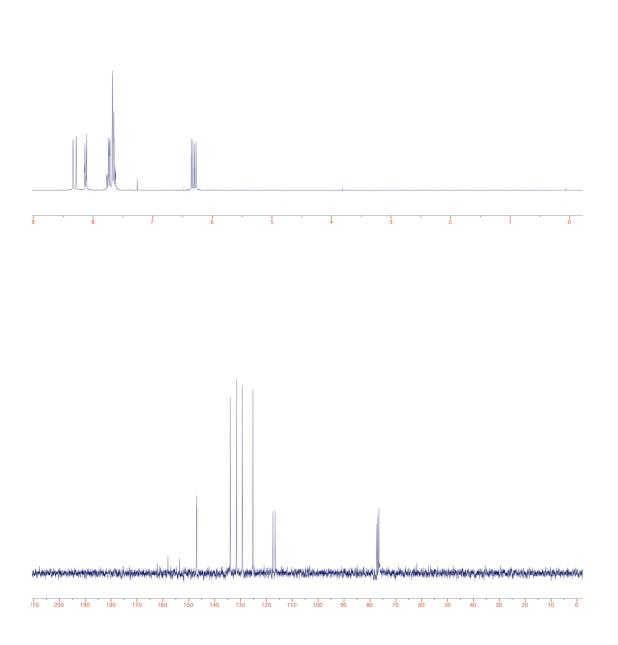

peak ppm	run 1	run 2	run 3	average	stdev
127.0	1.0054	0.9977	1.0074	1.0035	0.0051
126.7	0.9958	0.9930	0.9994	0.9961	0.0032
126.3	0.9969	0.9862	0.9946	0.9926	0.0056
41.2	0.9859	0.9751	0.9700	0.9770	0.0081
38.1	0.9491	0.9494	0.9455	0.9480	0.0022
31.0	0.9987	1.0122	0.9986	1.0032	0.0078
27.5	1.0000	1.0000	1.0000	1.0000	0.0000

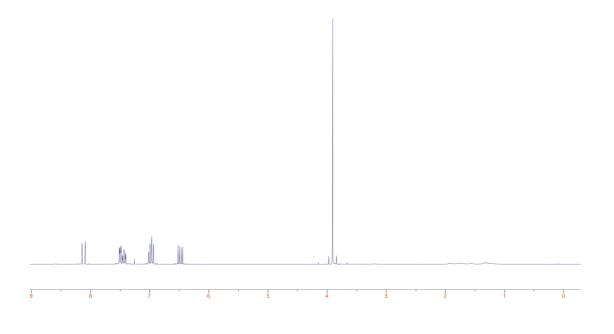
 Table 2. Integration from the enriched sample, deviations and KIEs

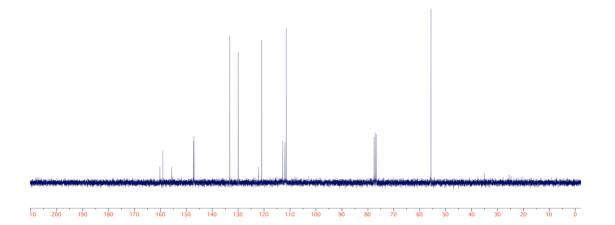
peak ppm	carbon	run 1	run 2	run 3	average	stdev	KIE	stdev
127.0	7	0.9798	0.9920	0.9895	0.9871	0.0064	1.017	0.008
126.7	aryl	0.9987	1.0010	0.9863	0.9953	0.0079	1.001	0.009
126.3	aryl	0.9702	1.0033	0.9727	0.9821	0.0184	1.011	0.020
41.2	6	0.9578	0.9663	0.9488	0.9576	0.0088	1.020	0.013
38.1	5	0.9495	0.9633	0.9818	0.9649	0.0162	0.983	0.017
31.0	4	1.0134	1.0154	0.9956	1.0081	0.0109	0.995	0.013
27.5	1	1.0000	1.0000	1.0000	1.0000	0.0000	1.000	0.000

VIIII. ¹H and ¹³C NMR spectra α-D-(*E*)-Cinnamoyl fluoride (αD-4a)

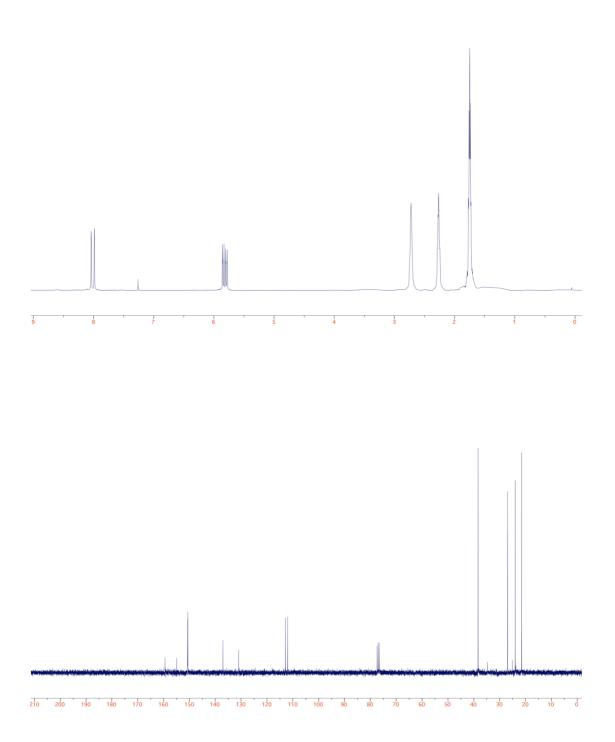


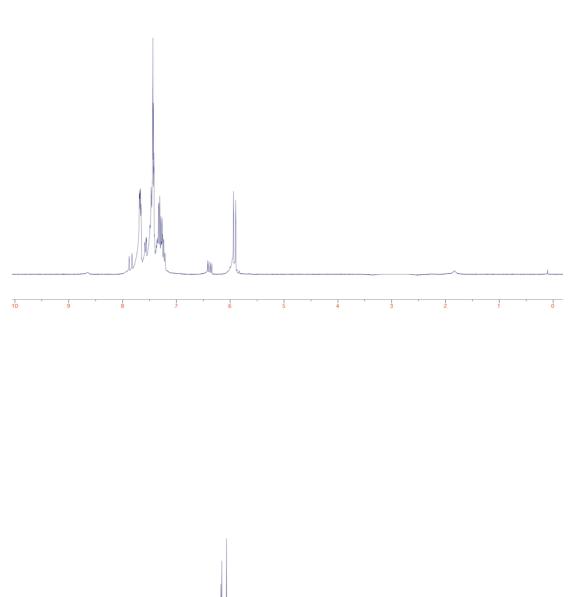
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

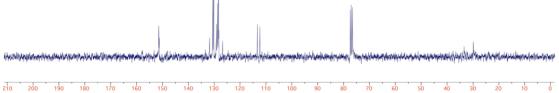

(E)-3-(2-Nitoxyphenyl)acryloyl fluoride (4j)



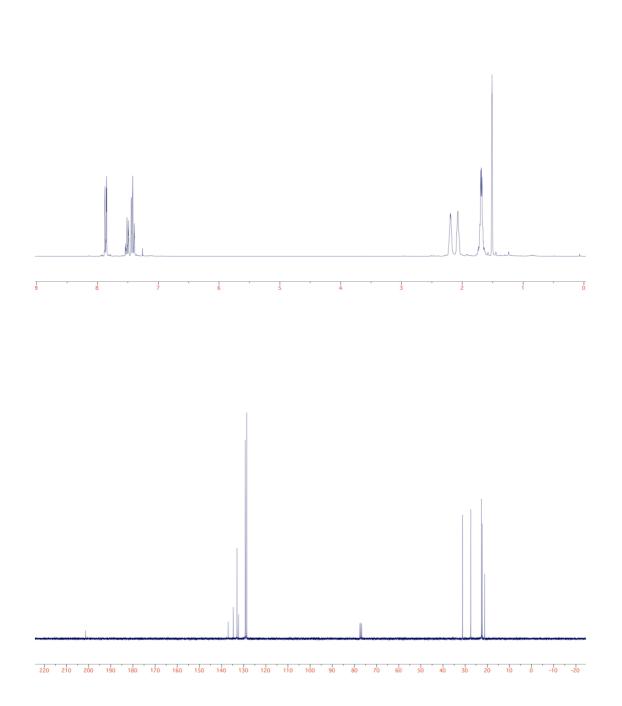
(E)-3-(2-Methoxyphenyl)acryloyl fluoride (4k)

