Crystallization and Melting of Poly(ethylene oxide) in Blends and Diblock Copolymers with Poly(methyl acrylate)

Dirk Pfefferkorn¹, Samuel O. Kyeremateng¹, Karsten Busse¹, Hans-Werner Kammer², Thomas Thurn-Albrecht¹, Jörg Kressler^{1*}

1 Department of Chemistry, Physics and Mathematics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany

2 Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam/Selangor, Malaysia

* Corresponding author. E-mail: joerg.kressler@chemie.uni-halle.de

The volume fraction φ_1 of PMA was calculated adopting the definition of the segment volume fraction as introduced by Flory

$$\varphi_1 = \frac{z_1 n_1}{z_1 n_1 + z_2 n_2} \tag{1}$$

where z_i is the number of segments in polymer *i* and n_i is the number of polymer molecules of type *i*. The segment number z_i is obtained from the ratio of the number-average molar mass M_n and the segment molar mass M_{seg} of the respective polymer, i.e. $z_i = M_{n,i}/M_{seg,i}$. Introducing this ratio and using standard relationships, Eq. (1) can be rearranged into

$$\varphi_{1} = \frac{W_{1}}{W_{1} + (1 - W_{1}) \frac{M_{seg,1}}{M_{seg,2}}}$$
(2)

where w_1 is the weight fraction of PMA. Values of M_{seg} were recently determined from PVT data of identical homopolymers in the framework of the Flory-Orwoll-Vrij equation-of-state.¹ The corresponding values are 45.7 g/mol and 37 g/mol for PMA and PEO, respectively. Calculated volume fractions for both blends and diblock copolymers are listed in Table S1.

Table S1 : Weight fraction w	and volume fraction φ_1	of PMA in blends and	diblock copolymers
-------------------------------------	---------------------------------	----------------------	--------------------

Blend	nds Diblock Copolymers		Copolymers
w_1	φ_1	w_1	φ_1
0.1	0.83	0.09	0.077
0.2	0.168	0.17	0.143
0.3	0.258	0.38	0.327
0.4	0.351	0.43	0.379
0.5	0.447	0.59	0.538
		0.78	0.739

Figure S1: Normalized one-dimensional electron density correlation function K(z) of the sample PEO*b*-PMA_{7.7} illustrating the determination of long period *d* and thickness of the amorphous layer L_a . K(z) was calculated from the last evaluable SAXS trace close to the melting temperature.

Figure S2: Evolution of Lorentz-corrected SAXS intensity profiles during heating from 40 $^{\circ}$ C to the begin of the melting process of diblock copolymer PEO-*b*-PMA_{14.3}

Figure S3: Evolution of Lorentz-corrected SAXS intensity profiles during heating from 40 °C to the begin of the melting process of diblock copolymer PEO-*b*-PMA_{37.9}

References

(1) Pfefferkorn, D.; Sonntag, S.; Kyeremateng, S. O.; Funke, Z.; Kammer, H.-W.; Kressler, J. J. Polym. Sci. B: Polym. Phys. 2010, 48, 1893–1900.