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Table S1. Comparison of electronic energies (kcal mol'l) for Mechanism A, B and C at the
B3LYP and B3LYP* level (B3LYP geometries).

AE, B3LYP AE, B3LYP*

Mechanism A

Reacaia 0.0 0.0
TS1a 22.0 21.7
Interp 11.8 12.2
TS24 23.0 23.3
Alkanea 22.2 23.0
Mechanism B

Reacp_gip -1.6 2.2
TS1g 11.3 10.6
Interg 5.5 4.7
TS2g 6.6 5.9
Alkaneg -59 -5.1
Mechanism C

Reacp.ip -1.6 2.2
TS1c 14.7 13.4
Interc 14.0 12.8
TS2¢ 15.0 13.9

Alkanec -59 -5.1




S3

Table S2. Comparison of Gibbs free energies (B3LYP) for Mechanism A, B and C
with and without empirical dispersion corrections (DFT-D3).

A G298K,sol A G298K,sol,dis

Mechanism A

Reacagia 0.0 0.0
TS1a 19.2 23.0
Interp 12.0 15.3
TS24 24.0 274
Alkane 24.0 27.9
n°-Alkane 15.6 18.6
Mechanism B

Reacp.ip 6.6 5.7
TS1g 18.6 18.5
Interg 15.7 16.1
TS2p 16.2 16.9
Alkaneg 5.2 9.6
nz—AlkaneB 57 14
Mechanism C

ReacB_si,b 6.6 5.7
TS1c 22.7 22.0
Interc 22.6 21.8
TS2¢ 23.2 22.3
Alkaneg,c 52 9.6

n*-Alkaneg/c -5.7 -1.4
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Table S3. Computed enthalpies (kcal mol”, 298 K, including solvent correction) for
hydrogenation of substrate S2 (catalyst C1) with different substrate orientations (Mechanism
B)."

Coordination through si-face Coordination through re-face

1si,b 1si,a 2si,b 2si,a 1re,b Ire,a 2re,b 2re,a
Reac -0.3 -0.3 1.8 2.1 0.7 33 1.4 32
TS1 10.1 14.3 15.7 18.1 14.1 20.5 12.3 15.9
Inter 7.6 11.3 11.1 17.1 12.2 15.9 9.4 12.1
TS2 8.0 11.8 11.3 16.6 12.6 16.1 9.8 12.7
Alkane -0.2 -1.5 -0.1 -4.1 -0.1 -2.8 0.6 -4.9
Configuration  (R) (R) (R) (R) (S) (S) (S) (S)

* The energetic reference is the S2-coordinated dihydride reactant (one hydride above, one equatorial) + free H,.

Table S4 Comparison of Gibbs free energy barriers (B3LYP) for the hydrogenation of
substrate S2 (with different substrate orientations) with and without empirical
dispersion corrections (DFT-D3).

Coordination AG28Kssol AG298K sol.dis
1si,b 18.2 18.2
Isi,a 22.6 21.4
2si,b 23.6 24.2
2si,a 27.0 25.9
1re,b 23.2 21.6
Ire,a 28.9 29.3
2re,b 21.7 20.4

2re,a 24.1 244
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Table S5. Computed energies (kcal mol'l) for Mechanism Alyp and A2p (Figure S5 and S6,
Scheme 6, Substrate S3 and catalyst C1).

Reac o-m 0.0 0.0 0.0 0.0
TS1 A1-m 32.2 30.1 30.8 30.5
Inter a1-m 294 29.4 30.0 29.7
TS2 aA1-m 56.0 54.3 56.2 55.9
(R)—PI'Od Al/A2-IM 21.8 24.6 27.3 26.8
TS1 a2-m 53.6 50.5 52.2 513
Inter2 x> 13.1 15.3 14.6 15.9
TS2a2-m 24.2 24.2 26.8 26.1

* Includes effect of CH,Cl, solvent.

Table S6. Computed energies (kcal mol'l) for Mechanism Bly and Clypy (Figure S7 and S9,
Scheme 6, Substrate S3 and catalyst C1).”