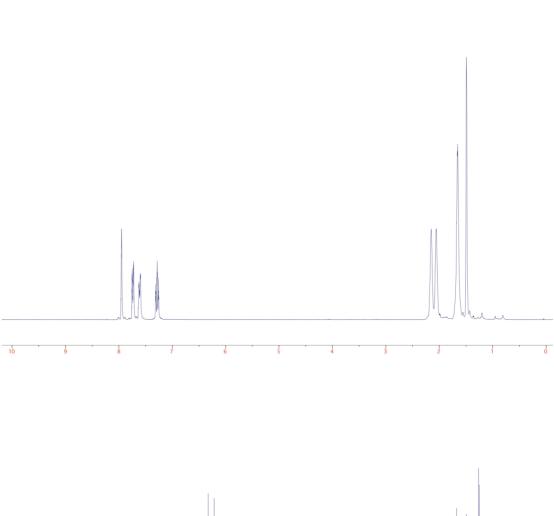


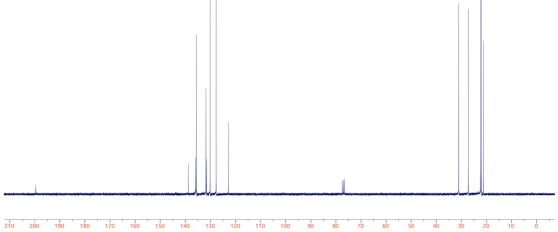

(E)-3-(2-Bromocyclohex-1-en-1-yl)acryloyl fluoride (4n)

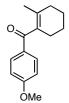


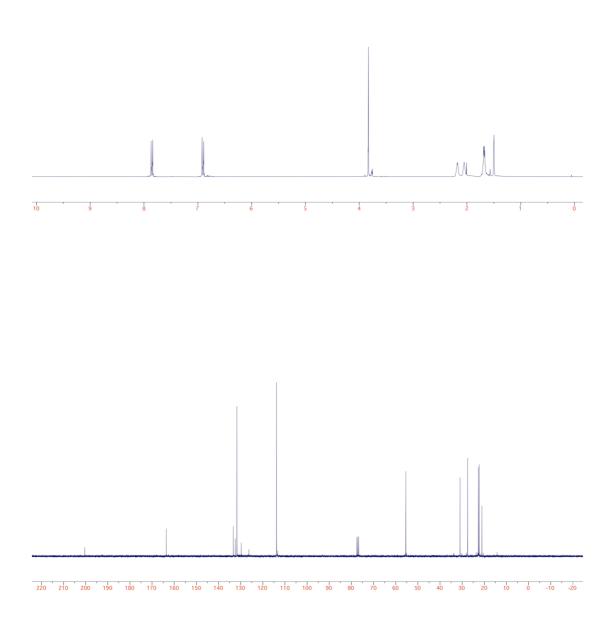
(Z)-Cinnamoyl fluoride (*cis*-4a)



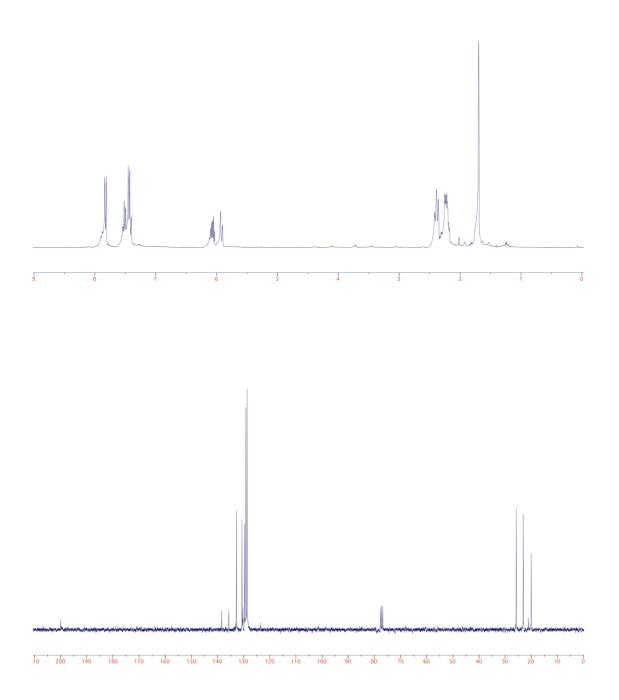

(2-Methylenecyclohex-1-en-1yl)(phenyl)methanone (11a)

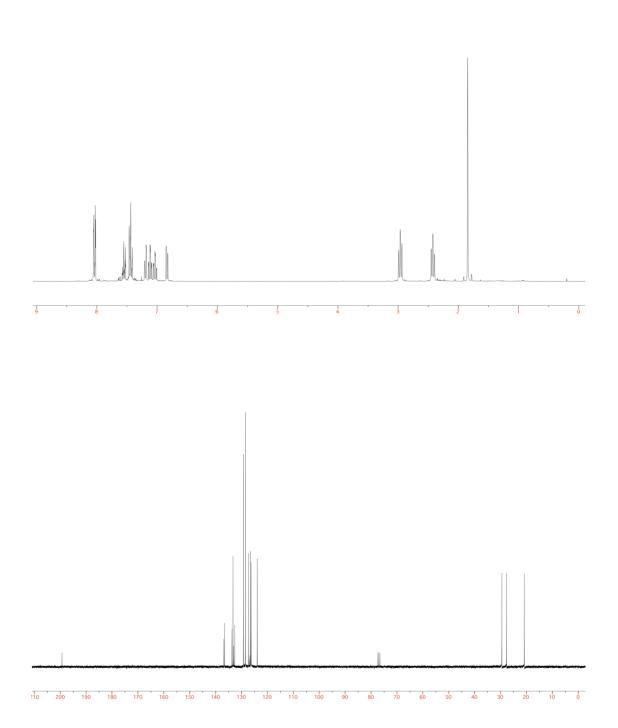



(3-Bromophenyl)(2-methylcyclohex-1-en-1yl)methanone (11b)

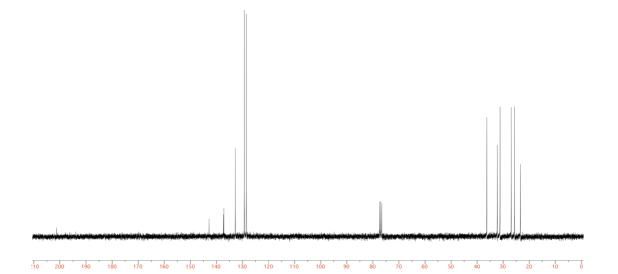


(4-Methoxyphenyl)(2-methylcyclohex-1-en-1yl)methanone (11c)

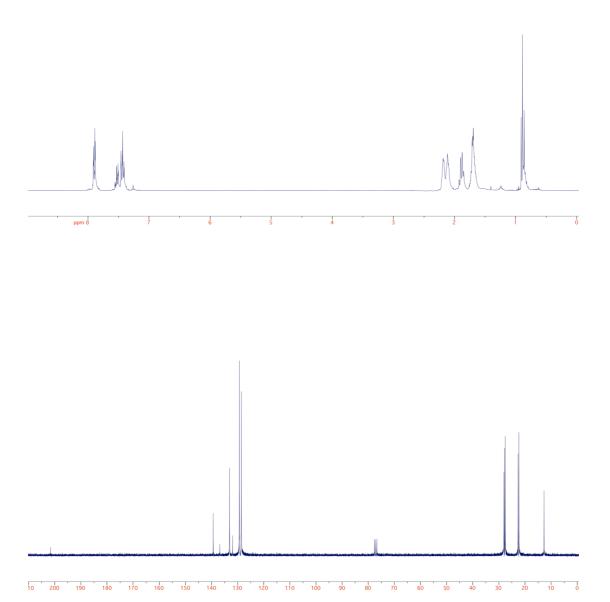

2-Methyl-1-(2-methylenecyclohex-1-en-1-yl)propan-1-one (11d)

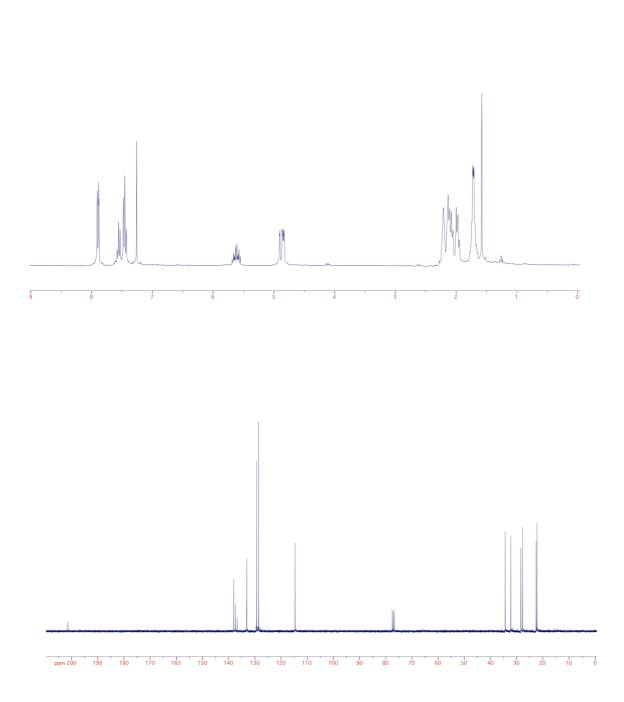

(2-Methylenecyclohex1-1,3-dien-1yl)(phenyl)methanone (11e)

