
TransRacer: Function Dependence-Guided Transaction Race
Detection for Smart Contracts

Chenyang Ma

School of Computer Sci. & Eng.

Nanjing University of Sci.& Tech.

Nanjing, China

15189826258@163.com

Wei Song
∗

School of Computer Sci. & Eng.

Nanjing University of Sci. & Tech.

Nanjing, China

wsong@njust.edu.cn

Jeff Huang

Parasol Laboratory

Texas A&M University

College Station, TX, USA

jeff@cse.tamu.edu

ABSTRACT

Smart contracts are programs that define rules for transactions

running on blockchains. Since any qualified transaction sequence

within the same block can be orchestrated by the blockchain miner,

unexpected results may occur due to data races between transac-

tions (called transaction races). Surprisingly, transaction races in

smart contracts have not been fully investigated. To address this,

we propose TransRacer, an automated approach and open-source

tool that employs symbolic execution to detect transaction races

in smart contracts. TransRacer analyzes function dependencies to

identify transaction races hidden in specific contract states. It also

generates witness transactions that can trigger such races. The

experimental results on 50 real-world smart contracts show the ef-

fectiveness and efficiency of TransRacer: it detects 426 races in 255.9
minutes, including 149 race bugs leading to inconsistent states.

CCS CONCEPTS

• Security and privacy→ Domain-specific security and privacy
architectures; • Software engineering→ Software defect analysis.

KEYWORDS

Ethereum, smart contract, data race, symbolic execution

ACM Reference Format:

ChenyangMa,Wei Song, and JeffHuang. 2023. TransRacer: FunctionDependence-

Guided Transaction Race Detection for Smart Contracts. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’23), December
3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3611643.3616281

1 INTRODUCTION

Blockchain is a powerful infrastructure that enables mutually un-

trusted users to reach a consensus on a distributed ledger. The ledger

can be used to decentralize applications, which are known as smart

contracts [3]. Conceptually, a smart contract is a stateful program

that can be invoked by external users via transactions. A smart

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00

https://doi.org/10.1145/3611643.3616281

contract manages transaction executions through the pre-defined

rules written in a Turing-complete language (e.g., Solidity [7]).

This paper investigates a specific type of vulnerability in smart

contracts caused by their concurrent execution model. As demon-

strated in [30], for transactions submitted to Ethereum over a brief

time period, the outcome may vary due to the nondeterministic

execution sequence of the transactions determined by the miner.

Prior studies have emphasized the seriousness of this issue. Luu et

al. [22] introduce the transaction-ordering-dependent (TOD) bug

to explain how a pair of transactions can exhibit different contract

balances under different execution sequences. Kolluri et al. [16]

extend the concept of this concurrent bug to the event-order bug,

which captures the full-state differences of smart contracts beyond

the balance difference. We find that state differences or inconsis-

tent states occur mainly because transactions race to access the

same variables in a smart contract. This situation is called a trans-
action race (race for short) in this paper. When two transactions

executed in different sequences generate different contract states,

they lead to a transaction race bug (race bug for short). The inconsis-
tent states impact the subsequent transactions. What is worse, an

attacker can tamper with some storage variables that transitively

impact on money transactions [2]; let alone the cases when the race

bugs directly lead inconsistent balances and money loss. Groce et

al. [12] show that roughly 41% of race conditions examined have

serious legal and financial implications. However, no tools have

been designed to detect races for smart contracts.

To this end, we propose TransRacer, an efficient symbolic anal-

ysis tool for race detection. The goal of TransRacer is to find a

reachable contract state and two transactions for each candidate

function pair such that the transactions exhibit races at that state.

A race requires that the two transactions have read/write conflicts

and can be executed in different orders. Moreover, whether the

transactions can be executed depends on the state of the global

variables. TransRacer utilizes symbolic execution to capture all the

above conditions and employs constraint solving to check the satis-

fiability of conditions. When a race is detected, TransRacer further
checks whether the race could result in a race bug. TransRacer
aims to help developers/auditors in the process of testing their

implementation against their model or intended behaviour. The

detected races/race bugs are malignant if contracts are not designed

deliberately; otherwise, they are benign. TransRacer can be used

for contract auditing before contracts are deployed to Ethereum.