Reacivp -1.6 8.3 1.1 8.4
TS1gim 29.5 40.0 27.9 37.4
InterBl/Cl_IM 23.2 35.2 23.3 31.8
TS2g1/c1-m 32.6 44.6 34.7 43.5
(S)-Prodgi/ci-m -9.9 4.8 -3.4 3.9
Reaciv,a -0.2 10.8 1.4 9.6
TS1cim 40.8 50.5 38.4 47.8

* The energetic reference is Reacy py + free Hy. ® Includes effect of CH,(ClI, solvent.

Table S7. Computed energies (kcal mol'l) for Mechanism B2 and C2py (Figure S8 and S10,
Scheme 6, substrate S3 and catalyst C1)."

AE AGZSK AJ2O8K-sol b AGBK-sol b

Reacma -0.2 10.8 1.4 9.6
TS1g2mm 50.5 60.0 48.1 57.5
Intergo.mvm 7.4 22.5 11.0 20.9
TS2p2.m 12.6 27.0 15.2 25.6
(8)-Prodgs.mm -13.6 1.9 1.2 -6.9
Reacmp -1.6 8.3 1.1 8.4
TS1com 41.4 51.6 40.0 49.9
Interco-m 8.8 23.1 11.5 21.3
TS2co-m 11.9 25.8 13.9 24.1

-16.2 -0.1 -9.5 -0.8

VA AN b) 1
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Table S8. Computed energies (kcal mol'l) for Mechanism Hlypy and H2py (Figure S11-S13,
Scheme 7, substrate S3 and catalyst C1).”

AE AG2K AFO8Ks0lb A ~298Ksol b
Reacmvp -1.6 8.3 1.1 8.4
TS THi/m2-M 24.6 31.7 23.9 30.8
Inter 1 Hi/m2-m 22.4 31.5 22.4 28.9
Inter2/m2-m 9.7 15.9 13.3 15.6
TS2h1-m 25.3 35.7 25.7 32.8
Inter3ui-m 4.7 20.2 7.6 17.9
TS2h1-m 11.3 25.3 15.5 23.2
(R)-Produi-m -0.9 13.7 6.4 13.0
TS2h2-m 17.0 29.2 16.7 25.4
(R)-Prodmuz-m 8.7 21.5 11.5 18.5
(R)-Produo-iv-n2 bound -16.9 -4.8 -14.4 -5.9

* The energetic reference is Reacy y + free Hs. ® Includes effect of CH,Cl, solvent.

Table S9. Computed energies (kcal mol'l) for Mechanism H3yy with H; as additional ligand
(Figure S14, Scheme 7, Substrate S3 and catalyst C1).

Electronic Energy AG™®K AHPBKsola A G298Ksola
Reacpvp 0.0 0.0 0.0 0.0
Interlys-vm2 5.7 12.0 8.9 13.0
TSz m2 8.0 13.6 10.2 15.2
Inter2py3.mv,12 -2.9 5.7 -0.1 4.5
TS2m3-m.12 8.5 194 9.6 17.7
Prodys.im -0.8 11.9 3.0 10.5
Produs.iv-bound H2 -18.1 -1.9 -13.4 4.5

# Includes solvent effects.

Table S10. Computed Energies (kcal mol™) for hydrogenation of substrate S3 (catalyst C1)
with different substrate orientations at TS2 (Mechanism Hyy,, H above, Figure S15).*

Orientation Electronic AG®®E AHPBESOIE AGEBKslb o figuration
Irepy 8.8 19.6 11.1 17.8 (S)
2repv 9.8 20.3 12.1 18.6 (S)
1sipy 8.5 194 10.8 17.7 (R)
2sipv 8.5 20.1 10.4 17.7 (R)

* Reacyy p (With free H,) as energetic reference, ®Includes solvent effect..
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Table S11. Computed Gibbs Free barriers (kcal mol™) for hydrogenation of substrate S3
(catalyst C1) with different substrate orientations at TS2 (Mechanism Hypy, CH,Cl, above,
Figure S15) with and with dispersion corrections (DFT-D3).”