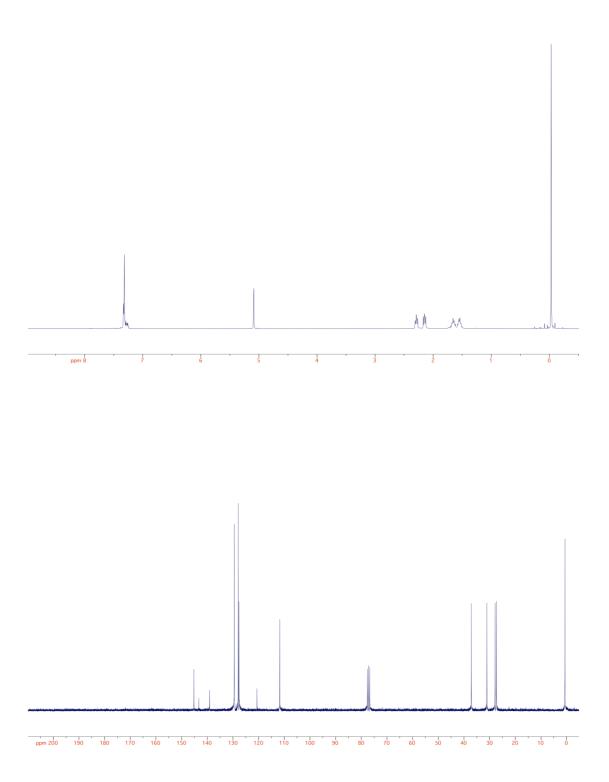
(2-Methyl-3,4-dihydronaphthalen-1-yl)(phenyl)methanone (11f)

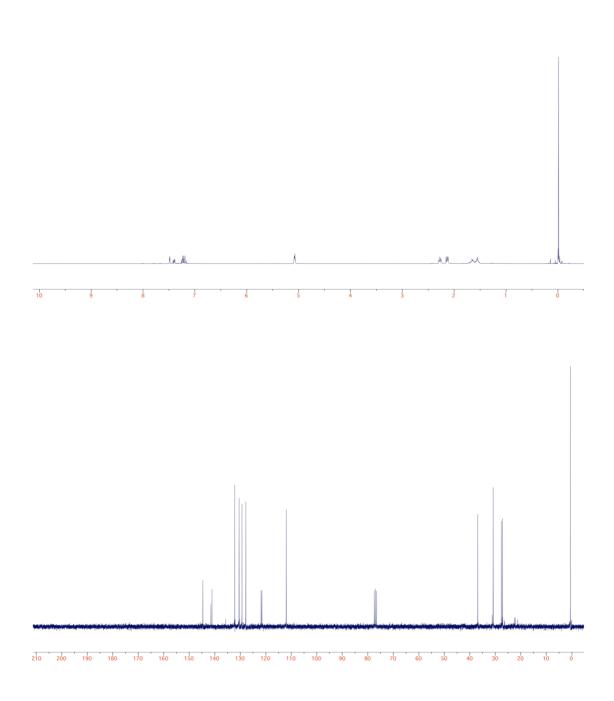


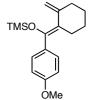
(2-Methylcyclohept-1-en-1-yl)(phenyl)methanone (11g)

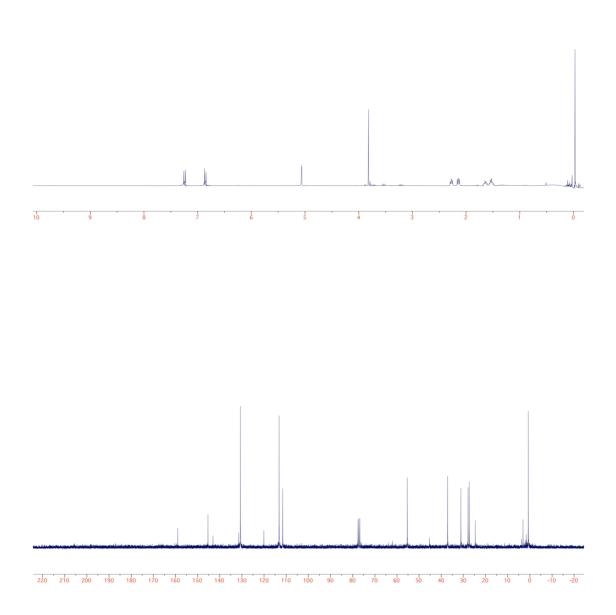


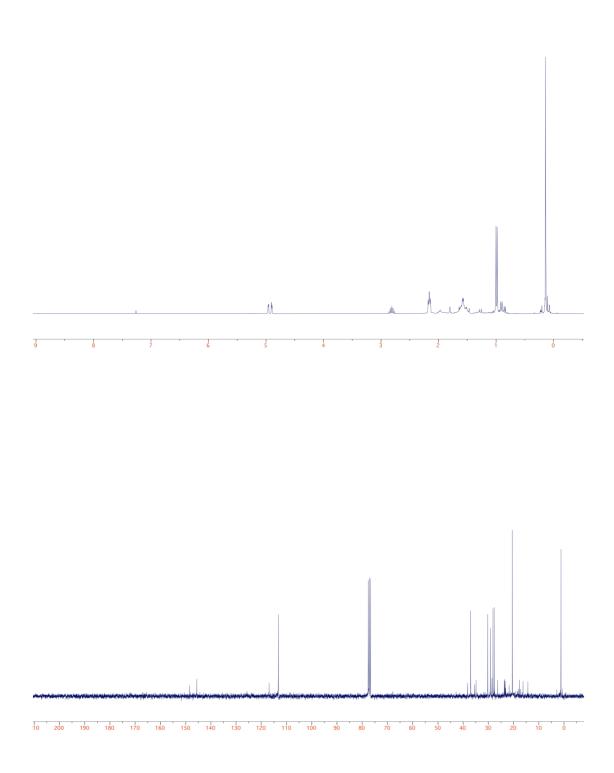

(2-ethylcyclohex-1-en-1-yl)(phenyl)methanone (11h)

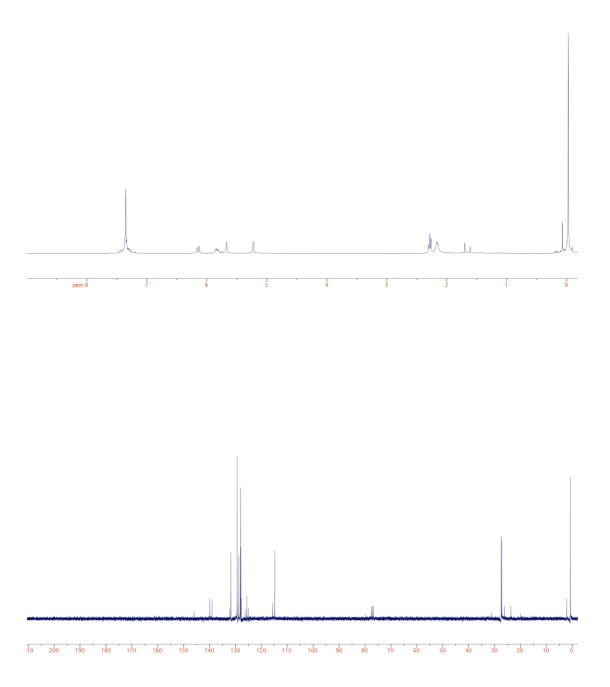

(2-Ethylcyclohex-1-en-1-yl)(phenyl)methanone (11i)

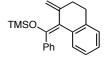

(Z)-Trimethyl((2-methylenecyclohexylidene)(phenyl)methoxy)silane (5a)

