Escobar et al. SUPPORTING MATERIAL PART 1.

Utility of characteristic QTOF MS/MS fragmentation for MHC class I peptides.

Supporting Figure 1.

Immonium ion presence. Spectra of peptide MPDVDLHL from HLA allele B3501 where the Histidine immonium ion is clearly present inside the peptide at m/z 110.

Peptide AESIVVHTY from HLA-B4403

Supporting Figure 2.

Decreased proline cleavage. A. This peptide from HLA-B3501 shows the effect of basic amino acids close to N-terminus generating abundant b-type ions that affect both cleavage of N-terminus to proline in this case by impossibility of b₁ formation from protonated ozaxolone, also the small peak C-terminal to proline is affected and is not evident. B. Peptide extracted from H2-Kd generate abundant b-type ions in gaseous phase collision by absence of basic residue inside the sequence. It is observed increased cleavage toward C-terminus in aliphatic residues as Leu, lle and Tyr with Asn weak bond helping the process, all effects together lead to suppression of cleavage N-terminus to proline and C-terminal to proline.

Supporting Figure 3.

Cleavage at Arginine residue is suppressed. Some sequences with peptides containing Arg showed absence or marked decrease in fragmentation around this basic residue. In this spectrum, the y-type monocharged ions from cleavage surrounding Arg are absent; with only low intensity peaks for b_5 and y_5^{++} visible. When the basic residue is inside the sequence, it is more common to find spectral patterns with peak-wave behavior in the y-type and b-type series – an important clue when confirming validity of algorithm matched sequences.

Supporting Figure 4. Position of basic amino residues enhance certain cleavages. In these three spectra (from HLA-B*3501, H2-Dd and H2-Kd), the increase of b-ions is seen by the basic residues proximity toward N-terminus, also non-polar and polar residues located at C-terminus produce intense peaks.

Supporting Figure 5. Presence of basic residues suppress cleavage of non-polar and polar residues.

(A) Intense y-ions fragments are generated on C-terminus when basic residues are located close to N-terminus but (B) they show decrease in peak intensity when the basic amino acid approaches to C-terminus. (C) Presence of arginine close to C-terminus also suppress completely the common fragmentation y_1 and y_2 in this peptide extracted from HLA-B4403.

Supporting Figure 6. Non-polar and polar ions can lead CID fragmentation. These three spectra (from MHC class I peptides) show abundant generation of b-ion with intense y-type fragmentation in non-polar residues as Val, Ser, Thr, Tyr, Phe, Ala, Ile and Leu. In some cases even exceeding the enhanced fragmentation N-terminal to Pro which disappears in these spectra.

Supporting Figure 7. Immonium ions and related fragments in peptides from MHC class I. This graph shows the trend for immonium ions by the most common amino acids found in the type of peptides studied. Some of them are more likely to be present in the spectrum so they can be a good guide to confirm sequences. Residues such as aspartic acid generate very poor immonium peak signal.

Supporting Figure 8. Impact of scoring defined by the algorithm. The values assigned for the presence of y-type and b-type ions within the algorithm is defined by different appraises for each of them, thus giving preference when a tryptic peptide was detected in the mass spectrometer. This can unfairly modify the scoring and fail in the report of the most probable sequences given by the algorithm search when abundant b-ions are generated (as is common in MHC class I peptides) with basic residues located away of C-terminus or when these basic amino acids are absent. In this study we modified the scoring set of parameters for b-ions and y-ions in the algorithm equalizing the values for both at 1.0 units.

Supporting Table 1, 2, 3. Basic residues suppress cleavage in endogenous non-tryptic peptides. For different peptides extracted from MHC class I alleles with basic residues inside the main fragment peaks for y-type and b-type ions are detailed here with the following indicative forward-slashes into the sequence: blue b-type ions; red y-type ions; purple vertical lines both y- and b- ions. The trend is suppression of cleavage around basic residues with marked trend with arginine followed by histidine and last lysine. The presence of internal ions generated by Arg show few peaks but they tend to increase when residues as Asn and/or Gln are present maybe for the facile breaking bond presented by these amino acids..

