SUPPORTING INFORMATION TO ## On the Mechanism of Iridium-Catalyzed Asymmetric Hydrogenation of Imines and Alkenes: A Theoretical Study ## Kathrin H. Hopmann^{a,b,*}, Annette Bayer^a ^a Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway ^b Centre for Theoretical and Computational Chemistry, University of Tromsø, N-9037 Tromsø, Norway - Table S1 Computed energies for Mechanism A, B and C with B3LYP*. - Table S2 Comparison of barriers for Mechanism A, B and C with dispersion corrections. - Table S3 Computed enthalpies for hydrogenation of S2 with different substrate orientations - Table S4 Computed barriers for hydrogenation of S2 with dispersion corrections. - **Table S5** Computed energies for Mechanism A1_{IM} and A2_{IM} - Table S6 Computed energies for Mechanism B1_{IM} and C1_{IM} - Table S7 Computed energies for Mechanism B2_{IM} and C2_{IM} - Table S8 Computed energies for Mechanism H1_{IM} and H2_{IM} - Table S9 Computed energies for Mechanism H3_{IM} with H₂ as apical ligand - Table S10 Computed energies for hydrogenation of S3 with different substrate orientations - Table S11 Computed energies for hydrogenation of S3 with dispersion corrections - Figure S1 Optimized geometries for Mechanism A - Figure S2 Optimized geometries for Mechanism B - Figure S3 Optimized geometries for Mechanism C - Figure S4 Computed enthalpies for Mechanism A, B and C - Figure S5 Optimized geometries for Mechanism A1_{IM} - **Figure S6** Optimized geometries for Mechanism A2_{IM} - Figure S7 Optimized geometries for Mechanism B1_{IM} - Figure S8 Optimized geometries for Mechanism B2_{IM} - Figure S9 Optimized geometries for Mechanism C1_{IM} - Figure S10 Optimized geometries for Mechanism C2_{IM} - Figure S11 Optimized geometries for the first part of Mechanism H1_{IM} - Figure S12 Optimized geometries for the second part of Mechanism H1_{IM} - Figure S13 Optimized geometries for the second part of Mechanism H2_{IM} - Figure S14 Optimized geometries for Mechanism H3_{IM} with H₂ as apical ligand - Figure S15 Optimized enantioselective transition states with CH₂Cl₂ or H₂ as apical ligand ^{*} Correspondence email: kathrin.hopmann@uit.no **Table S1.** Comparison of electronic energies (kcal mol⁻¹) for Mechanism A, B and C at the B3LYP and B3LYP* level (B3LYP geometries). | | ΔΕ, Β3LΥΡ | ΔE, B3LYP* | | |---------------------|-----------|------------|--| | Mechanism A | | | | | $Reac_{A-si,a}$ | 0.0 | 0.0 | | | $TS1_A$ | 22.0 | 21.7 | | | $Inter_A$ | 11.8 | 12.2 | | | $TS2_A$ | 23.0 | 23.3 | | | Alkane _A | 22.2 | 23.0 | | | Mechanism B | | | | | $Reac_{B-si,b}$ | -1.6 | -2.2 | | | $TS1_B$ | 11.3 | 10.6 | | | Inter _B | 5.5 | 4.7 | | | $TS2_B$ | 6.6 | 5.9 | | | Alkane _B | -5.9 | -5.1 | | | Mechanism C | | | | | $Reac_{B-si,b}$ | -1.6 | -2.2 | | | $TS1_C$ | 14.7 | 13.4 | | | $Inter_{C}$ | 14.0 | 12.8 | | | $TS2_C$ | 15.0 | 13.9 | | | Alkane _C | -5.9 | -5.1 | | **Table S2.