Users can only provide contract bytecode to TransRacer.
Since smart contracts are stateful programs, certain functions

can be successfully invoked only at specific contract states. Thus,

symbolic analysis for race detection cannot proceed without infer-

ring such states. Moreover, it is not easy to find such a state for each

https://orcid.org/0009-0003-3086-8206
https://orcid.org/0000-0002-4324-3382
https://orcid.org/0000-0003-1393-0752
https://doi.org/10.1145/3611643.3616281
https://doi.org/10.1145/3611643.3616281

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chenyang Ma, Wei Song, and Jeff Huang

of these functions, as the number of reachable contract states is

enormous. To tackle this challenge, TransRacer leverages function
dependencies to identify functions whose execution can cause a

function not initially callable to become callable at the updated

state. Existing smart contract bug detectors [14, 22, 25, 34] usually

restrict vulnerability detection to a specific contract state or explore

different contract states with the help of fuzzing, but none attempt

to infer such states like TransRacer.
For efficiency reasons, TransRacer takes the following steps. First,

TransRacer statically prunes function pairs that share no read/write

variables. Second, at each contract state that activates a specific

function, TransRacer checks only the function pairs that contain

this function during race detection. Therefore, TransRacer captures
races at multiple contract states but does not perform excessively

repetitious checking of the same function pairs.

In this study, we implement the TransRacer symbolic analysis

tool in Python and evaluate the effectiveness and efficiency of

TransRacer on 50 randomly chosen smart contracts. TransRacer
successfully finds 426 true races, including 149 race bugs, while

requiring an average of only 5.1 minutes of analysis time per con-

tract. We further apply TransRacer to investigate races in 6,943

real-world smart contracts, and the empirical results reveal that

53.0% (3,680/6,943) of smart contracts can lead to races, of which

73.6% (2,710/3,680) can lead to race bugs. These results indicate that

races and race bugs are prevalent in practice.

The main contributions of our work are as follows:

(1) TransRacer can effectively detect races between two trans-

actions to the same smart contract, without generating false

positives. It also provides witness transaction sequences to

manifest the races, thus reducing manual auditing efforts.

(2) Instead of relying on random fuzzing, we propose to seek

contract states that activate certain functions by analyzing

the dependence relations between functions, which signifi-

cantly shrinks the race detection search space. Our proposed

notion of function dependence and the approach to seek the

function dependence are applicable to detect other contract

vulnerabilities.

(3) We design and implement an open-source tool, TransRacer,
that automatically detects races in smart contracts. An exper-

imental evaluation on 50 real-world smart contracts show

the effectiveness and efficiency of TransRacer.
(4) We apply TransRacer to 6,943 real-world smart contracts.

The results indicate that races are a severe problem that are

potentially harmful in practice.

The rest of this paper is organized as follows. Section 2 presents

an example that motivates our work. Section 4 and Section 5 de-

scribes and evaluates our approach, respectively. Section 6 reviews

related work, and Section 7 concludes the paper.

2 MOTIVATION

In this section, we use an example to motivate our work. With this

example, we illustrate how transaction races can lead to severe

outcomes (e.g., attacks, money loss) and how to detect them.

Figure 1(a) depicts a snippet of the smart contract WinToken
that is compliant with the Ethereum Request for Comments 20

(ERC20) token standard [5]. The function mint() is used to create

12 hostAddress.transfer(this.balance);
13 } else {
14 _to.transfer(this.balance);}}
15 }

1 contract WinToken{
2 uint256 public totalSupply;
3 mapping(address => uint256) balances;
4 mapping (address => mapping (address => uint256))

internal allowed;
5
6 function setTransferLock(bool _set) onlyOwner {
7 lockTransfer = _set;}
8 function mint(address _to, uint256 _amount)

onlyOwner {
9 totalSupply = totalSupply.add(_amount);

10 balances[_to] = balances[_to].add(_amount);}
11 function approve(address _spender, uint256 _value){
12 allowed[msg.sender][_spender] = _value;}
13 function increaseApproval(address _spender, uint

_addedValue){
14 allowed[msg.sender][_spender] = allowed[msg.sender

][_spender].add(_addedValue);}
15 function transferFrom(address _from, address _to,

uint256 _value){
16 require(lockTransfer == false);
17 require(_to != address(0));
18 require(_value <= balances[_from]);
19 require(_value <= allowed[_from][msg.sender]);
20 allowed[_from][msg.sender] = allowed[_from][msg.