Supporting Table 1

Pep	tides with Arg	ginine		W
#	MHC I	Protein source	Sequence & Cleavage	#internal ions
1	HLA-B4402	AP-2 complex subunit mu-1	G EIVILII/S BIVIY	A
2	HLA-B4402	Vacuolar proton pump subunit F		7
3	HLA-B4402	Poly ADP-ribose) polymerase 1	E EIL (G/E B/P E/Y	6
4	HLA-B4402	C-1-tetrahydrofolate synthase, cytoplasmic	S EILIDILII/S/B L	7
5	HLA-B4402	Bardet-Biedl syndrome 2 protein		2
é	HLA-B4405	Myeloid leukemia factor 2	A/EIGIP/P B L/AII	5
7	HLA-B4405	Gi taminyl-pertide cyclotransferase-like protein	E EILIP/L/G B E/L	7
8	HLA-B4405	Ser/Thr-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform	D E Q D/S/V/R L L	9
9	HLA-B3508	Tubulin beta-28 chain	Y/P/D R\I\M\N T F	12
	HLA-B3508	Microtubule-associated protein 1A	Y/P/D/E R S F Q Y	5
11	HLA-B3508	Heterogeneous nuclear ribonucleoprotein H	L/P\Y R A T E N DIIY	12
14	H2Db	DNA-directed RNA polymerase II subunit RPB1	V/T P/F/N/I/D/R/L	6
15	H2Db	NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1	I/S G V/N R Y Y V	6
16	H2-Db	RNA polymerase II subunit B1	V/TJP/F/N/I/D/R/L	2
17	H2-Db	Serine/threonine-protein kinase MRCK gamma	A AIVIID/Q/E/R L	12
18	H2-Db	Protein C10	S/A/P/E/N/A/V/R M	5
19	H2-Db	H-2 class I histocompatibility antigen, D-B alpha chain precursor	F/A Y E/G R D\Y I	7
	HLA-80702	Staphylococcal nuclease domain-containing protein 1	S/P/A F S T R\V\L	12
	HLA-B0702	NACHT, LRR and PYD domains-containing protein 2	I/P F/S/N P R V L	4
20	HLA-B0702	DNA-directed RNA polymerase II subunit RPB1	T/P Q/S/N R/P V/M	7
21	HLA-B0702	Transcription elongation factor SPT4	L/P Q/G/I/V/R E\L	5
22	H2-Kd	Collagen alpha-2(I) chain	S FIVID/T RITILL	8
23	H2-Dd	Heterogeneous nuclear ribonucleoprotein K	S/G P E/R\ILSI	7
24	H2-Dd	60S ribosomal protein L6	T/G P L V/I N R\V	8
25	H2-Dd	Galectin-8	M/G P/G R T V V I	8
26	H2-Dd	Zinc finger CCCH-type antiviral protein 1	A/G P D R\F\V L L	6
27	H2-Dd	Protein YIPF3	V/G P/T/Q/R L L L	10
28	HLA-B3501	Cytochrome b-c1 complex subunit 9	R A F D\Q\G\A\D\A Y	3
29	HLA-B3501	Peptidyl-prolyl cis-trans isomerase A	A V D G\E P L/G R V S/F	9
30	HLA-B3501	Actin-related protein 3	I/PIIAG R D\ITY	7
31	HLA-B3501	Protein tyrosine phosphatase type IVA protein 1	R P\A\P\V\E\V T Y	3
32	HLA-B3501	DnaJ homolog subfamily B member	N/P D/D V/F/R E/F	5
33	HLA-B3501	Actin-like protein 3	I/PIIA/G R DIITIY	3
34	HLA-B3501	Tubulin beta-2A chain	Y/P/D R I\M\N T F	3
35	HLA-B3501	elF4E-binding protein 1	T/PIG/GTRIIIY	2