Orientation AG?8K-solb AG?o8Kssoldis b Configuration
1rem 19.4 232 (S)
2rem 19.5 23.8 (S)
Isiny 17.7 212 (R)
2simv 18.1 2.6 (R)

* Reacpy,p (With free H,) as energetic reference, ®Includes solvent effect..
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A ReaCA_si’a B TS1A C InterA

Figure S1. Optimized geometries for Mechanism A (catalyst C1, substrate S1), A) Reaca g,
B) TS14, C) Intera, D) TS24, E) Alkanea, F) nz—AlkaneA.

A Reacg g}, B TS1g C Interg

D TSZB H E AIkaneB

Figure S2. Optimized geometries for Mechanism B (catalyst C1, substrate S1), A) Reacp.ib,
B) TSg, C) Interg, D) TS2g, E) Alkaneg, F) nZ—AlkaneB.
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Figure S3. Optimized geometries for Mechanism C (C1 and S1), A) TS1¢, B) Interc, C)

TS2c.
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Figure S4. Computed enthalpies (kcal mol'l, corrected for solvent effects) for Mechanism A,
B and C (catalyst C1 and substrate S1).

Figure SS5. Optimized geometries for Mechanism Al (catalyst C1, substrate S3). A) Reaca-
v, B) TS1a1am, C) Interaimv, D) TS241.m, E) (R)-Prodaj.mv.
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H H 9
H
Figure S6. Optimized geometries for Mechanism A2y (catalyst C1, substrate S3). A) TS1a,-
i, B) Interaz.im, C) TS242- .

Figure S7. Optimized geometries for Mechanism Blp (catalyst C1, substrate S3). A)
Reacyvp, B) TS1g1am, C) Intergiciomv, D) TS2g1/c1-m, E) (5)-Prodsicimv.

Figure S8. Optimized geometries for Mechanism B2y (catalyst C1, substrate S3). A) Reacg,.
m, B) TS1gomm, C) Intergarmv, D) TS2g2.1m, E) Prodga-m.



S11

Figure S9. Optimized geometries for Mechanism Clp (C1 and S3). A) Reaciva, B) TS1cimv
The remaining reaction occurs as for Mechanism B 1y (Figure S8).

Figure S10. Optimized geometries for Mechanism C2jp (catalyst C1, substrate S3). A)
ReaCcz_]M, B) TSlCZ-IM, C) Intel'cz_nv[, D) T82C2-IM, E) PI’Odcz_]M.

Figure S11. Optimized geometries for the first part of Mechanism Hlyp (catalyst Cl1,
substrate S3). A) Reacyi.m, B) TS1x1.mm, C) Interlypv.
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Figure S12. Optimized geometries for the second part of Mechanism Hlp (catalyst C1,
substrate S3). A) TS2y1.1m, B) Inter3y.pv, C) TS2hx1.m, D) Prody_mv.

H

Figure S13. Optimized geometries for the second part of Mechanism H2jp (catalyst Cl1,
substrate S3). A) TS2ms.1m, B) Prodma.mv, C) Prodmz-mi-u2 bound-

Figure S14. Optimized geometries for Mechanism H3p,; with H, as ligand (catalyst C1 and
substrate S3). A) ReaCH3_MH2, B) Inter1H3_MH2, (0] TSIH3_]M,H2, D) Inter2u3.mv.m12, E) TS2153-1m,
w2, F) (R)-Produz v, n2 G) (R)-Produs mv-vound Ho.



Figure S15. Optimized transition states for hydride transfer to the free iminium with CH,Cl,
(A-D) or H, (E-H) as apical ligand. A) 1repn (CHyCly), B) 2repy (CH)Clp), C) 1sipy
(CH,Cly), D) 2sitv (CH,Cl), E) Iremm (Hz), F) 2rem (Hz), G) 1sim (Hz), H) 2siv (Ho).



