SUPPORTING INFORMATION TO

On the Mechanism of Iridium-Catalyzed Asymmetric Hydrogenation of Imines and Alkenes: A Theoretical Study

Kathrin H. Hopmann^{a,b,*}, Annette Bayer^a

^a Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
^b Centre for Theoretical and Computational Chemistry, University of Tromsø, N-9037
Tromsø, Norway

- Table S1 Computed energies for Mechanism A, B and C with B3LYP*.
- Table S2 Comparison of barriers for Mechanism A, B and C with dispersion corrections.
- Table S3 Computed enthalpies for hydrogenation of S2 with different substrate orientations
- Table S4 Computed barriers for hydrogenation of S2 with dispersion corrections.
- **Table S5** Computed energies for Mechanism A1_{IM} and A2_{IM}
- Table S6 Computed energies for Mechanism B1_{IM} and C1_{IM}
- Table S7 Computed energies for Mechanism B2_{IM} and C2_{IM}
- Table S8 Computed energies for Mechanism H1_{IM} and H2_{IM}
- Table S9 Computed energies for Mechanism H3_{IM} with H₂ as apical ligand
- Table S10 Computed energies for hydrogenation of S3 with different substrate orientations
- Table S11 Computed energies for hydrogenation of S3 with dispersion corrections
- Figure S1 Optimized geometries for Mechanism A
- Figure S2 Optimized geometries for Mechanism B
- Figure S3 Optimized geometries for Mechanism C
- Figure S4 Computed enthalpies for Mechanism A, B and C
- Figure S5 Optimized geometries for Mechanism A1_{IM}
- **Figure S6** Optimized geometries for Mechanism A2_{IM}
- Figure S7 Optimized geometries for Mechanism B1_{IM}
- Figure S8 Optimized geometries for Mechanism B2_{IM}
- Figure S9 Optimized geometries for Mechanism C1_{IM}
- Figure S10 Optimized geometries for Mechanism C2_{IM}
- Figure S11 Optimized geometries for the first part of Mechanism H1_{IM}
- Figure S12 Optimized geometries for the second part of Mechanism H1_{IM}
- Figure S13 Optimized geometries for the second part of Mechanism H2_{IM}
- Figure S14 Optimized geometries for Mechanism H3_{IM} with H₂ as apical ligand
- Figure S15 Optimized enantioselective transition states with CH₂Cl₂ or H₂ as apical ligand

^{*} Correspondence email: kathrin.hopmann@uit.no

Table S1. Comparison of electronic energies (kcal mol⁻¹) for Mechanism A, B and C at the B3LYP and B3LYP* level (B3LYP geometries).

	ΔΕ, Β3LΥΡ	ΔE, B3LYP*	
Mechanism A			
$Reac_{A-si,a}$	0.0	0.0	
$TS1_A$	22.0	21.7	
$Inter_A$	11.8	12.2	
$TS2_A$	23.0	23.3	
Alkane _A	22.2	23.0	
Mechanism B			
$Reac_{B-si,b}$	-1.6	-2.2	
$TS1_B$	11.3	10.6	
Inter _B	5.5	4.7	
$TS2_B$	6.6	5.9	
Alkane _B	-5.9	-5.1	
Mechanism C			
$Reac_{B-si,b}$	-1.6	-2.2	
$TS1_C$	14.7	13.4	
$Inter_{C}$	14.0	12.8	
$TS2_C$	15.0	13.9	
Alkane _C	-5.9	-5.1	

Table S2. Comparison of Gibbs free energies (B3LYP) for Mechanism A, B and C with and without empirical dispersion corrections (DFT-D3).