Supporting Table 2

Pept	'eptides with Histidine											
#	MHC I	Protein source	Sequence & Cleavage	#internal ions generated								
1	HLA-B3501	Heterogeneous nuclear ribonucleoprotein M	I/P N/E/I/I H A L	16								
2	HLA-B3501	Nuclear nucleic acid-binding protein C1D	Y/P V/E/I/H\E Y	18								
3	HLA-B3501	Spectrin beta chain, brain 1	Y/P N/V/N I/H N F	18								
4	HLA-B3501	Methyltransferase-like protein 11A	L/P D/E I/Y/H V Y	18								
5	HLA-B3501	Regulator of nonsense transcripts 1	A/P V/E/V/T/H/N F	15								
6	HLA-B3501	Proline-rich protein BCA3	V/P E E/G G A T/H V Y	14								
7	HLA-B3501	Thymocyte nuclear protein 1	E A Y P D H T Q/F	12								
8	HLA-B3501	Cytochrome c oxidase subunit 6A1, mitochondrial	F/P W/G D G N H\T L F	13								
9	HLA-B3501	ASH2-like protein	T P H S E N F Y	18								
10	HLA-B3501	26S proteasome non-ATPase regulatory subunit 7	L/P\I N H\Q\I I Y	18								
11	HLA-B3501	Heat shock protein beta-1	D V N H\F\A P D E L	10								
12	HLA-B3501	60S acidic ribosomal protein P0	V P H\S\I\INGY	20								
13	HLA-B3501	Catalase	S ALE H\S\IQY	13								
14	HLA-B3501	Transmembrane protein 50A	H A\C\G\V\I\A T I	9								
15	HLA-B3501	Dynein heavy chain 1, cytoplasmic 1	H V\N\W V\V S E L	9								
16	HLA-B3501	U5 small nuclear ribonucleoprotein 200 kDa helicase	Y A\Q D E H\L\ITF	9								
17	HLA-B3501	Ubiquitin-like modifier-activating enzyme 1	F/P N/A I/E/H T\L	15								
18	H2-Db	DmX-like protein 1	V/A P/A/N S L/V/H/A/F	11								
19	H2-Db	Cyclin-dependent kinase inhibitor 1B	F/G P/V/N/H E E L	11								
20	H2-Db	Actin-related protein 2	Y/A G S/N/F/P/E/H I	10								
21	H2-Db	Vacuolar protein sorting-associated protein 35	F/S E/E N H E P L	14								
22	H2-Db	tRNA (uracil-5-)-methyltransferase homolog A	A A P/F/D T/V/H I	14								
23	H2-Db	Homeobox protein SIX5	A/G P/T/N V/H/L/I	13								
24	H2-Db	DmX-like protein 1	V/A P/A/N S L/V/H/A/F	13								
25	H2-Db	Cyclin-dependent kinase inhibitor 1 B	F/G P/V/N/H E E L	24								
26	H2-Db	Putative methyltransferase	T/A I E/N/S/W/I/H L	17								
27	H2-Db	Malignant T cell amplified sequence 1	I/GIIE/N/I/HIY\L	27								
28	H2-Db	G1/S-specific cyclin-D3	A AVIIA/H DIFL	24								
29	H2-Db	Cyclin-dependent kinase inhibitor 1 B	F/G P/V/N/H E E L	21								
30	H2-Db	DmX-like protein 1	V/A P/A/N S L/V/H/A/F	13								
31	HLA-B4402	Proteasome subunit beta type-4 precursor	E ELLG/D/G/H S Y	13								
32	HLA-B4402	Exportin-2	A E S I/V/V/H/T Y	17								
33	HLA-B4405	Dolichyl-diphosphooligosaccharideprotein glycosyttransferase 63 kDa subunit precursor	A EILITIP/H Q T/F	18								
34	H2-Kd	Chromodomain-helicase-DNA-binding protein 1	S/Y I G G/H/E G/L	18								
35	H2-Kd	Alpha-1,3-mannosyl-glycoprotein 2-beta-N- acetylglucosaminytransferase	S/Y G T A V/T/H\I	14								