** Comparison of Gibbs free energies (B3LYP) for Mechanism A, B and C with and without empirical dispersion corrections (DFT-D3). | | $\Delta G^{298K, sol}$ | $\Delta G^{298K, sol, dis}$ | | |---------------------------------|------------------------|-----------------------------|--| | Mechanism A | | | | | Reac _{A-si,a} | 0.0 | 0.0 | | | $TS1_A$ | 19.2 | 23.0 | | | Inter _A | 12.0 | 15.3 | | | $TS2_A$ | 24.0 | 27.4 | | | Alkane _A | 24.0 | 27.9 | | | η^2 -Alkane _A | 15.6 | 18.6 | | | Mechanism B | | | | | $Reac_{B-si,b}$ | 6.6 | 5.7 | | | $TS1_B$ | 18.6 | 18.5 | | | Inter _B | 15.7 | 16.1 | | | TS2 _B | 16.2 | 16.9 | | | Alkane _B | 5.2 | 9.6 | | | η^2 -Alkane _B | -5.7 | -1.4 | | | Mechanism C | | | | | $Reac_{B-si,b}$ | 6.6 | 5.7 | | | $TS1_C$ | 22.7 | 22.0 | | | $Inter_{C}$ | 22.6 | 21.8 | | | $TS2_C$ | 23.2 | 22.3 | | | Alkane _{B/C} | 5.2 | 9.6 | | | η^2 -Alkane _{B/C} | -5.7 | -1.4 | | **Table S3.** Computed enthalpies (kcal mol⁻¹, 298 K, including solvent correction) for hydrogenation of substrate **S2** (catalyst **C1**) with different substrate orientations (Mechanism B).^a | | Coordination through si-face | | | Coordination through re-face | | | | | |---------------|------------------------------|-------|-------|------------------------------|-------|-------|-------|-------| | | 1si,b | 1si,a | 2si,b | 2si,a | 1re,b | 1re,a | 2re,b | 2re,a | | Reac | -0.3 | -0.3 | 1.8 | 2.1 | 0.7 | 3.3 | 1.4 | 3.2 | | TS1 | 10.1 | 14.3 | 15.7 | 18.1 | 14.1 | 20.5 | 12.3 | 15.9 | | Inter | 7.6 | 11.3 | 11.1 | 17.1 | 12.2 | 15.9 | 9.4 | 12.1 | | TS2 | 8.0 | 11.8 | 11.3 | 16.6 | 12.6 | 16.1 | 9.8 | 12.7 | | Alkane | -0.2 | -1.5 | -0.1 | -4.1 | -0.1 | -2.8 | 0.6 | -4.9 | | Configuration | (R) | (R) | (R) | (R) | (S) | (S) | (S) | (S) | ^a The energetic reference is the **S2**-coordinated dihydride reactant (one hydride above, one equatorial) + free H₂. **Table S4** Comparison of Gibbs free energy barriers (B3LYP) for the hydrogenation of substrate **S2** (with different substrate orientations) with and without empirical dispersion corrections (DFT-D3). | Coordination | $\Delta G^{298 ext{K,sol}}$ | $\Delta extbf{G}^{298 ext{K,sol,dis}}$ | | |--------------|------------------------------|---|--| | 1si,b | 18.2 | 18.2 | | | 1si,a | 22.6 | 21.4 | | | 2si,b | 23.6 | 24.2 | | | 2si,a | 27.0 | 25.9 | | | 1re,b | 23.2 | 21.6 | | | 1re,a | 28.9 | 29.3 | | | 2re,b | 21.7 | 20.4 | | | 2re,a | 24.1 | 24.4 | | Table S5. Computed energies (kcal mol⁻¹) for Mechanism A1_{IM} and A2_{IM} (Figure S5 and S6, Scheme 6, Substrate S3 and catalyst C1). | | ΔΕ | $\Delta G^{298 ext{K}}$ | $\Delta H^{298\mathrm{K,sol}}$ | $\Delta G^{298 ext{K,sol}}$ | |----------------------------------|------|-------------------------|--------------------------------|-----------------------------| | Reac A-IM | 0.0 | 0.0 | 0.0 | 0.0 | | TS1 A1-IM | 32.2 | 30.1 | 30.8 | 30.5 | | Inter A1-IM | 29.4 | 29.4 | 30.0 | 29.7 | | $TS2_{A1-IM}$ | 56.0 | 54.3 | 56.2 | 55.9 | | (R) -Prod $_{A1/A2\text{-IM}}$ | 21.8 | 24.6 | 27.3 | 26.8 | | TS1 _{A2-IM} | 53.6 | 50.5 | 52.2 | 51.3 | | Inter2 _{A2-IM} | 13.1 | 15.3 | 14.6 | 15.9 | | TS2 _{A2-IM} | 24.2 | 24.2 | 26.8 | 26.1 | ^a Includes effect of CH₂Cl₂ solvent. **Table S6.** Computed energies (kcal mol⁻¹) for Mechanism B1_{IM} and C1_{IM} (Figure S7 and S9, Scheme 6, Substrate **S3** and catalyst **C1**). | | ΔΕ | $\Delta G^{298 ext{K}}$ | $\Delta H^{298 ext{K,sol b}}$ | $\Delta G^{298 ext{K,sol b}}$ | |------------------------------|------|-------------------------|-------------------------------|-------------------------------| | Reac _{IM,b} | -1.6 | 8.3 | 1.1 | 8.4 | | $TS1_{B1-IM}$ | 29.5 | 40.0 | 27.9 | 37.4 | | Inter _{B1/C1-IM} | 23.2 | 35.2 | 23.3 | 31.8 | | $TS2_{B1/C1\text{-}IM}$ | 32.6 | 44.6 | 34.7 | 43.5 | | (S)-Prod _{B1/C1-IM} | -9.9 | 4.8 | -3.4 | 3.9 | | Reac _{IM,a} | -0.2 | 10.8 | 1.4 | 9.6 | | $TS1_{C1-IM}$ | 40.8 | 50.5 | 38.4 | 47.8 | ^a The energetic reference is Reac_{A-IM} + free H₂. ^b Includes effect of CH₂Cl₂ solvent. **Table S7.** Computed energies (kcal mol⁻¹) for Mechanism B2_{IM} and C2_{IM} (Figure S8 and S10, Scheme 6, substrate **S3** and catalyst **C1**).^a | | ΔΕ | $\Delta G^{298 ext{K}}$ | $\Delta H^{298 ext{K,sol b}}$ | $\Delta G^{298 ext{K,sol b}}$ | |---------------------------|-------|-------------------------|-------------------------------|-------------------------------| | Reac _{IM.a} | -0.2 | 10.8 | 1.4 | 9.6 | | $TS1_{B2-IM}$ | 50.5 | 60.0 | 48.1 | 57.5 | | Inter _{B2-IM} | 7.4 | 22.5 | 11.0 | 20.9 | | $TS2_{B2-IM}$ | 12.6 | 27.0 | 15.2 | 25.6 | | (S)-Prod _{B2-IM} | -13.6 | 1.9 | 1.2 | -6.9 | | Reac _{IM,b} | -1.6 | 8.3 | 1.1 | 8.4 | | $TS1_{C2-IM}$ | 41.4 | 51.6 | 40.0 | 49.9 | | Inter _{C2-IM} | 8.8 | 23.1 | 11.5 | 21.3 | | $TS2_{C2-IM}$ | 11.9 | 25.8 | 13.9 | 24.1 | | (S)-Prod _{C2-IM} | -16.2 | -0.1 | -9.5 | -0.8 | ^a The energetic reference is Resc. ... ± free H. ^b Includes effect of CH.Cl. solvent **Table S8.** Computed energies (kcal mol^{-1}) for Mechanism $H1_{IM}$ and $H2_{IM}$ (Figure S11-S13, Scheme 7, substrate **S3** and catalyst **C1**). | | ΔΕ | $\Delta G^{298 ext{K}}$ | $\Delta H^{298 \mathrm{K,sol} \mathrm{b}}$ | $\Delta G^{298 ext{K,sol b}}$ | |------------------------------------|-------|-------------------------|---|-------------------------------| | $Reac_{IM,b}$ | -1.6 | 8.3 | 1.1 | 8.4 | | $TS1_{H1/H2-IM}$ | 24.6 | 31.7 | 23.9 | 30.8 | | Inter1 _{H1/H2-IM} | 22.4 | 31.5 | 22.4 | 28.9 | | Inter2 _{H1/H2-IM} | 9.7 | 15.9 | 13.3 | 15.6 | | TS2 _{H1-IM} | 25.3 | 35.7 | 25.7 | 32.8 | | Inter3 _{H1-IM} | 4.7 | 20.2 | 7.6 | 17.9 | | $TS2_{H1-IM}$ | 11.3 | 25.3 | 15.5 | 23.2 | | (R)-Prod _{H1-IM} | -0.9 | 13.7 | 6.4 | 13.0 | | TS2 _{H2-IM} | 17.0 | 29.2 | 16.7 | 25.4 | | (R)-Prod _{H2-IM} | 8.7 | 21.5 | 11.5 | 18.5 | | (R)-Prod _{H2-IM-H2 bound} | -16.9 | -4.8 | -14.4 | -5.9 | ^a The energetic reference is Reac_{A-IM} + free H₂. ^b Includes effect of CH₂Cl₂ solvent. **Table S9.