	$\Delta G^{298K, sol}$	$\Delta G^{298K, sol, dis}$	
Mechanism A			
Reac _{A-si,a}	0.0	0.0	
$TS1_A$	19.2	23.0	
Inter _A	12.0	15.3	
$TS2_A$	24.0	27.4	
Alkane _A	24.0	27.9	
η^2 -Alkane _A	15.6	18.6	
Mechanism B			
$Reac_{B-si,b}$	6.6	5.7	
$TS1_B$	18.6	18.5	
Inter _B	15.7	16.1	
TS2 _B	16.2	16.9	
Alkane _B	5.2	9.6	
η^2 -Alkane _B	-5.7	-1.4	
Mechanism C			
$Reac_{B-si,b}$	6.6	5.7	
$TS1_C$	22.7	22.0	
$Inter_{C}$	22.6	21.8	
$TS2_C$	23.2	22.3	
Alkane _{B/C}	5.2	9.6	
η^2 -Alkane _{B/C}	-5.7	-1.4	

Table S3. Computed enthalpies (kcal mol⁻¹, 298 K, including solvent correction) for hydrogenation of substrate **S2** (catalyst **C1**) with different substrate orientations (Mechanism B).^a

	Coordination through si-face			Coordination through re-face				
	1si,b	1si,a	2si,b	2si,a	1re,b	1re,a	2re,b	2re,a
Reac	-0.3	-0.3	1.8	2.1	0.7	3.3	1.4	3.2
TS1	10.1	14.3	15.7	18.1	14.1	20.5	12.3	15.9
Inter	7.6	11.3	11.1	17.1	12.2	15.9	9.4	12.1
TS2	8.0	11.8	11.3	16.6	12.6	16.1	9.8	12.7
Alkane	-0.2	-1.5	-0.1	-4.1	-0.1	-2.8	0.6	-4.9
Configuration	(R)	(R)	(R)	(R)	(S)	(S)	(S)	(S)

^a The energetic reference is the **S2**-coordinated dihydride reactant (one hydride above, one equatorial) + free H₂.

Table S4 Comparison of Gibbs free energy barriers (B3LYP) for the hydrogenation of substrate **S2** (with different substrate orientations) with and without empirical dispersion corrections (DFT-D3).

Coordination	$\Delta G^{298 ext{K,sol}}$	$\Delta extbf{G}^{298 ext{K,sol,dis}}$	
1si,b	18.2	18.2	
1si,a	22.6	21.4	
2si,b	23.6	24.2	
2si,a	27.0	25.9	
1re,b	23.2	21.6	
1re,a	28.9	29.3	
2re,b	21.7	20.4	
2re,a	24.1	24.4	

Table S5. Computed energies (kcal mol⁻¹) for Mechanism A1_{IM} and A2_{IM} (Figure S5 and S6,

Scheme 6, Substrate S3 and catalyst C1).

	ΔΕ	$\Delta G^{298 ext{K}}$	$\Delta H^{298\mathrm{K,sol}}$	$\Delta G^{298 ext{K,sol}}$
Reac A-IM	0.0	0.0	0.0	0.0
TS1 A1-IM	32.2	30.1	30.8	30.5
Inter A1-IM	29.4	29.4	30.0	29.7
$TS2_{A1-IM}$	56.0	54.3	56.2	55.9
(R) -Prod $_{A1/A2\text{-IM}}$	21.8	24.6	27.3	26.8
TS1 _{A2-IM}	53.6	50.5	52.2	51.3
Inter2 _{A2-IM}	13.1	15.3	14.6	15.9
TS2 _{A2-IM}	24.2	24.2	26.8	26.1

^a Includes effect of CH₂Cl₂ solvent.

Table S6. Computed energies (kcal mol⁻¹) for Mechanism B1_{IM} and C1_{IM} (Figure S7 and S9, Scheme 6, Substrate **S3** and catalyst **C1**).