sender].sub(_value);...;}...}

1 contract GraceCoin{
2 address public owner;
3 uint256 public sellExchangeRate = 1*10**8;
4 mapping (address => uint256) balances;
5
6 function setExchangeRate(uint rate){
7 assert(msg.sender==owner);
8 sellExchangeRate = rate;}
9 function sellCoins(uint amount) payable {

10 assert(balances[msg.sender] >= amount);
11 uint256 etherAmount = amount * sellExchangeRate

* 100;
12 assert(etherAmount <= this.balance);
13 msg.sender.transfer(etherAmount);
14 balances[msg.sender] = balance[msg.sender]-

amount;}...}

1 contract CityToken{
2 address public ceoAddress;
3 address public cooAddress;
4
5 //Restrain the authority of the function call
6 modifier onlyCEO() {
7 require(
8 msg.sender == ceoAddress;) _;}
9 modifier onlyCLevel() {

10 require(
11 msg.sender == ceoAddress ||
12 msg.sender == cooAddress); _;}
13 function setCEO(address _newCEO) public onlyCEO {
14 require(_newCEO != address(0));
15 ceoAddress = _newCEO;}
16 function payout(address _to) onlyCLevel {
17 if (_to == address(0)) {
18 ceoAddress.transfer(this.balance);
19 } else {
20 _to.transfer(this.balance);}}
21 }

G. Figures and Tables

a) Positioning Figures and Tables: Place figures and
tables at the top and bottom of columns. Avoid placing them
in the middle of columns. Large figures and tables may span
across both columns. Figure captions should be below the
figures; table heads should appear above the tables. Insert
figures and tables after they are cited in the text. Use the
abbreviation “Fig. ??”, even at the beginning of a sentence.

TABLE I
DATA RACES DETECTED BY SCRACER

Contracts Data races Data race bugs Total unique
Current state 111 222 333
Updated state 444 555 666
Total unique 777 888 999

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.
2. Oxford: Clarendon, 1892, pp.68–73.

[3] I. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271–350.

[4] K. Elissa, “Title of paper if known,” unpublished.
[5] R. Nicole, “Title of paper with only first word capitalized,” J. Name

Stand. Abbrev., in press.
[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy

studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

[7] M. Young, The Technical Writer’s Handbook. Mill Valley, CA: Univer-
sity Science, 1989.

IEEE conference templates contain guidance text for compos-
ing and formatting conference papers. Please ensure that all
template text is removed from your conference paper prior to
submission to the conference. Failure to remove the template
text from your paper may result in your paper not being
published.

IEEE conference templates contain guidance text for com-
posing and formatting conference papers. Please ensure that all
template text is removed from your conference paper prior to
submission to the conference. Failure to remove the template
text from your paper may result in your paper not being
published.

IEEE conference templates contain guidance text for com-
posing and formatting conference papers. Please ensure that all
template text is removed from your conference paper prior to
submission to the conference. Failure to remove the template
text from your paper may result in your paper not being
published.

IEEE conference templates contain guidance text for com-
posing and formatting conference papers. Please ensure that all
template text is removed from your conference paper prior to
submission to the conference. Failure to remove the template
text from your paper may result in your paper not being
published.

(a)

Result 2Result 1

approveA(S,200)
transferFromS(A,B,200)

transferFromS(A,B,200)
approveA(S,200)

S has transferred 200
tokens to B and can
transfer no more

S has transferred 200
tokens to B and can
transfer 200 more

mintowner(A,500)
increaseApprovalA(S,500)

Sequences

(b)

Figure 1: WinToken contract: (a) the contract fragment; (b)

the transaction sequences that trigger a race.

tokens. The functions increaseApproval() and approve() serve

the same purpose of approving others to spend a certain number

of tokens (by calling transferFrom()) from the token owner. The

invocations of the functions approve() and transferFrom() both
race to access the same variable allowed. Figure 1(b) demonstrates

that the race bug between approveA(𝑆, 200)1 and transferFromS(𝐴, 𝐵,

200) emerges only after mintowner(𝐴, 500) and increaseApprovalA(𝑆,
500) have been executed. The reason lies in the fact that the two

conditions at Lines 18-19 of transferFrom() can be satisfied only

after both mint() and increaseApproval() are invoked. That

is, the execution of transferFrom() depends on the successful

executions of mint() and increaseApproval(). This inspires us
to analyze function dependencies (cf. Definition 2) to detect races

and race bugs hidden at specific contract states.