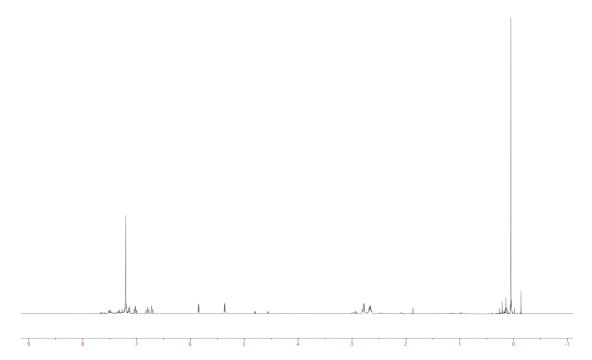


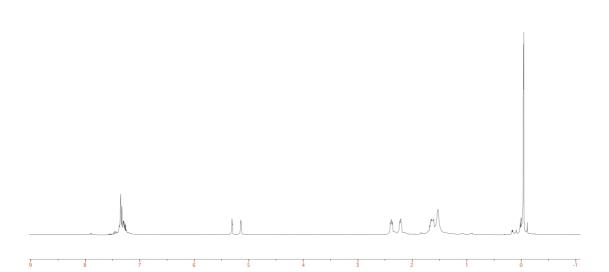

(Z)-((3-Bromophenyl)(2-methylenecyclohexylidene)methoxy)trimethylsilane (5b)

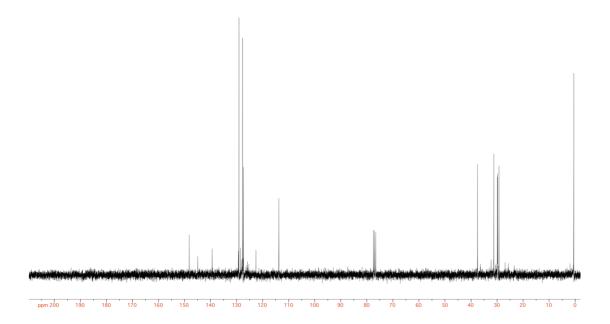

(Z)-((4-Methoxyphenyl)(2-methylenecyclohexylidene)methoxy)trimethylsilane (5c)


(Z)-Trimethyl(2-methylenecyclohexylidene)propoxy)silane (5d)

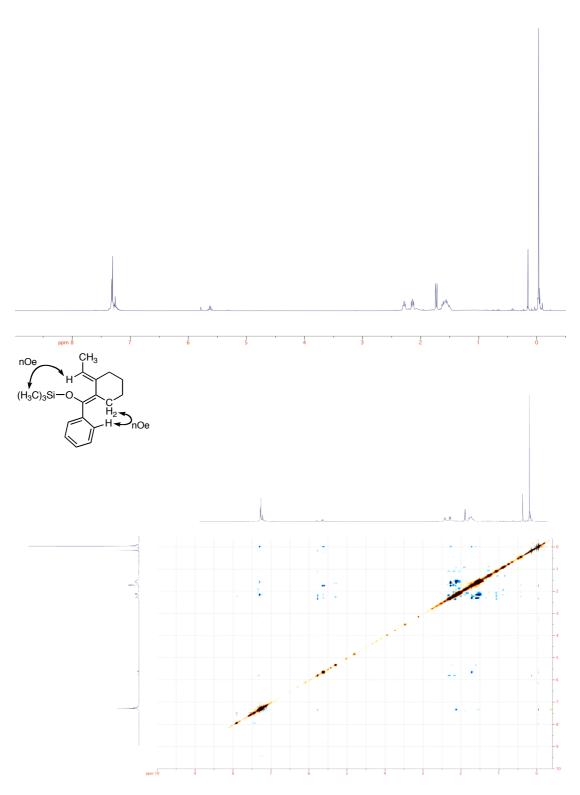


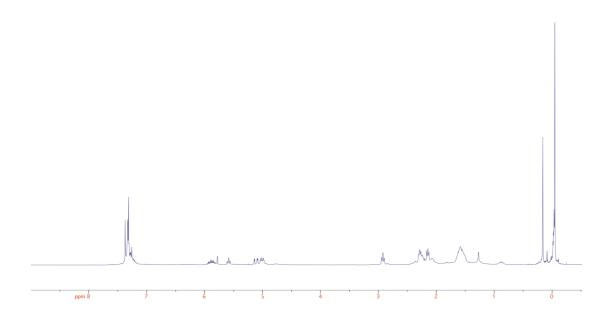

(Z)-Trimethyl((2-methylenecyclohex-3-en-1-ylidene)(phenyl)methoxy)silane (5e)

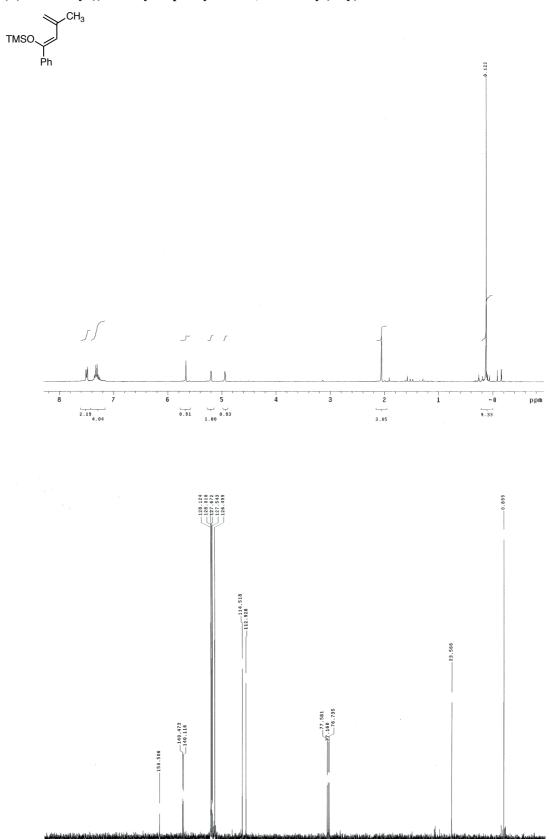

(E)-Trimethyl((2-methylene-3,4-dihydronaphthalen-1(2H)-ylidene)(phenyl)methoxy)silane (5f)



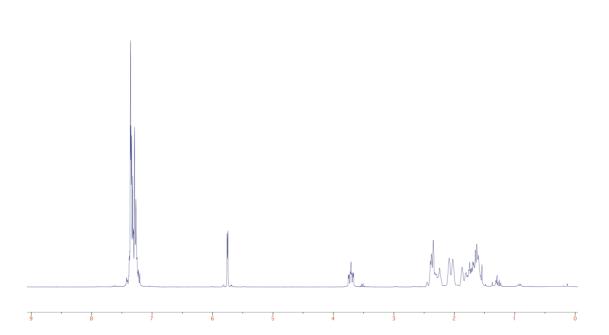
(Z)-Trimethyl((2-methylenecycloheptylidene)(phenyl)methoxy)silane (5g)

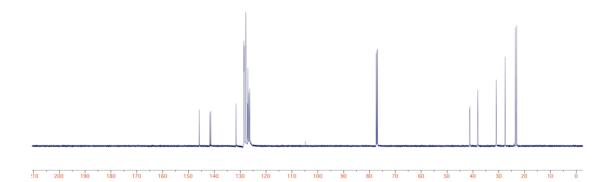



((Z)-((E)-2-Ethylideneclohexylidene(phenyl)methoxy)trimethylsilane (5h)

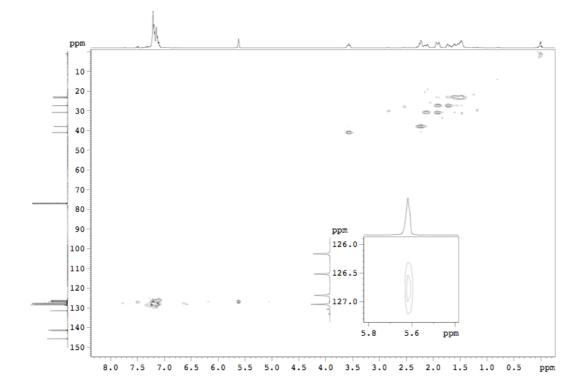


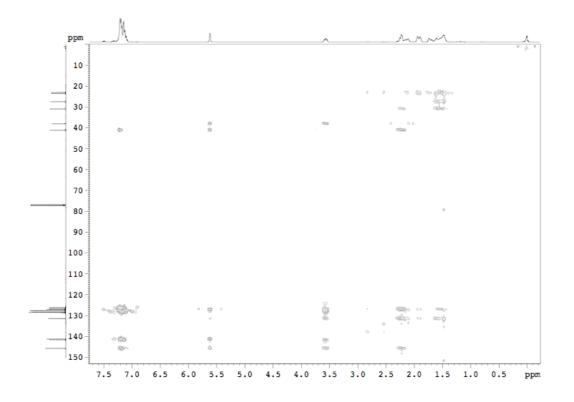
((Z)-((E)-2-(But-3-en-1-ylidene)cyclohexylidene)(phenyl) methoxy) trimethylsilane~(5i)