	ΔΕ	$\Delta G^{298 ext{K}}$	$\Delta H^{298 ext{K,sol b}}$	$\Delta G^{298 ext{K,sol b}}$
Reac _{IM,b}	-1.6	8.3	1.1	8.4
$TS1_{B1-IM}$	29.5	40.0	27.9	37.4
Inter _{B1/C1-IM}	23.2	35.2	23.3	31.8
$TS2_{B1/C1\text{-}IM}$	32.6	44.6	34.7	43.5
(S)-Prod _{B1/C1-IM}	-9.9	4.8	-3.4	3.9
Reac _{IM,a}	-0.2	10.8	1.4	9.6
$TS1_{C1-IM}$	40.8	50.5	38.4	47.8

^a The energetic reference is Reac_{A-IM} + free H₂. ^b Includes effect of CH₂Cl₂ solvent.

Table S7. Computed energies (kcal mol⁻¹) for Mechanism B2_{IM} and C2_{IM} (Figure S8 and S10, Scheme 6, substrate **S3** and catalyst **C1**).^a

	ΔΕ	$\Delta G^{298 ext{K}}$	$\Delta H^{298 ext{K,sol b}}$	$\Delta G^{298 ext{K,sol b}}$
Reac _{IM.a}	-0.2	10.8	1.4	9.6
$TS1_{B2-IM}$	50.5	60.0	48.1	57.5
Inter _{B2-IM}	7.4	22.5	11.0	20.9
$TS2_{B2-IM}$	12.6	27.0	15.2	25.6
(S)-Prod _{B2-IM}	-13.6	1.9	1.2	-6.9
Reac _{IM,b}	-1.6	8.3	1.1	8.4
$TS1_{C2-IM}$	41.4	51.6	40.0	49.9
Inter _{C2-IM}	8.8	23.1	11.5	21.3
$TS2_{C2-IM}$	11.9	25.8	13.9	24.1
(S)-Prod _{C2-IM}	-16.2	-0.1	-9.5	-0.8

^a The energetic reference is Resc. ... ± free H. ^b Includes effect of CH.Cl. solvent

Table S8. Computed energies (kcal mol^{-1}) for Mechanism $H1_{IM}$ and $H2_{IM}$ (Figure S11-S13, Scheme 7, substrate **S3** and catalyst **C1**).

	ΔΕ	$\Delta G^{298 ext{K}}$	$\Delta H^{298 \mathrm{K,sol} \mathrm{b}}$	$\Delta G^{298 ext{K,sol b}}$
$Reac_{IM,b}$	-1.6	8.3	1.1	8.4
$TS1_{H1/H2-IM}$	24.6	31.7	23.9	30.8
Inter1 _{H1/H2-IM}	22.4	31.5	22.4	28.9
Inter2 _{H1/H2-IM}	9.7	15.9	13.3	15.6
TS2 _{H1-IM}	25.3	35.7	25.7	32.8
Inter3 _{H1-IM}	4.7	20.2	7.6	17.9
$TS2_{H1-IM}$	11.3	25.3	15.5	23.2
(R)-Prod _{H1-IM}	-0.9	13.7	6.4	13.0
TS2 _{H2-IM}	17.0	29.2	16.7	25.4
(R)-Prod _{H2-IM}	8.7	21.5	11.5	18.5
(R)-Prod _{H2-IM-H2 bound}	-16.9	-4.8	-14.4	-5.9

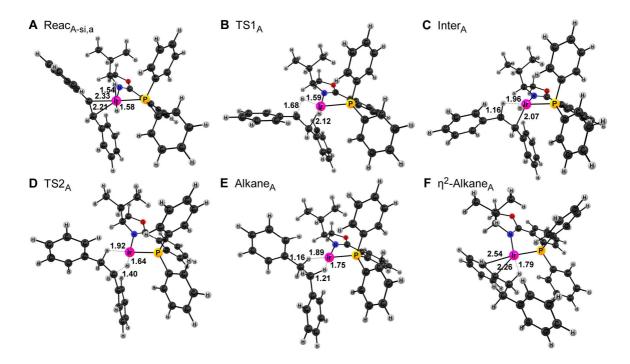
^a The energetic reference is Reac_{A-IM} + free H₂. ^b Includes effect of CH₂Cl₂ solvent.