3 PROBLEM FORMULATION

A smart contract 𝑐 is a five-tuple 𝑐 = ⟨address, 𝑏, 𝑉 , 𝐹 , 𝑠0⟩, where
address is the contract address, which is used for identifying the

smart contract; 𝑏 is the contract balance; 𝑉 is the set of storage

variables; 𝐹 is the set of contract functions; and 𝑠0: {𝑏} ∪𝑉 → R𝑛 is

the initial contract state, which maps 𝑏 and the variables in 𝑉 to

the concrete values in R. When a smart contract is deployed, it is

configured to an initial state. The contract state can be changed by

1
A represents the sender of this transaction.

TransRacer: Function Dependence-Guided Transaction Race Detection for Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Line 18: require(_value <= balances[_from])

Line 17: require(_to != address(0))

Line 16: require(lockTransfer == false) REVERT 1414

Line 19: require(_value <= allowed[...])

REVERT 1472

REVERT 1435

REVERT 1524

RETURN 327

yes

yes

yes

yes

no

no

no

no

Figure 2: Control flow graph of the function transferFrom().

sending transactions to it. A transaction sent to 𝑐 is a concrete call

to a function in 𝑐 . A transaction 𝑡 consists of a sender and a receiver,

the ether value associated with 𝑡 , the function 𝑓 ∈ 𝐹 invoked by 𝑡 ,

and the data input to 𝑓 . The ether value is paid by the transaction

sender for the transaction, e.g., tokens.

A valid path of a function 𝑓 is one that leads to a normal outcome

(e.g., RETURN or STOP), while an invalid path for 𝑓 is one that results

in an exception (e.g., REVERT or INVALID). The path that a transac-

tion selects for execution depends not only on the transaction itself

but also on the contract state. Figure 2 shows a control flow graph

for the function transferFrom() shown in Figure 1, in which the

nodes labeled with RETURN and REVERT represent the ends of valid

and invalid paths, respectively. The path set of a function 𝑓 con-

sists of the valid path set (Pv) and the invalid path set (Pi). The

integer value after RETURN/REVERT represents the position of the

RETURN/REVERT operator in the smart contract bytecode.

If path 𝑝 executed by transaction 𝑡 is a valid path, the contract

state changes from 𝑠 to 𝑠′ (denoted as 𝑠
𝑡→ 𝑠′); otherwise, the con-

tract state remains unchanged [20]. At 𝑠 , a path of a function 𝑓

is feasible if there exists a transaction that can execute this path

successfully. For instance, at a contract state where 𝑙𝑜𝑐𝑘𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 is

true, only the path that ends at REVERT 1414 is feasible. A function

is callable if at least one valid path of this function is feasible. A race

between two functions requires that both functions are callable and

exhibit read/write conflicts if invoked in different orders.

Definition 1 (TransactionRace/TransactionRaceBug).

Given a smart contract 𝑐 = ⟨address, 𝑏, 𝑉 , 𝐹 , 𝑠0⟩, a transaction race
will occur between 𝑓1 ∈ 𝐹 and 𝑓2 ∈ 𝐹 if there exists a contract state
𝑠 at which two transactions 𝑡1 and 𝑡2 invoke 𝑓1 and 𝑓2, respectively,
such that the following conditions hold:

(1) 𝑠
𝑡1→ 𝑠1

𝑡2→ 𝑠2 and 𝑠
𝑡2→ 𝑠′

1

𝑡1→ 𝑠′
2
.

(2) (𝑅𝑡1 ∩𝑊𝑡2) ∪ (𝑊𝑡1 ∩ 𝑅𝑡2) ∪ (𝑊𝑡1 ∩𝑊𝑡2) ≠ ∅.
where 𝑅𝑡1 /𝑊𝑡1 and 𝑅𝑡2 /𝑊𝑡2 are the sets of storage variables that are
read/written by 𝑡1 and 𝑡2, respectively. A transaction race can lead to
a transaction race bug if 𝑠2 ≠ 𝑠′

2
.