Supporting Table 3

Pept	ides with Lys	sine		
#	мнс і	Protein source	Sequence & Cleavage	#internal ions
				generated
1	HLA-B4402	Hemoglobin subunit gamma-1	K E F\T/P E\V Q A S W	15
2	HLA-B4402	Eukaryotic translation initiation factor 3 subunit C	E E F/E/L L/G K/A/Y	20
3	HLA-B4402	40S ribosomal protein S5	A E T P/D/I/K/L/F	15
4	HLA-B4402	Uncharacterized protein C14orf119	S E P/D/F V/A/K/F	32
5	HLA-B4402	Nucleolar protein 11	D E N S V I/K/S/F	24
6	HLA-B4402	Prolyl 4-hydroxylase subunit alpha-1 precursor	A EIIEII/V/K/D/L	10
7	HLA-B4402	Uncharacterized protein	S E P/D/F/V/A/K/F/Y	24
8	HLA-B4402	DNA topoisomerase 2-alpha	A EIIN N IIIK/I	12
9	HLA-B4402	Nuclear migration protein nudC	A EK LITQTF	17
10	HLA-B4402	Targeting protein for Xklp2	E E L/E/K L Q Q/Y	36
11	HLA-B4402	Protein SET	T\E F E/D/I/K S G/Y	22
12	HLA-B3501	Bromodomain adjacent to zinc finger domain protein 1B	T AWLEI M/T/K/Y	9
13	HLA-B3501	Alpha-actinin-4	N\A F E V/A/E/K/Y	20
14	HLA-B3501	Cytochrome P450 51A1	M/V G K\T\F/T Y	11
15	HLA-B3501	Ubiquitin-conjugating enzyme E2 E1	Y/P F K P\P K V T F	11
16	HLA-B3501	7-dehydrocholesterol reductase	T/P A G V/V N/K/Y	24
17	HLA-B3501	Serine/threonine-protein kinase RIO2	F/P V P K/P I/D Y	10
18	H2-Db	Adenosine kinase	S A V V/D/K D F/L	29
19	H2-Db	Nucleolar GTP-binding protein 2 OS	A S\L T N P/F/G K G\A F I	14
20	H2-Db	Sorting nexin-14	I/GIP K N Y\EIFIL	30
21	H2-Db	Acyl-protein thioesterase 1	KVA L IVN PVAVNVV T F	18
22	H2-Db	Protein flightless-1 homolog	A ALK/LIG QIEL	15
23	H2-Db	B-cell scaffold protein with ankyrin repeats	N SP/FN SK/FPA	17
24	H2-Db	Beta-2-microglobulin	I QK TP Q\I\QVY	38
25	H2-Db	ELAV-like protein 1	G A/V/T/N/V/K/VI	16
26	H2-Db	Tropomodulin-1	S SIIV/N/K E/G/L	47
27	HLA-B4405	RNA-binding protein 8A	A EIY/G E/I/K/NI	20
28	HLA-B4405	Transcription intermediary factor 1-beta	N EAFG D/T/K/F	40
29	HLA-B0702	Ran-binding protein 9 -	L/P\K Q P\P\L A\L	25
30	HLA-B0702	Sphingolipid delta(4)-desaturase DES1	F/P N I P G K/S L	17
31	HLA-B3508	Dihydrofolate reductase	F/P E I/D L E K/Y	16
32	HLA-B3508	Anaphase-promoting complex subunit 7	L/PISEIIEVK/Y	26
33	HLA-B3508	Squalene synthetase	M/P/A/V K A III Y	15
34	HLA-B3508	Hypoxanthine-guanine phosphoribosyltransferase	I/PIDKFVVGY	39
35	HLA-B3508	CCR4-NOT transcription complex subunit 1	F/P\Q Y P D K E\L	18

Supporting Table 4. No basic residues present influence the b-type ions generation n MHC class I peptides. As well as occur with histidine and lysine, the absence of basics residues produce abundant internal ions, also the trend to generate b-ions is strong with this sequences as shown in the last column with more than 50% of b-type ions comparing with y-ions in the spectrum.