Table S9. Computed energies (kcal mol^{-1}) for Mechanism H3_{IM} with H_2 as additional ligand (Figure S14, Scheme 7, Substrate S3 and catalyst C1).

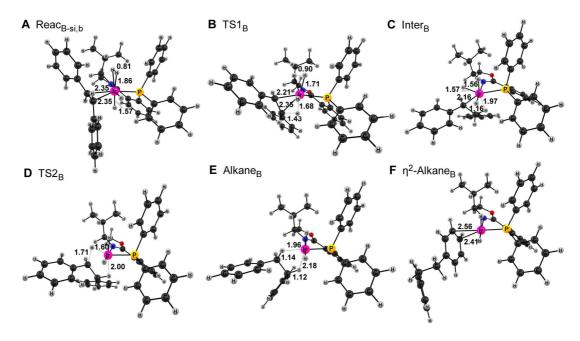
	Electronic Energy	$\Delta G^{298 ext{K}}$	$\Delta H^{298 ext{K,sol a}}$	$\Delta G^{298 ext{K,sol a}}$
$Reac_{IM,b}$	0.0	0.0	0.0	0.0
Inter1 _{H3-IM,H2}	5.7	12.0	8.9	13.0
$TS1_{H3-IM,H2}$	8.0	13.6	10.2	15.2
$Inter2_{H3\text{-}IM,H2}$	-2.9	5.7	-0.1	4.5
$TS2_{H3\text{-}IM,H2}$	8.5	19.4	9.6	17.7
$Prod_{H3-IM}$	-0.8	11.9	3.0	10.5
Prod _{H3-IM-bound,H2}	-18.1	-1.9	-13.4	-4.5

^a Includes solvent effects.

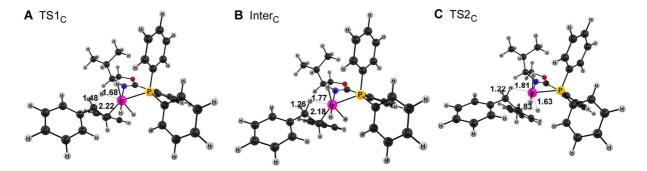
Table S10. Computed Energies (kcal mol⁻¹) for hydrogenation of substrate **S3** (catalyst **C1**) with different substrate orientations at TS2 (Mechanism H_{IM} , H_2 above, Figure S15).^a

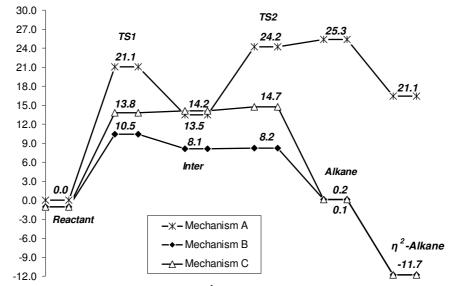

Orientation	Electronic	$\Delta G^{298 ext{K}}$	$\Delta H^{298 ext{K,sol b}}$	$\Delta G^{298 ext{K,sol b}}$	Configuration
1re _{IM}	8.8	19.6	11.1	17.8	<i>(S)</i>
$2re_{IM}$	9.8	20.3	12.1	18.6	<i>(S)</i>
$1si_{IM}$	8.5	19.4	10.8	17.7	(R)
$2si_{IM}$	8.5	20.1	10.4	17.7	(R)

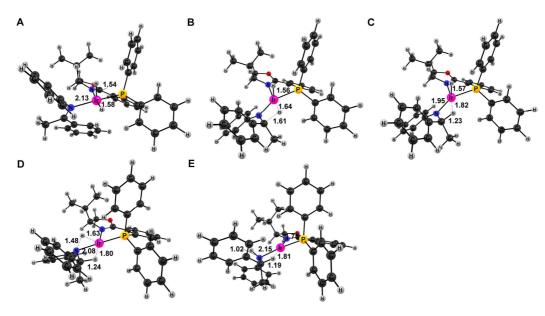
^a Reac_{IM.,b} (with free H₂) as energetic reference, ^bIncludes solvent effect..