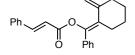

(Z)-Trimethyl((3-methyl-1-phenylbuta-1,3-dien-1-yl)oxy)silane

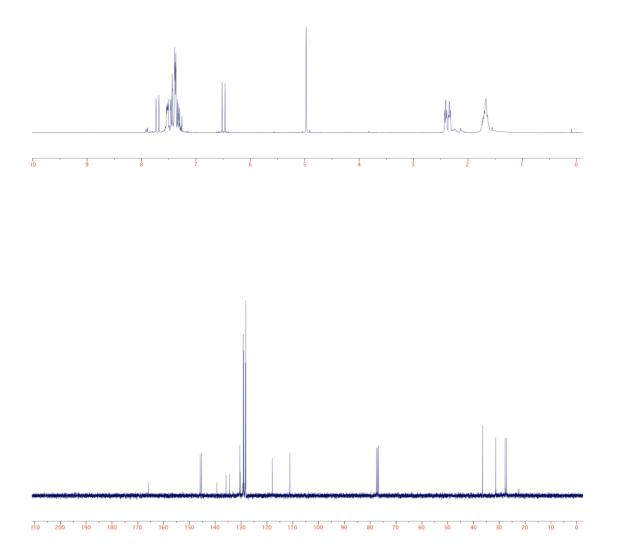


ppm

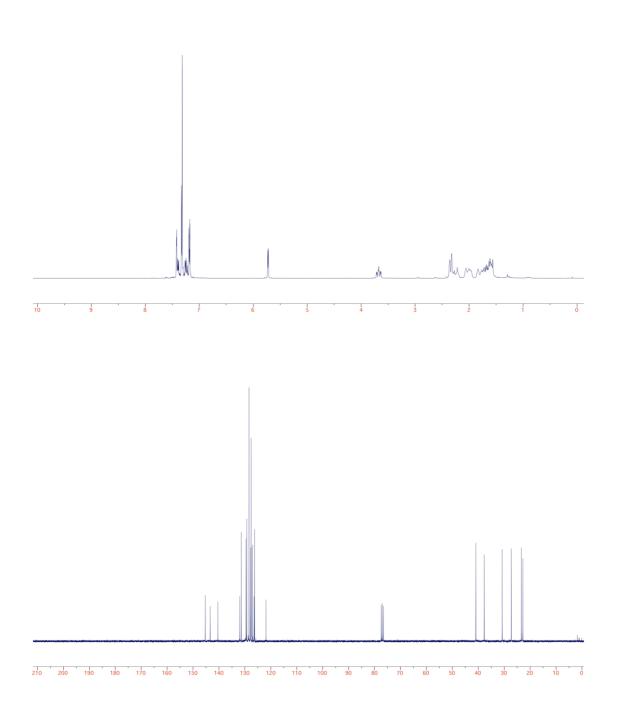

6,8-Diphenyl-1,2,3,4,5,6-hexahydronaphthalene (3a)

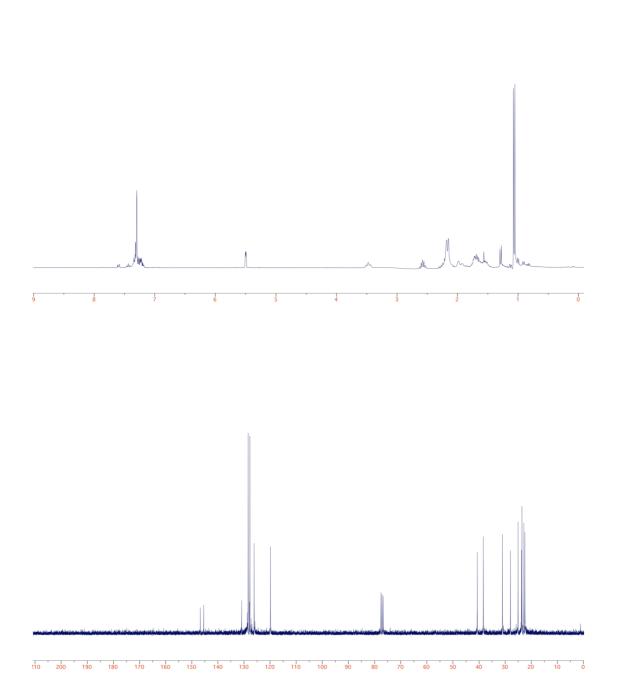


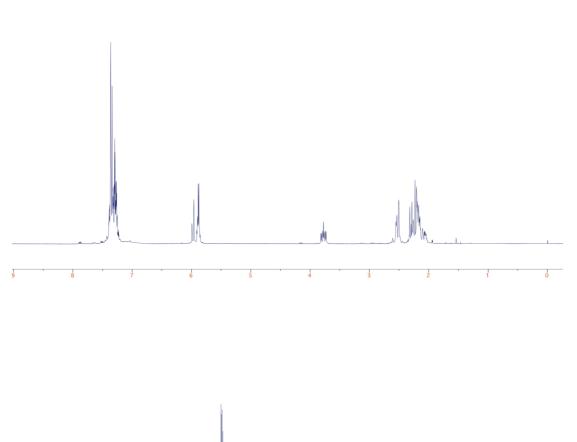

HSQC analysis of 3a

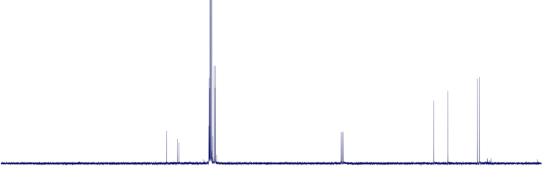


HMBC analysis of 3a

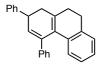

(Z)-(2-Methylenecyclohexylidene)(phenyl)methyl cinnamate (6a)

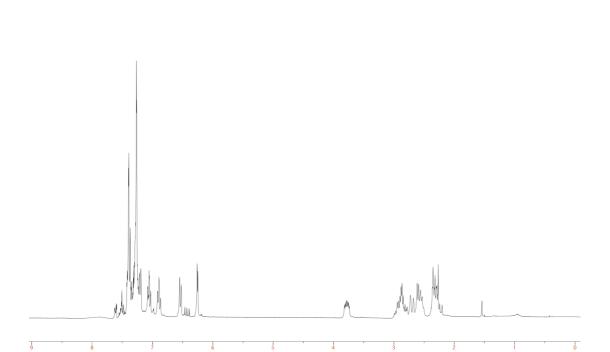

8-(3-Bromophenyl)-6-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3b)

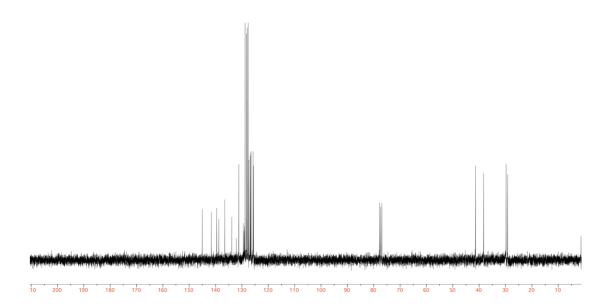

8-Isopropyl-6-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3d)



2,4-Diphenyl-1,2,5,6-tetrahydronapthalene (3e)

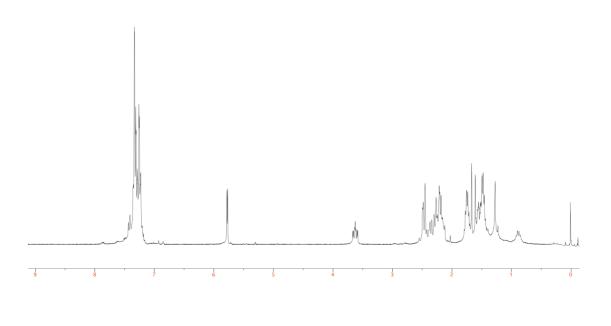


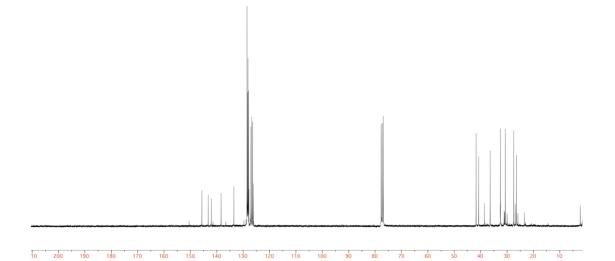




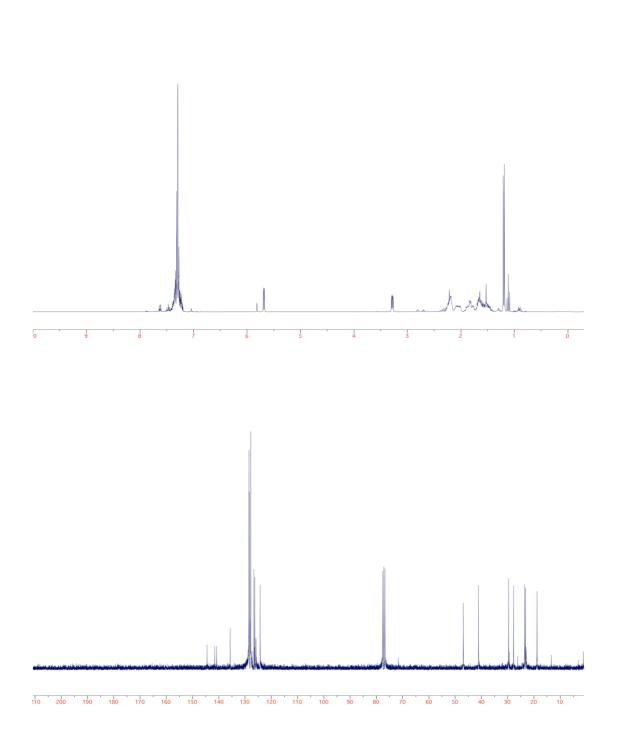
ppm 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