#	MHC I	Protein source	Sequence & Cleavage	#internal ions generated	Total y- type ions	Total b- type ions	b-type abundance (%)
1	HLA-B4402	Kanadaptin	E E N\P I\V L E F	13	4	11	73
2	HLA-B4402	Heterogeneous nuclear ribonucleoprotein H	T E\N D\I Y\N F F	23	7	9	56
3	HLA-B3501	Spectrin beta chain, brain 1	E A\F\L\N N Q E Y	34	6	11	65
4	HLA-B3501	Pre-mRNA-processing-splicing factor 8	S P\I\P\F/P P L S Y	14	6	10	63
5	HLA-B3501	Nuclear pore membrane glycoprotein 210 precursor	L P\A E\F\F\E V L	16	3	6	67
6	HLA-B3501	Complement decay-accelerating factor precursor	F P\V G T V\VEY	14	4	6	60
7	HLA-B3501	Lymphokine-activated killer T-cell-originated protein kinase	D P\F\P\A\A\I <mark>II</mark> L	17	4	12	75
8	HLA-B3501	T-complex protein 1 subunit eta	L/P\I G D\V\A\T Q Y	32	10	14	58
9	HLA-B3501	Replication protein A 32 kDa subunit	M P L\E D\M\N\E F	16	4	9	69
10	HLA-B3501	Protein transport protein Sec23B	M P Q\F\S T\IE Y	10	5	7	58
11	HLA-B3501	26S proteasome non-ATPase regulatory subunit 7	L P D\V <mark>S\L\Q/E</mark> F	8	4	6	60
12	HLA-B3501	60 kDa SS-A/Ro ribonucleoprotein	T P A D\V\F\IVF	9	2	8	80
13	H2-Db	Transmembrane protein 131	A S\L\V\N S P S Y/L	24	6	13	68
14	H2-Db	Diphosphomevalonate decarboxylase	T A\P V N\I\A V/I	20	3	10	77
15	H2-Db	Receptor tyrosine-protein kinase erbB-2	G A\V\ENPEY/L	12	5	9	64
16	H2-Db	40S ribosomal protein SA	V AII EINIP AIDIVIS V/I	46	5	14	74
17	H2-Db	Cyclin-A2	V S L\L\N P/P E/T/L	29	7	8	53
18	H2-Db	U3 small nucleolar RNA-interacting protein 2	A A\L\L\N\T D L/V	37	5	12	71
19	H2-Db	Sterol regulatory element-binding protein 2	A AVVQ NIP ALITAL	72	15	21	58
20	H2-Db	Transmembrane protein 167 precursor	S A\I\F\N\F\Q/S/L	40	19	21	53
21	HLA-B3508	Microtubule-associated protein tau	S P Q L\A\T\L\A\D\E V S A	28	6	16	73
22	HLA-B3508	Protein BTG1	W V/D/P Y/E V S Y	27	9	17	65
23	HLA-B3508	RNA-binding protein 10	Y P\V\P D\V\S T Y	15	5	9	64
24	HLA-B3509	Zinc finger and BTB domain	M P A\P E\IVSY	24	6	15	71
25	HLA-B3508	Cleavage and polyadenylation specificity factor subunit 1	V AIDIP YIVIVIIM	23	6	12	67
26	HLA-B3508	Transforming protein RhoA precursor	Y P D T D\V I L M	12	6	6	50
27	HLA-B4405	Elongation factor 2	L E\P E\E\L Y Q T/F	12	7	9	56
28	HLA-B0702	Ataxin-2-like protein	V/P Q S\G\V P A\L	20	7	12	63
29	HLA-B0702	Myc-associated zinc finger protein	A V/A/P\V A\S\A\L	18	6	9	60
30	HLA-B0702	Rhomboid domain-containing protein 2	Y/P\A S A\G\T\S\L	16	9	15	63

Supporting Table 5. Presence of glutamine and asparagine increase internal ions and fragmentation inside peptide. These data show the impact of these two residues in the cleavage in MHC class I. First always there are y-type and or b-type ions generated from this residues in the listed peptides and second the internal ions found in the QTOF analysis are generated in more than 40% of the time from these residues as may be detailed in the last column. The presence of several residues inside the sequence increase the internal ion generation.

Generati	Seneration Internal Ions from Asn and/or Glu													
#	Peptide sequence	y-type and b- type ions from Glu and or Asn	Residue analyzed	Total Internal ions presented	Internal ions generated from Glu and/or Asn	Influence Glu and/or Asn in generation internal ions (%)								
1	IGIENIHYL	y ₄ , y ₅ , b ₄	Ν	34	17	50								
2	FGPVNHEEL	y4, y5, b4, b5	Ν	39	17	44								
3	IGPKNYEFL	b ₄ , b ₅	N	33	16	48								
4	YVVDNIDHL	y4, y5	N	10	4	40								
5	SLGKNPTDAYL	y ₆ , y ₇ , b ₄ , b ₅	Ν	38	16	42								
6	VSVANVDLL	b ₅	N	19	9	47								
7	TSVENHEFL	y4, y5	N	19	8	42								
8	GALENAKAEI	y ₄ , y ₆ , b ₄	N	11	7	64								
9	RAIENIDTL	b ₄ , b ₅	N	15	9	60								
10	GAVTNVKVI	y4, y5, b4, b5	N	13	6	46								
11	SLPTNLIHL	У5	N	9	6	67								
12	LPDVSLQEF	y ₂ , b ₆ , b ₇	Q	24	14	58								
13	FPDKPITQY	y ₁ , y ₂ , b ₇ , b ₈	Q	33	20	61								
14	KEFTPEVQASW	y4, y5, b4, b5	Q	42	17	40								
15	DYQALRTSI	y_4, y_5, b_4, b_5	Q	20	10	50								
16	GYLGQVTTI	y ₄ , b ₅	Q	22	10	45								
17	AALQNAVAF	b ₄ , b ₅	N,Q	18	16	89								
18	GGIQNVGHI	y_4,y_5,y_6,b_3,b_4	N,Q	18	14	78								
19	FQIVNPHLL	y ₄ , y ₅ , y ₇ , y ₈ , b ₂ , b ₄	N,Q	36	29	81								
20	SEDNPQTLLF	y_4, y_6, b_4, b_5, b_6	N,Q	17	13	76								
21	SALQNAESDRL	$y_6, y_7, y_8, b_3, b_4, b_5$	N,Q	29	19	66								
22	VSLNLRQVL	y ₃ , y ₄ , y ₆ , y ₇ , b ₃ , b ₆ , b ₇	N,Q	27	18	67								
23	AEINNIIKI	y ₄ , y ₅ ,y ₆ , b ₄ , b ₅ , b ₆	N,N	19	10	53								
24	NSIRNLDTI	y ₅ , b ₄ , b ₅	N,N	41	29	71								
25	ASVLNVNHI	y ₂ , y ₃ ,y ₄ , y ₅ , b ₄ , b ₅	N,N	37	30	81								