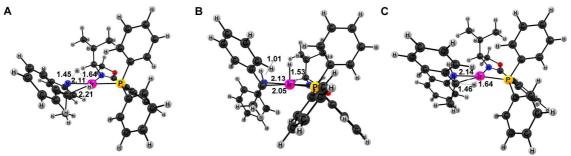

Table S11. Computed Gibbs Free barriers (kcal mol^{-1}) for hydrogenation of substrate **S3** (catalyst **C1**) with different substrate orientations at TS2 (Mechanism H_{IM} , CH_2Cl_2 above, Figure S15) with and with dispersion corrections (DFT-D3).

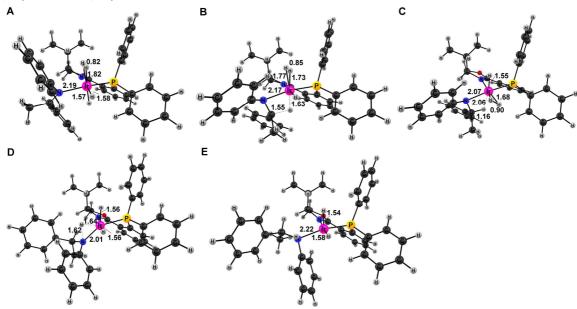
Orientation	$\Delta G^{298 ext{K,sol b}}$	$\Delta G^{298 ext{K,sol,dis b}}$	Configuration
$1re_{IM}$	19.4	23.2	(S)
$2re_{IM}$	19.5	23.8	(S)
$1si_{IM}$	17.7	21.2	(R)
$2si_{IM}$	18.1	22.6	(R)

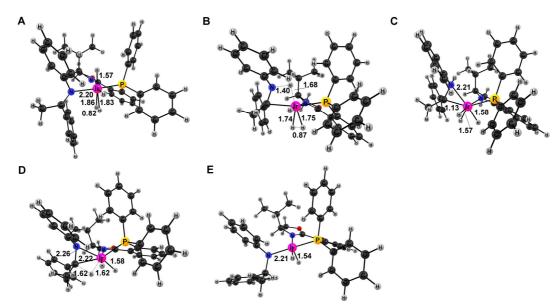

^a Reac_{IM,,b} (with free H₂) as energetic reference, ^bIncludes solvent effect..

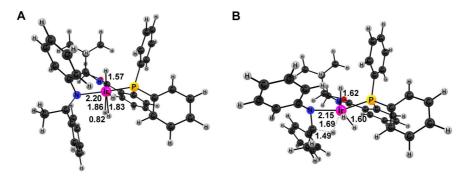

Figure S1. Optimized geometries for Mechanism A (catalyst **C1**, substrate **S1**), **A**) Reac_{A-si,a}, **B**) TS1_A, **C**) Inter_A, **D**) TS2_A, **E**) Alkane_A, **F**) η^2 -Alkane_A.

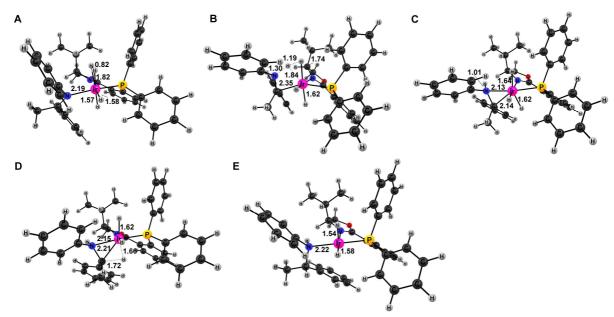

Figure S2. Optimized geometries for Mechanism B (catalyst **C1**, substrate **S1**), **A**) Reac_{B-si,b}, **B**) TS_B, **C**) Inter_B, **D**) TS2_B, **E**) Alkane_B, **F**) η^2 -Alkane_B.