Transaction race bugs can lead to different contract states when

the execution order of the two transactions is reversed. Thus, these

bugs share something in common with event-order bugs [16]. The

difference is that the former involves only two transactions at a

time, while the latter considers multiple transactions. However,

after studying their experimental results [16], we find that all their

Transaction
race checker

Concrete execution

Function
dependence analysis

Callable functions
identification

Not callable
function pairs

Races

Dependence analyzer
Contract bytecode

Static
filter

Contract state

Callable
function pairs

Transaction
race checker

Concrete
executer

Dependence
analyzer

Callable function
identifier

Races

Static
filter

Callable
function pairs

Contract
Not callable

function pairs
Witness

transactions

validationState
Bytecode

Transaction
race checker

Concrete
executer

Dependence
analyzer

Callable function
identifier

Race &
Witness

transactions

Static
filter

Callable
function pair

Witness
transactions

validation
Bytecode
& state

Contract

Transaction sequence

Target
state

Figure 3: The framework of TransRacer.

reported event-order bugs are caused by two transactions. The other

transactions are only used to update the contract states at which

the event-order bugs can occur. Thus, the number of bugs/races

involving multiple transactions is small in practice. Therefore, in

this paper, we only check races/race bugs between two transac-

tions. TOD bugs [22] are also caused by two transactions but are

relevant only to balance differences, whereas transaction race bugs

are more general because both balance differences and contract

storage differences are considered.

The research problem studied in this paper is as follows: Given a
smart contact at state 𝑠0, for each pair of functions 𝑓1 and 𝑓2 where
read/write conflicts can occur, we aim to determine whether there is a
reachable state 𝑠 (a transaction sequence 𝜎 such that 𝑠0

𝜎→ 𝑠) on which
there are two transactions 𝑡1 and 𝑡2 calling 𝑓1 and 𝑓2, respectively,
such that a race or a race bug occurs between 𝑡1 and 𝑡2.

One may argue that techniques such as fuzzing or symbolic exe-

cution can be used to find such reachable contract states. However,

the application of these techniques without further optimization

may cause transaction-sequence explosion problems. To this end,

we utilize symbolic execution to efficiently find the qualified reach-

able contract state.

4 TRANSRACER

The framework of TransRacer is presented in Figure 3. The input

consists of the bytecode and the initial state 𝑠0 of a smart contract,

which can be obtained directly from Ethereum. The output consists

of the function pairs that may lead to races (race bugs) and witness

transactions that can trigger the races (race bugs). Given a smart

contract with 𝑛 functions, the number of candidate function pairs

that may lead to races is 𝑛 + 𝐶2

𝑛 -𝑚, where 𝑛 and 𝐶2

𝑛 represent the

number of function pairs composed of two identical functions and

two different functions, respectively, and𝑚 represents the number

of function pairs that do not share read/write variables.

In the framework, the component static filter serves as a prepro-
cessing step to extract the function pairs with shared read/write

variables. Since this component is implemented in [16], we directly

adopt their implementation. The static filter first symbolically ex-

ecutes a function 𝑓 and monitors the data flowing into the op-

codes SLOAD/SSTORE and SHA3 to obtain the possible read/write

variables in each path of 𝑓 . Based on these results, it compiles

the function pairs that may access the same storage variables. For

the two functions of each candidate function pair, the component

callable function identifier identifies whether both are callable. The

component transaction race checker employs symbolic execution to

detect races between two functions that are both callable at state 𝑠 .

Note that a function 𝑓 may become callable at different contract

states. Thus, we aim to check races for 𝑓 at a set of states, where

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chenyang Ma, Wei Song, and Jeff Huang

each state activates at least one valid path of 𝑓 . For the functions

that involve at least one infeasible valid path, the component de-
pendence analyzer first utilizes symbolic execution to determine

the function dependencies; then, based on these function depen-

dencies, for each infeasible valid path 𝑝𝑖 , it determines transactions

that cause the contract to enter a target state at which 𝑝𝑖 becomes

feasible. For a function pair (𝑓1, 𝑓2), the dependence analyzer seeks
two transaction sequence sets 𝑇𝑓1 and 𝑇𝑓2 that activate the paths in