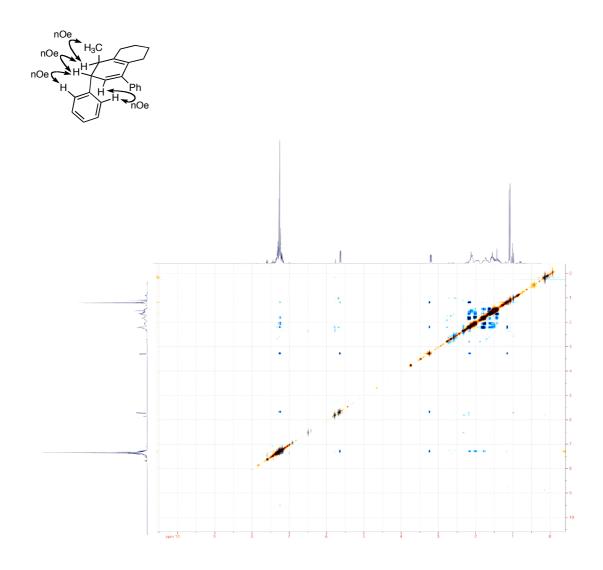
2,4-Diphenyl-1,2,9,10-tetrahydrophenanthrene (3f)



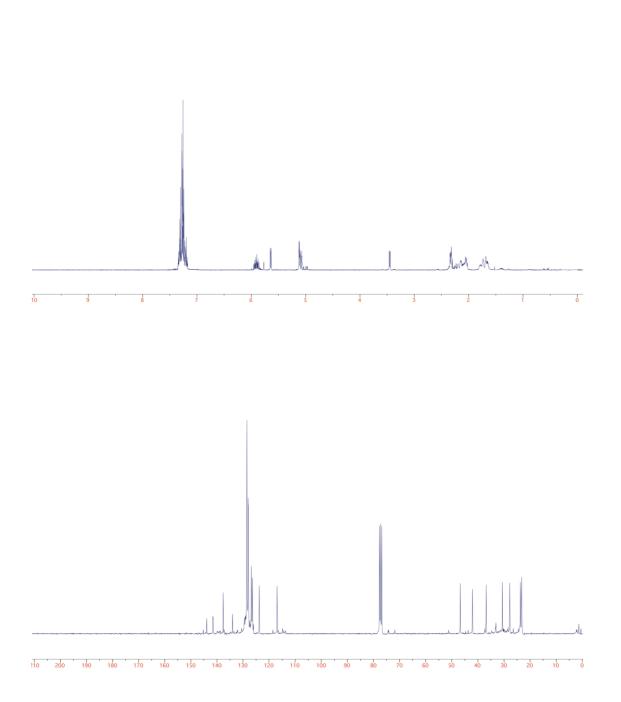


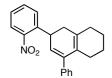
2,4-Diphenyl-2,5,6,7,8,9-hexahydro-1H-benzo[7]annulene (3g)

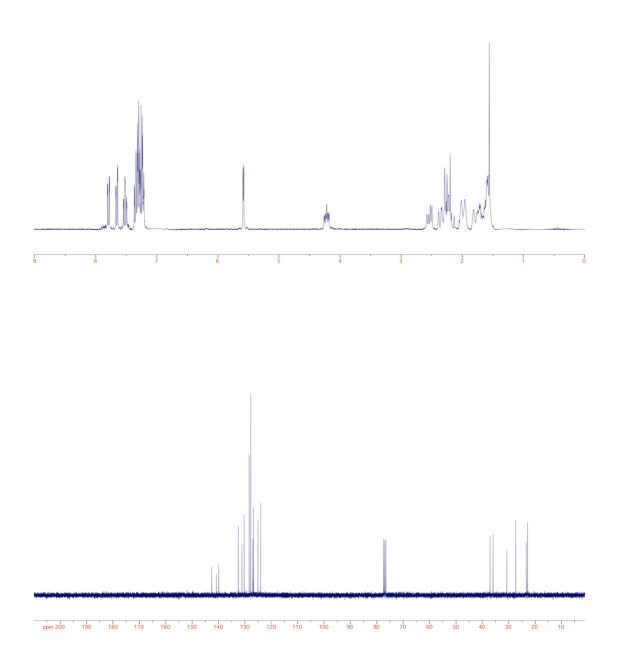


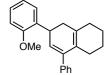


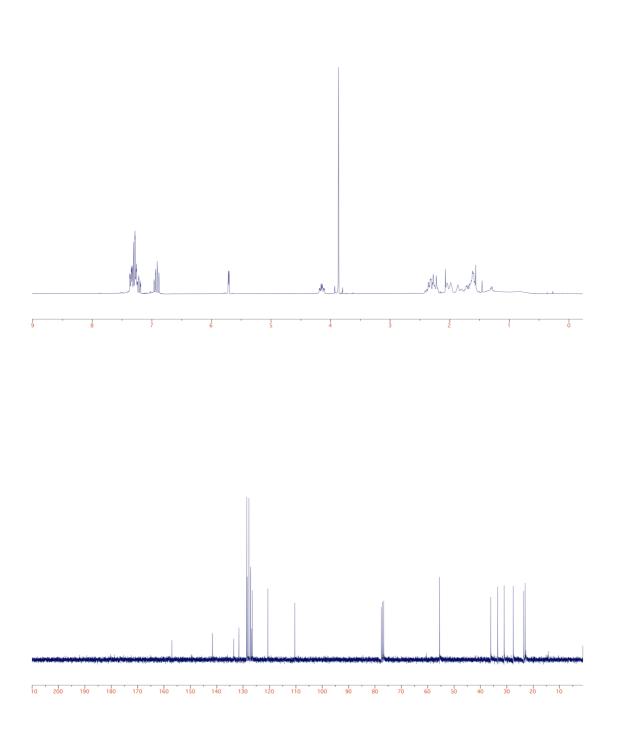
(5*R*,6*S*)-5-Methyl-6,8-diphenyl-1,2,3,4,5,6-hexahydronaphthalene and (5*S*,6*R*)-5-methyl-6,8-diphenyl-1,2,3,4,5,6-hexahydronaphthalene (3h)

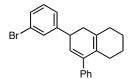


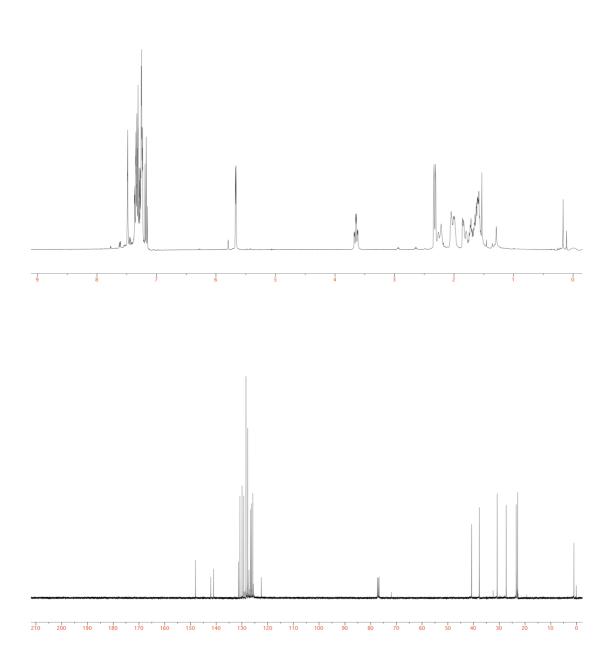


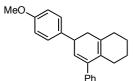

(5*R*,6*S*)-5-Allyl-6,8-diphenyl-1,2,3,4,5,6-hexahydronaphthalene and (5*S*,6*R*)-5-allyl-6,8-diphenyl-1,2,3,4,5,6-hexahydronaphthalene (3i)