Supporting Table 6. Summary of internal ion generation with presence and absence of residues. This data is a summary of tables I,II, III and IV in terms of internal ions presence There is a clear trend for arginine to yield less ions comparing with the other basic residues or when they are absent.

Summary data presence internal ions per peptide													
Basic residue	Peptides	fragments by peptide											
Dasie residue	analyzed	Mean	STDV										
No presence	30	23	13										
Arginine	35	7	3										
Histidine	35	15	4										
Lysine	35	21	10										

Supporting Table 7. False discovery rate.

	Calculations with decoy database search														
Algorithm parameters	Allele	Algorithm Score	#Sequences	False Positive	True Positives	False Negatives (manually validated)	True Negatives	FDR %	True FDR %						
Default (y-ions	Н2-КЬ	>7.0	542	111	431	21	90	25.8	19.9						
3X to b-ions)	H2-Db	>7.0	1897	506	1391	50	456	36.4	31.6						
y-ions and b-ios	H2-Kb	>7.0	513	70	443	12	58	15.8	12.7						
equal	H2-Db	>7.0	1920	444	1476	40	404	30.1	26.6						

Formulation:

Sequences: Total of assignments over score threshold

False positive: passing reverse search assignment

True positive: passing assignments – false positives

False Negatives: False positives passing manual validation assignments

True negatives: False Positives – False negatives

FDR%: 100* False positives/ (#sequences-False positives)

*True FDR%: 100*True negatives/ (#sequences-True negatives)*

Practical application example:

In the search of the correct sequence for one peptide extracted from MHC class I molecule for the Allele HLA-B3501 we found the following report from the mass spectrometer algorithm:

Rank	Score	SPI (%)	BCS	# Unmatched Ions	Sequence	MH⁺ Calculated (Da)	MH⁺ Error (Da)	MH⁺ Error (ppm)	Protein MW/pl (Da)	Species	Accession #	Protein Name
1	12.42	67.6	3	14/25	(N) <u>YFVQTVEVDQL(</u> I)	1340.6738	-0.0120	-9.0	68361.7/5.98	HUMAN	<u>Q6TFL4</u>	Kelch-like protein 24 - Homo sapiens (Human) [MASS=68361]
2	11.01	73.6	2	15/25	(M) <u>YFVPPPYELSE(</u> S)	1340.6414	0.0203	15.2	307693.0/6.23	HUMAN	<u>Q9NT68</u>	Teneurin-2 - Homo sapiens (Human) [MASS=307689]
<u>3</u>	9.94	85.6	4	14/25	(Y) <u>akelregfvey</u> (t)	1340.6850	-0.0233	-17.4	124714.3/4.87	HUMAN	<u>060518</u>	Ran-binding protein 6 - Homo sapiens (Human) [MASS=124713]
4	9.91	89.7	4	11/25	(F) <u>SPEGRLYQVEY</u> (A)	1340.6487	0.0131	9.8	29484.0/7.58	HUMAN	<u>P25789</u>	Proteasome subunit alpha type-4 - Homo sapiens (Human) [MASS=29484]
4	9.91	89.7	4	11/25	(F) <u>SPEGRLYQVEY</u> (A)	1340.6487	0.0131	9.8	27399.6/6.35	HUMAN	<u>P60900</u>	Proteasome subunit alpha type-6 - Homo sapiens (Human) [MASS=27399]

A. The first and second options are suspicious by the high unmatched ions and few internal ions content detected in the spectra. When there are no basic residues, we have found generation of internal ions greater than 7 ions, in this example the spectra shows for the first and second sequence options only four internal ions and one internal ion, respectively. Then both sequences can be discarded.