𝑓1 and 𝑓2, respectively. Then, based on 𝑇𝑓1 and 𝑇𝑓2 , a set of contract

states, 𝑆 , is obtained for race checking. Each state 𝑠′ ∈ 𝑆 is obtained

by the concrete execution of a transaction sequence 𝜎1 ∈ 𝑇𝑓1 and a

transaction sequence 𝜎2 ∈ 𝑇𝑓2 . When the race checker checks races

for 𝑓1 and 𝑓2 at the contract state 𝑠
′
, it only explores the paths that

are activated by 𝜎1 and 𝜎2. In this way, we avoid to repetitively

verify of the same paths at different contract states. Although we

cannot guarantee that hidden races can be revealed at the target

state, we believe our heuristic is feasible for balancing race detection

effectiveness and efficiency. Finally, the concrete executer executes
the witness transactions to validate the correctness of the races.

4.1 Transaction Race Checking

In this section, we introduce how to determine whether a function

is callable at a given contract state 𝑠 and how to find races for a

pair of callable functions at state 𝑠 .

Callable function determination. At any contract state 𝑠 , for a

function 𝑓 , we can symbolically execute 𝑓 to obtain a path 𝑝 of 𝑓 and

the corresponding path constraints Φ𝑝 . By constraint solving based
on a satisfiability modulo theories (SMT) solver, we can determine

whetherΦ𝑝 can be satisfied.WhenΦ𝑝 can be satisfied, 𝑝 is a feasible

path, and if 𝑓 has a feasible valid path, it is callable.

Race detection. As illustrated in Definition 1, three conditions

are required to trigger transaction race bugs. We construct path
constraints, read/write constraints, and distinct post-state constraints
to capture these conditions.

(1) Path constraints. Given a smart contract with two functions

𝑓1 and 𝑓2 and a contract state 𝑠 , the symbolic analysis takes four

steps to find two transactions 𝑡1 and 𝑡2 that can invoke 𝑓1 and

𝑓2 in different orders: (i) we symbolically execute 𝑓1 at 𝑠 to seek

a valid path 𝑝1 and mark the symbolic state after 𝑝1 as 𝑠1; (ii)

we symbolically execute 𝑓2 at 𝑠1 to seek a valid path 𝑝2; (iii) we

symbolically execute 𝑓2 at 𝑠 to seek a valid path 𝑝′
1
and mark the

symbolic state after 𝑝′
1
as 𝑠′1; (iv) we symbolically execute 𝑓1 at 𝑠

′
1

to seek a valid path 𝑝′
2
. The path constraints collected during the

four stages can be denoted as Φ𝑝1 , Φ𝑝2 , Φ𝑝′
1

, and Φ𝑝′
2

. If the path

constraints Φ
path

:= Φ𝑝1 ∧ Φ𝑝2 ∧ Φ𝑝′
1

∧ Φ𝑝′
2

are satisfied, then 𝑓1

and 𝑓2 can be invoked in different orders. Our symbolic engine will

branch if it meets an “if" condition or an exit point of a loop during

path exploration. We set 750 as the maximum number of explored

branches to limit the number of iterations of loops.

(2) Read/write constraints. The read/write constraints are used to

determine read/write conflicts. We identify the read/write storage

locations by inspecting the opcodes SLOAD/SSTORE and AND. This
approach is reasonable as the Ethereum virtual machine (EVM)

usually reads/writes a variable with the cooperation of these two

opcodes: SLOAD/SSTORE is used to load/store the data with a size

of 256 bits, and AND is used to select the target storage location

from the 256 bits. After identifying the storage locations accessed

by the two functions during the symbolic analysis, we obtain the

read/write constraints Φrw based on condition (2) of Definition 1.

(3) Distinct post-state constraints. The distinct post-state con-

straints Φ
dist

are constructed to ensure that the output (the values

written to the storage variables) differs between the two functions

executed in different orders.

We claim that a race (race bug) is detected only when the race

constraints Φrace := Φ
path
∧ Φrw (the race bug constraints Φ

bug
:=

Φrace ∧ Φ
dist

) are satisfied. Then, the witness transactions can be

extracted directly from the solution returned by the SMT solver.