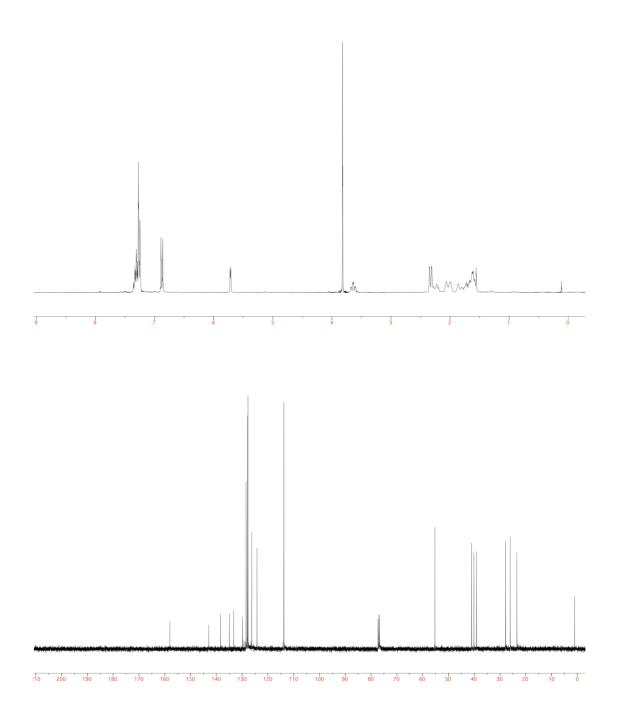


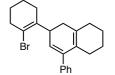

6-(2-Nitrophenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3j)

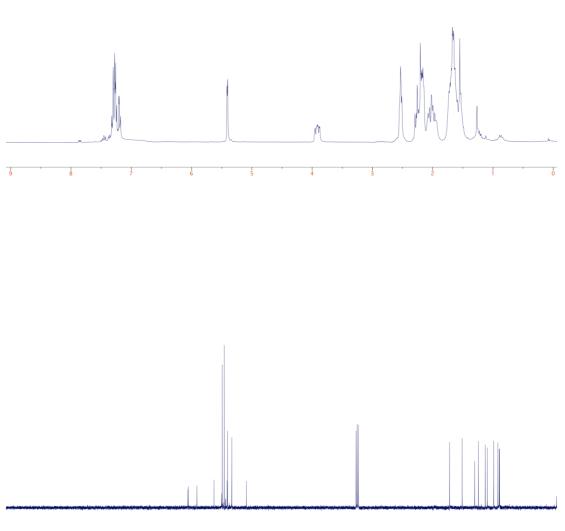


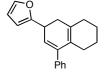

6-(2-Methoxyphenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3k)

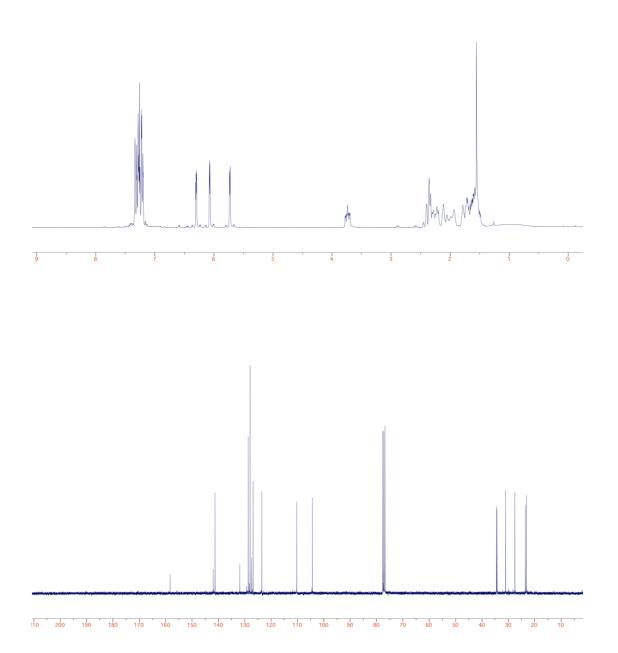


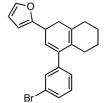

6-(3-Bromophenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3l)

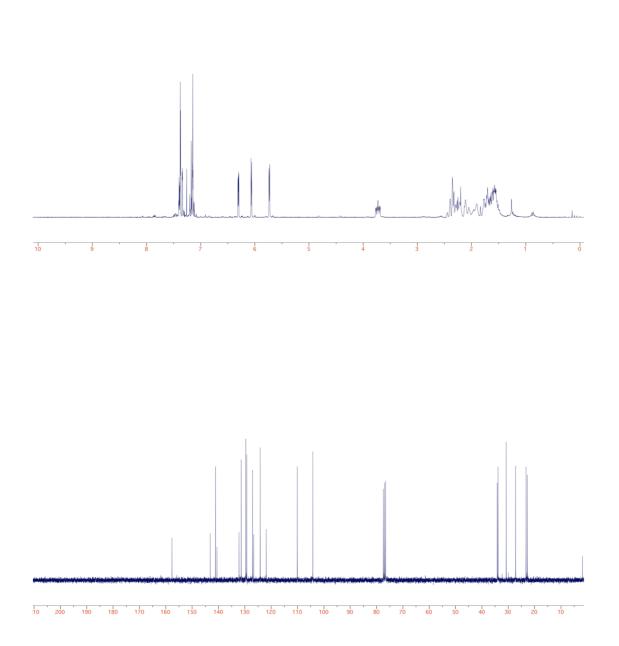


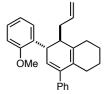

6-(4-Methoxyphenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3m)

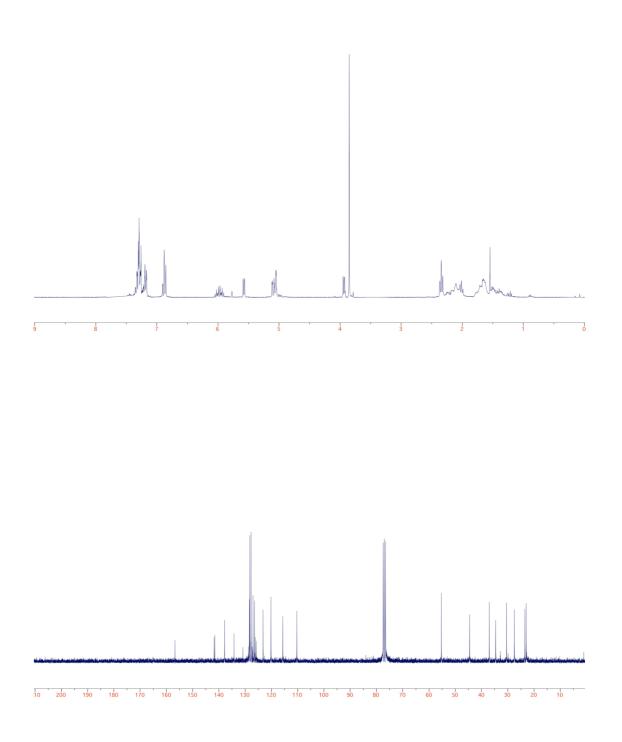

6-(2-Bromocyclohex-1-en-1-yl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3n)