1.YFVQTVEVDQL

14/25 (N) X F/V/0/T V E V D Q L (I) 1340.6738 9.0 68361.7/5.98 HUMAN 06TFL4 8477 Kelch-like protein 24 - Homo sapiens (Human) [MASS=68361]

102.056	120.078	136.078	157.093	182.084	201.129	229.120	293.113	422.714 ⁺²	457.753	466.244 ⁺²	498.750	501.774 ⁺²	515.774 ⁺²	520.224	536.794	566.797	571.295	580.297 ⁺²	673.369	801.430	803.395	931.470	1030.530	1159.551
0.06	0.02	0.10	1.22	6.75	0.72	3.59	13.89	1.51	1.62	15.35	0.73	1.79	8.84	0.80	1.43	0.92	1.76	17.71	0.83	0.89	3.41	6.03	8.96	1.07
0.36	0.12	0.55	6.87	38.11	4.09	20.26	78.41	8.54	9.16	86.63	4.12	10.08	49.88	4.54	8.09	5.19	9.94	100.00	4.67	5.03	19.23	34.04	50.61	6.03
1.00	1.00	1.50	-0.07	-0.38	0.75	0.75	-0.78	-0.09	-0.09	1.50	-0.04	-0.10	1.50	-0.05	-0.08	-0.05	0.75	0.50	-0.05	-0.05	1.50	1.50	1.50	0.50
E	F	a ₁			TV	EV				y ₈ ⁺²			y ₉ ⁺²				VEVDQ	y ₁₀ -H ₂ 0 ⁺²			y 7	y ₈	y ₉	y ₁₀ -H ₂ 0
5.8	-24.4	10.0			23.8	4.2				7.4			-2.8				39.1	-11.2			-24.7	-3.8	-11.7	-42.6
		1.50			EV-28																			
		Y			23.8																			
		10.0																						

2.YFVPPPYELSE

B. Third option gave one sequence with two basic residues close to N-terminal justifying the presence of abundant b-ions in the spectra but the high error in ppm for this b-type ions with majority of them over 20ppm (last line of report) forces to discard it:

14/25	(Y) a k/e l r e g f\V\e y (T)	1340.6850 0.0233	-17.4	124714.3/4.87 HUMAN	<u>060518</u>	<u>13621</u>	Ran-binding protein 6 - Homo sapiens (Human) [MASS=124713
-------	-------------------------------	------------------	-------	---------------------	---------------	--------------	---

102.0	6 120.078	136.078	157.093	182.084	201.129	229.120	293.113	422.714 ⁺²	457.753	466.244 ⁺²	498.750	501.774 ⁺²	515.774 ⁺²	520.224	536.794	566.797	571.295	580.297 ⁺²	673.369	801.430	803.395	931.470	1030.530	1159.551
0.0	6 0.02	0.10	1.22	6.75	0.72	3.59	13.89	1.51	1.62	15.35	0.73	1.79	8.84	0.80	1.43	0.92	1.76	17.71	0.83	0.89	3.41	6.03	8.96	1.07
0.3	6 0.12	0.55	6.87	38.11	4.09	20.26	78.41	8.54	9.16	86.63	4.12	10.08	49.88	4.54	8.09	5.19	9.94	100.00	4.67	5.03	19.23	34.04	50.61	6.03
1.0	D 1.00	1.00	-0.07	1.50	0.50	0.75	0.50	-0.09	-0.09	0.50	-0.04	0.50	0.50	-0.05	-0.08	-0.05	1.50	0.50	-0.05	-0.05	-0.19	0.50	0.50	-0.06
	E F	Y		У 1	VE- 28	VE	y ₂ ·H ₂ 0			b ₈ +2		a ₉ +2	b ₉ +2				у ++ ₉	b ₁₀ +2				b ₈	b _g	
5	B -24.4	10.0		14.7	23.8	4.2	-3.6			-21.0		-33.4	-28.5				25.7	-20.8				-32.3	-37.4	

C. Finally the fourth option seems comfortable by the presence of Arg closer to N-terminus and supporting the abundance in b-ions which principal fragments present error less than 20. Also two internal ions match with the

trend of few internal ions when Arg are inside the peptide. Then this sequence is accepted as valid and additionally it contains the motif characteristic of the HLA-B3501. The reason of the poor score for this peptide compared with the first three is focused on the difference in value assignment to b-ion and y-ions by the algorithm. If the values were equal for both ions in the calculations the score the fourth option would have been 17.5 units, one excellent score in the scale for this algorithm.