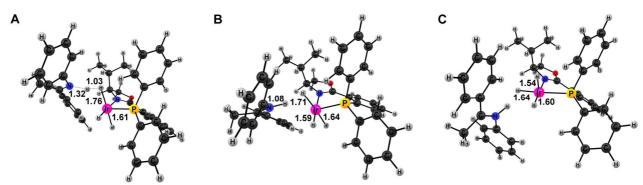

Figure S3. Optimized geometries for Mechanism C (C1 and S1), A) TS1_C, B) Inter_C, C) TS2_C.

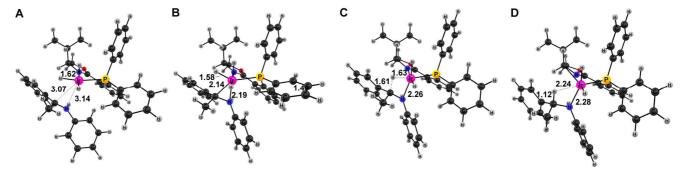

Figure S4. Computed enthalpies (kcal mol⁻¹, corrected for solvent effects) for Mechanism A, B and C (catalyst **C1** and substrate **S1**).

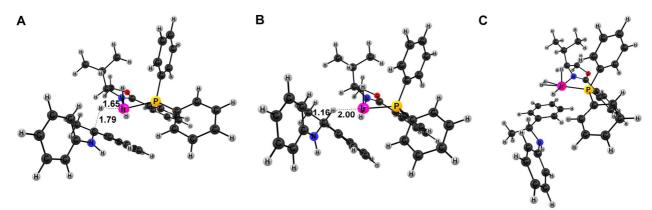

Figure S5. Optimized geometries for Mechanism A1_{IM} (catalyst **C1**, substrate **S3**). **A)** Reac_{A-IM}, **B)** TS1_{A1-IM}, **C)** Inter_{A1-IM}, **D)** TS2_{A1-IM}, **E)** (*R*)-Prod_{A1-IM}.

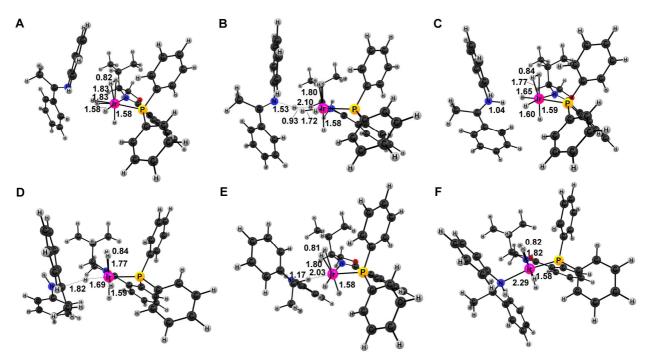

Figure S6. Optimized geometries for Mechanism A2_{IM} (catalyst C1, substrate S3). A) TS1_{A2-IM}, B) Inter_{A2-IM}, C) TS2_{A2-IM}.


Figure S7. Optimized geometries for Mechanism $B1_{IM}$ (catalyst **C1**, substrate **S3**). **A)** Reac_{IM,b}, **B)** TS1_{B1-IM}, **C)** Inter_{B1/C1-IM}, **D)** TS2_{B1/C1-IM}, **E)** (S)-Prod_{B1/C1-IM}.


Figure S8. Optimized geometries for Mechanism $B2_{IM}$ (catalyst C1, substrate S3). A) Reac $_{B2-IM}$, B) $TS1_{B2-IM}$, C) Inter $_{B2-IM}$, D) $TS2_{B2-IM}$, E) $Prod_{B2-IM}$.