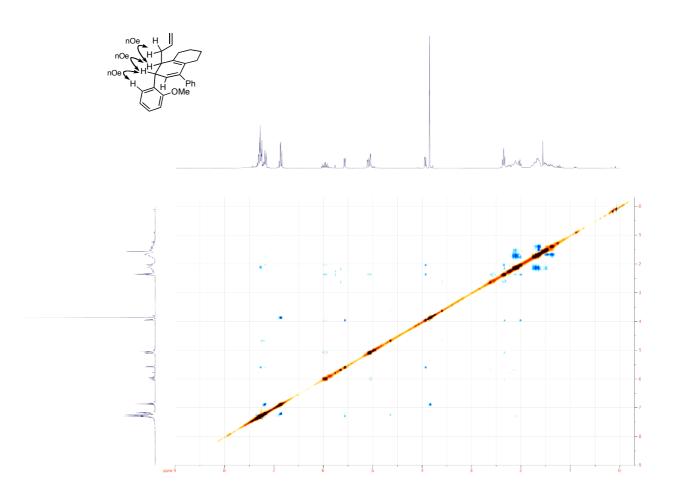


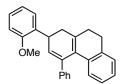

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

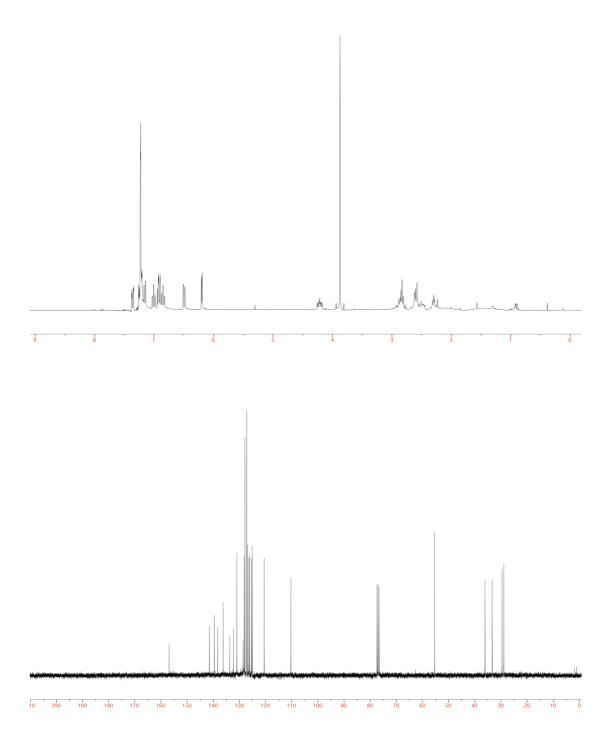

2-(4-Phenyl-1,2,5,6,7,8-hexahydronaphthalen-2-yl)furan (30)

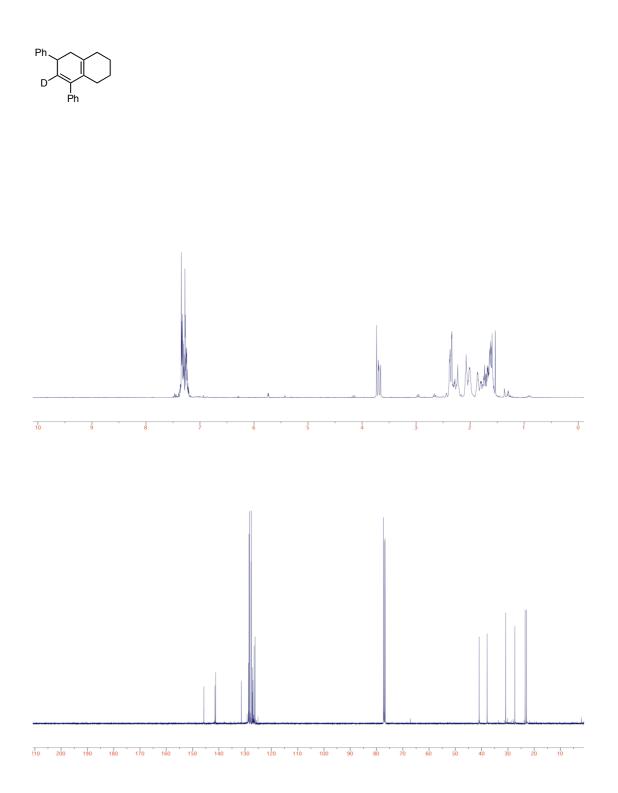



2-(4-(3-Bromophenyl)-1,2,5,6,7,8-hexahydronaphthalen-2-yl)furan (3p)

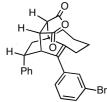


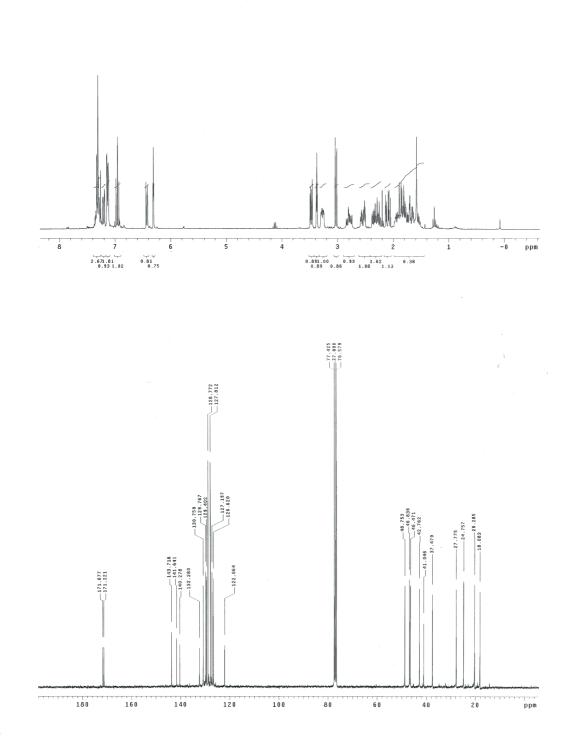

(5*R*,6*S*)-5-Allyl-6-(2-methoxyphenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene and (5*S*,6*R*)-5-allyl-6-(2-methoxyphenyl)-8-phenyl-1,2,3,4,5,6-hexahydronaphthalene (3q)

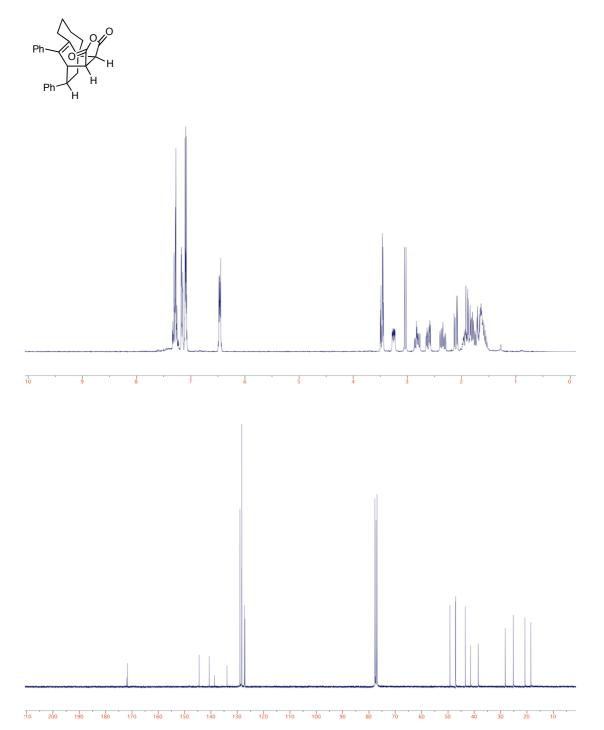




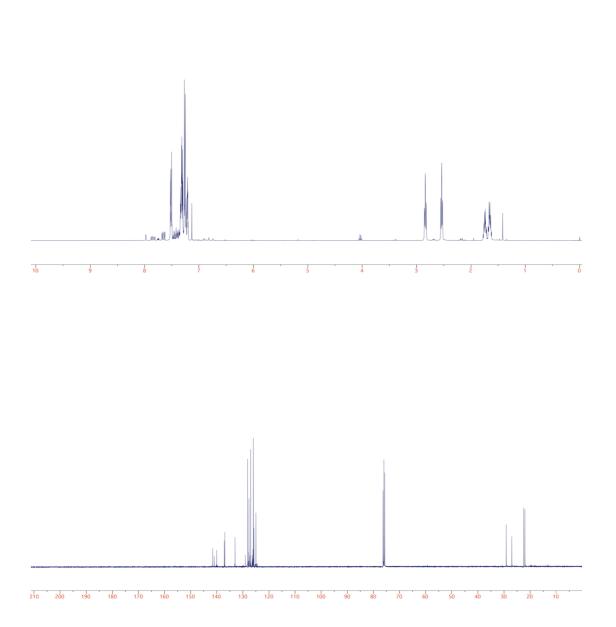
2-(2-Methoxyphenyl)-4-phenyl-1,2,9,10-tetrahydrophenanthrene (3r)






(3a*R*,9a*R*,9b*R*,11*S*)-5-(3-bromophenyl)-11-phenyl-3a,4,6,7,8,9-hexahydro-1*H*-4,9aethanonaphtho[1,2-*c*]furan-1,3(9b*H*)-dione and (3a*S*,9a*S*,9b*S*,11*R*)-5-(3-bromophenyl)-11phenyl-3a,4,6,7,8,9-hexahydro-1*H*-4,9a-ethanonaphtho[1,2-*c*]furan-1,3(9b*H*)-dione (8b)

¢



(3aS,9aS,9bS,11R)-5,11-diphenyl-3a,4,6,7,8,9-hexahydro-1H-4,9a-ethanonaphtho[1,2-c]furan-1,3(9bH)-dione and (3aR,9aR,9bR,11S)-5,11-diphenyl-3a,4,6,7,8,9-hexahydro-1H-4,9a-ethanonaphtho[1,2-c]furan-1,3(9bH)-dione (8a)

5,7-iphenyl-1,2,3,4-tetrahydronaphthalene (7a)