** Computed energies (kcal mol^{-1}) for Mechanism H3_{IM} with H_2 as additional ligand (Figure S14, Scheme 7, Substrate S3 and catalyst C1). | | Electronic Energy | $\Delta G^{298 ext{K}}$ | $\Delta H^{298 ext{K,sol a}}$ | $\Delta G^{298 ext{K,sol a}}$ | |--------------------------------|-------------------|-------------------------|-------------------------------|-------------------------------| | $Reac_{IM,b}$ | 0.0 | 0.0 | 0.0 | 0.0 | | Inter1 _{H3-IM,H2} | 5.7 | 12.0 | 8.9 | 13.0 | | $TS1_{H3-IM,H2}$ | 8.0 | 13.6 | 10.2 | 15.2 | | $Inter2_{H3\text{-}IM,H2}$ | -2.9 | 5.7 | -0.1 | 4.5 | | $TS2_{H3\text{-}IM,H2}$ | 8.5 | 19.4 | 9.6 | 17.7 | | $Prod_{H3-IM}$ | -0.8 | 11.9 | 3.0 | 10.5 | | Prod _{H3-IM-bound,H2} | -18.1 | -1.9 | -13.4 | -4.5 | ^a Includes solvent effects. **Table S10.** Computed Energies (kcal mol⁻¹) for hydrogenation of substrate **S3** (catalyst **C1**) with different substrate orientations at TS2 (Mechanism H_{IM} , H_2 above, Figure S15).^a | Orientation | Electronic | $\Delta G^{298 ext{K}}$ | $\Delta H^{298 ext{K,sol b}}$ | $\Delta G^{298 ext{K,sol b}}$ | Configuration | |-------------------|------------|-------------------------|-------------------------------|-------------------------------|---------------| | 1re _{IM} | 8.8 | 19.6 | 11.1 | 17.8 | <i>(S)</i> | | $2re_{IM}$ | 9.8 | 20.3 | 12.1 | 18.6 | <i>(S)</i> | | $1si_{IM}$ | 8.5 | 19.4 | 10.8 | 17.7 | (R) | | $2si_{IM}$ | 8.5 | 20.1 | 10.4 | 17.7 | (R) | ^a Reac_{IM.,b} (with free H₂) as energetic reference, ^bIncludes solvent effect.. **Table S11.** Computed Gibbs Free barriers (kcal mol^{-1}) for hydrogenation of substrate **S3** (catalyst **C1**) with different substrate orientations at TS2 (Mechanism H_{IM} , CH_2Cl_2 above, Figure S15) with and with dispersion corrections (DFT-D3). | Orientation | $\Delta G^{298 ext{K,sol b}}$ | $\Delta G^{298 ext{K,sol,dis b}}$ | Configuration | |-------------|-------------------------------|-----------------------------------|---------------| | $1re_{IM}$ | 19.4 | 23.2 | (S) | | $2re_{IM}$ | 19.5 | 23.8 | (S) | | $1si_{IM}$ | 17.7 | 21.2 | (R) | | $2si_{IM}$ | 18.1 | 22.6 | (R) | ^a Reac_{IM,,b} (with free H₂) as energetic reference, ^bIncludes solvent effect.. **Figure S1.** Optimized geometries for Mechanism A (catalyst **C1**, substrate **S1**), **A**) Reac_{A-si,a}, **B**) TS1_A, **C**) Inter_A, **D**) TS2_A, **E**) Alkane_A, **F**) η^2 -Alkane_A. **Figure S2.