Figure S9. Optimized geometries for Mechanism $C1_{IM}$ (C1 and S3). A) Reac_{IM,a}, B) $TS1_{C1-IM}$. The remaining reaction occurs as for Mechanism $B1_{IM}$ (Figure S8).


Figure S10. Optimized geometries for Mechanism $C2_{IM}$ (catalyst **C1**, substrate **S3**). **A)** Reac_{C2-IM}, **B)** TS1_{C2-IM}, **C)** Inter_{C2-IM}, **D)** TS2_{C2-IM}, **E)** Prod_{C2-IM}.


Figure S11. Optimized geometries for the first part of Mechanism $H1_{IM}$ (catalyst C1, substrate S3). A) Reac_{H1-IM}, B) TS1_{H1-IM}, C) Inter1_{H1-IM}.

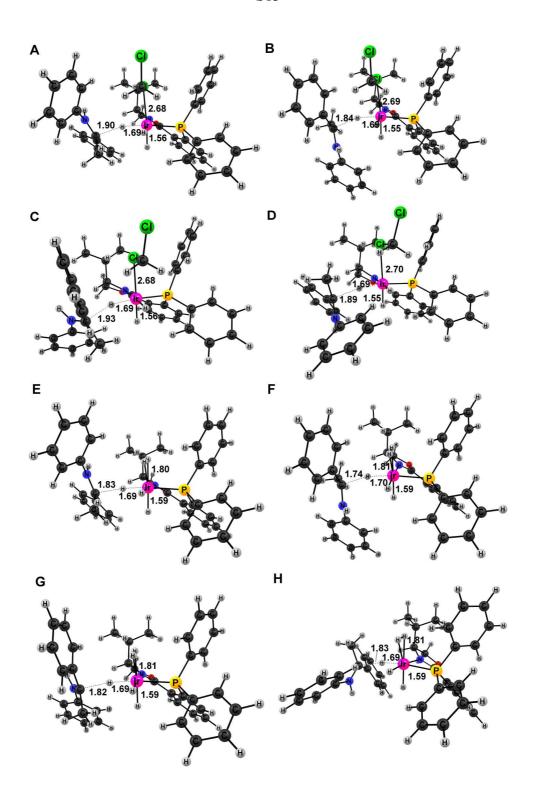

Figure S12. Optimized geometries for the second part of Mechanism H1_{IM} (catalyst **C1**, substrate **S3**). **A)** TS2_{H1-IM}, **B)** Inter3_{H1-IM}, **C)** TS2_{H1-IM}, **D)** Prod_{H1-IM}.

Figure S13. Optimized geometries for the second part of Mechanism H2_{IM} (catalyst **C1**, substrate **S3**). **A)** TS2_{H2-IM}, **B)** Prod_{H2-IM}, **C)** Prod_{H2-IM-H2 bound}.

Figure S14. Optimized geometries for Mechanism $H3_{IM}$ with H_2 as ligand (catalyst **C1** and substrate **S3**). **A**) Reac_{H3-IM,H2}, **B**) Inter1_{H3-IM,H2}, **C**) TS1_{H3-IM,H2}, **D**) Inter2_{H3-IM},H2</sub>, **E**) TS2_{H3-IM}, H2, **F**) (R)-Prod_{H3-IM},H2 **G**) (R)-Prod_{H3-IM}-bound,H2.

Figure S15. Optimized transition states for hydride transfer to the free iminium with CH_2Cl_2 (A-D) or H_2 (E-H) as apical ligand. A) $\mathbf{1re_{IM}}$ (CH_2Cl_2), B) $\mathbf{2re_{IM}}$ (CH_2Cl_2), C) $\mathbf{1si_{IM}}$ (CH_2Cl_2), D) $\mathbf{2si_{IM}}$ (CH_2Cl_2), E) $\mathbf{1re_{IM}}$ (H_2), F) $\mathbf{2re_{IM}}$ (H_2), G) $\mathbf{1si_{IM}}$ (H_2), H) $\mathbf{2si_{IM}}$ (H_2).