4.SPEGRLYQVEY

Escobar et al. SUPPORTING MATERIAL PART 2.

Utility of characteristic QTOF MS/MS fragmentation for MHC class I peptides.

A. QTOF spectra MHC class I peptides containing Histidine. y-ions, b-ions and internal ions C-terminus to His

(Please note the software design does not default display all ion signals in the follow spectra. Complete or specific count of ions may require additional manipulations.)

HLA-B4405

Weak y2, PHIH, LPH

Absence y1,b8, FDH

Weak y1, SH, ISH, IISH

Weak b5, ANH

HLA-B4402

Weak y2

Strong y2, weak b7

Absent y2, b6

Absence y2, b9

HLA B0702

HLA-B3501

Weak y2,b7, NIH

Weak y2,b7, DEIYH, PDEIYH, YH

Weak y2,b9

Moderate y4,b5, EEH, PEEH

Weak WLVDH

Absence y1, b11 and internal ions H to C terminus

Absence y3,b6, PDH

Absence y6,b3 and internal ions fragments H to C terminus

Weak INH

Weak b4

Weak b3,PH

Absence y9

Absence y8

Weak EH

Weak y2,b9. R presence

Very weak y1, NPVRVH. R presence

Absence y1, b10 or internal ions. R presence

Weak y6, b3. R presence

Very weak y1 and PSRVH. R presence

Weak ENH, EENH, SEENH

Very Weak y1, PEH, FPEH, SNFPEH

Weak y2, IENIIH, NIH, ENIH

Weak y2

Weak NH, VNH, PVNH

Weak y2, b7, NIH, GIENIH

Weak DH, IDH, LLDIDH

Weak H,AH, HI, GDH, HIDGDH

Weak PYKDH, NPYKDH

Weak y1, ANYIH, LANYIH

Weak b8++, GH, VGH, QNVGH

Weak TH, SNLTH, LSNLTH

Weak y2, GTH

Weak ENSWIH, IENSWIH

Weak DNIDH, VDNIDH

Weak AH

Weak ENSWIH, IENSWIH

Weak y2, NIH, ENIH, IENIH

Weak AH, IAH

Weak NH, VNH.

Weak NSWIH, ENSWIH, IENSWIH MSTag 1 A Е Ν w T т L Τ Т L s Τ L T Т н L L ш 2.56e+3 31.6% ¥7 IE У₆ н IENSW H .NŖ ▶₂† IH ENSIVIH NSWIH IEN NSW/b AIE 900 1000 1100 1200 MH+: 1183.6153 m/z: 592.3113 z: 2 0 100 200 B22_Shastri_ERAAP_KO_2ndExp_21.1329.1336.2.pkl 600 Mass (m/z) 700 800 300 400 500

HLA-B4402

H2-Dd

Weak PNH

Weak y4,b6

B. QTOF spectra peptides MHC class I without basic residues inside.

(Please note the software design does not default display all ion signals in the follow spectra. Complete or specific count of ions may require additional manipulations. When a spectrum is repeated to show additional signals both are emphasized in one box).

HLA-B4405

IFNEQS

700

AIFNEQS

800 900 MH+: 1026.5437 m/z: 513.7755 z: 2

ENEQS

600

ht

500 Mass (m/z)

100 200 B22_Shastri_ERAAP_K0_2ndExp_24.1538.1542.2.pkl

C. QTOF spectra MHC class I peptides containing Arginine.

(Please note the software design does not default display all ion signals in the follow spectra. Complete or specific count of ions may require additional manipulations. When a spectrum is repeated to show additional signals both are emphasized in one box).

D. QTOF spectra MHC class I peptides containing Lysine.

Not.e. By the software tool design not all the signals would be visible in the following spectra. A complete or specific count of them may require additional manipulations. When a spectrum is repeated to show additional signals both are emphasized in one box.

HLA-B4405

HLA-B0702

HLA-B3501