** Optimized geometries for Mechanism B (catalyst **C1**, substrate **S1**), **A**) Reac_{B-si,b}, **B**) TS_B, **C**) Inter_B, **D**) TS2_B, **E**) Alkane_B, **F**) η^2 -Alkane_B. **Figure S3.** Optimized geometries for Mechanism C (C1 and S1), A) TS1_C, B) Inter_C, C) TS2_C. **Figure S4.** Computed enthalpies (kcal mol⁻¹, corrected for solvent effects) for Mechanism A, B and C (catalyst **C1** and substrate **S1**). **Figure S5.** Optimized geometries for Mechanism A1_{IM} (catalyst **C1**, substrate **S3**). **A)** Reac_{A-IM}, **B)** TS1_{A1-IM}, **C)** Inter_{A1-IM}, **D)** TS2_{A1-IM}, **E)** (*R*)-Prod_{A1-IM}. **Figure S6.** Optimized geometries for Mechanism A2_{IM} (catalyst C1, substrate S3). A) TS1_{A2-IM}, B) Inter_{A2-IM}, C) TS2_{A2-IM}. **Figure S7.** Optimized geometries for Mechanism $B1_{IM}$ (catalyst **C1**, substrate **S3**). **A)** Reac_{IM,b}, **B)** TS1_{B1-IM}, **C)** Inter_{B1/C1-IM}, **D)** TS2_{B1/C1-IM}, **E)** (S)-Prod_{B1/C1-IM}. **Figure S8.** Optimized geometries for Mechanism $B2_{IM}$ (catalyst C1, substrate S3). A) Reac $_{B2-IM}$, B) $TS1_{B2-IM}$, C) Inter $_{B2-IM}$, D) $TS2_{B2-IM}$, E) $Prod_{B2-IM}$. **Figure S9.** Optimized geometries for Mechanism $C1_{IM}$ (C1 and S3). A) Reac_{IM,a}, B) $TS1_{C1-IM}$. The remaining reaction occurs as for Mechanism $B1_{IM}$ (Figure S8). **Figure S10.** Optimized geometries for Mechanism $C2_{IM}$ (catalyst **C1**, substrate **S3**). **A)** Reac_{C2-IM}, **B)** TS1_{C2-IM}, **C)** Inter_{C2-IM}, **D)** TS2_{C2-IM}, **E)** Prod_{C2-IM}. **Figure S11.** Optimized geometries for the first part of Mechanism $H1_{IM}$ (catalyst C1, substrate S3). A) Reac_{H1-IM}, B) TS1_{H1-IM}, C) Inter1_{H1-IM}. **Figure S12.** Optimized geometries for the second part of Mechanism H1_{IM} (catalyst **C1**, substrate **S3**). **A)** TS2_{H1-IM}, **B)** Inter3_{H1-IM}, **C)** TS2_{H1-IM}, **D)** Prod_{H1-IM}. **Figure S13.** Optimized geometries for the second part of Mechanism H2_{IM} (catalyst **C1**, substrate **S3**). **A)** TS2_{H2-IM}, **B)** Prod_{H2-IM}, **C)** Prod_{H2-IM-H2 bound}. **Figure S14.** Optimized geometries for Mechanism $H3_{IM}$ with H_2 as ligand (catalyst **C1** and substrate **S3**). **A**) Reac_{H3-IM,H2}, **B**) Inter1_{H3-IM,H2}, **C**) TS1_{H3-IM,H2}, **D**) Inter2_{H3-IM},H2</sub>, **E**) TS2_{H3-IM}, H2, **F**) (R)-Prod_{H3-IM},H2 **G**) (R)-Prod_{H3-IM}-bound,H2. **Figure S15.** Optimized transition states for hydride transfer to the free iminium with CH_2Cl_2 (A-D) or H_2 (E-H) as apical ligand. A) $\mathbf{1re_{IM}}$ (CH_2Cl_2), B) $\mathbf{2re_{IM}}$ (CH_2Cl_2), C) $\mathbf{1si_{IM}}$ (CH_2Cl_2), D) $\mathbf{2si_{IM}}$ (CH_2Cl_2), E) $\mathbf{1re_{IM}}$ (H_2), F) $\mathbf{2re_{IM}}$ (H_2), G) $\mathbf{1si_{IM}}$ (H_2), H) $\mathbf{2si_{IM}}$ (H_2).