For a function pair that may be subject to races, with the help of

the static filter, we safely prune the path pairs that do not share any

read/write variables. We note that the execution of two function

paths can read/write the same variable, but it does not indicate

that they can access the same storage location. For instance, in

Figure 1, functions mint() and transferFrom() write the same

variable balances. The function mint() can write the storage lo-

cation of balances[0], but function transferFrom() cannot write
this storage location because of the constraint in Line 17. Therefore,

it is necessary to construct the read/write constraints to ensure the

read/write conflict.

It is worth mentioning that when more than two functions share

read/write variables, our approach handles each pair of functions

individually. The reasons are two-fold. First, two functions shar-

ing read/write variables are the smallest unit for a race. From the

perspective of debugging and auditing, we need to know whether

such two functions can lead to a race. Second, as the number of

functions sharing read/write variables increases, verifying different

invocation orders of the functions will result in a combinatorial

explosion problem, which is more time-consuming.

4.2 Function Dependence Analysis

As previously mentioned, certain function paths can only be trig-

gered successfully at specific contract states. For a given function

𝑓 , we try to trigger each valid path of 𝑓 . In the following part, we

show how to find a contract state to trigger a valid path. The other

valid paths are triggered in the same way.

Since the only way to change the contract state is to submit trans-

actions to the contract, for a path pv ∈ Pv that cannot be triggered

at the initial contract state 𝑠0, we aim to find a transaction sequence

𝜎 = 𝑡1𝑡2 ...𝑡𝑚 such that 𝑠0
𝜎→ 𝑠′ and pv becomes feasible at 𝑠′. We

leverage function dependencies (cf. Definition 2) to find such transac-

tions one by one. One transaction in 𝜎 can be obtained (by querying

the SMT solver) once a function dependence is determined.

Definition 2 (Function Dependence). For two functions 𝑓
and 𝑓1, we say that 𝑓 is function-dependent on 𝑓1 if and only if there
are two transactions 𝑡𝑓1 and 𝑡𝑓 which invoke 𝑓1 and 𝑓 , respectively,
such that the following two conditions hold:

(1) 𝑠
𝑡1→ 𝑠1.

(2) The path 𝑝 𝑓 executed by 𝑡𝑓 at state 𝑠1 cannot be executed by
𝑡𝑓 at state 𝑠 .

Example 1. In Figure 1, the path (referred to as pv) ends at RETURN
327 is infeasible initially. Hence, the execution of transferFromS(𝐴, 𝐵,
200) (referred to as 𝑡) ends at REVERT 1472. However, aftermintowner(𝐴,

TransRacer: Function Dependence-Guided Transaction Race Detection for Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Symbols Used in Algorithms 1∼2

Symbol Description

Pf The set of feasible valid paths of function 𝑓

jump_num(p, pv)
The number of joint JUMPI instructions

between 𝑝 and pv

max_jump_num(pv)
The maximum number of joint JUMPI instructions

between any feasible path and pv
FD(fi, f) Whether 𝑓 is function-dependent on 𝑓𝑖

500) (referred to as 𝑡1) is executed, the tokens held by A change to 500
(i.e., condition (1) in Definition 2 is satisfied). At the updated contract
state, the execution of transferFromS(𝐴, 𝐵, 200) can proceed to REVERT
1524 (referred to as 𝑝′). In such case, condition (2) in Definition 2 is
satisfied. Thus, transferFrom() is function-dependent on mint().

Since a function 𝑓 may depend on one or more functions, we

propose Heuristic 1 to determine all these functions.

Heuristic 1. If a path pv ∈ Pv of a function 𝑓 is infeasible at a
contract state 𝑠 , a function on which 𝑓 depends is first determined and
then concretely executed, updating the contract state to 𝑠1. These steps
are iterated until a reachable contract state 𝑠′ is obtained at which pv
becomes feasible.

If heuristic 1 works, a transaction sequence 𝜎 = 𝑡1𝑡2 ...𝑡𝑛 is found

such that 𝑠
𝜎→ 𝑠′. At 𝑠′, we use the method discussed in Section 4.1

to check whether a race occurs between the two callable functions.

The intuition behind Heuristic 1 is explained as follows. For

a path 𝑝 = 𝑏1...𝑏𝑛 of a function 𝑓 that cannot be executed when

𝑓 is called, where 𝑏𝑖 (1 ≤ 𝑖 ≤ 𝑛) represents a block of opcode,

several conditions should be satisfied to make 𝑝 fully executed.

When we find a function 𝑓1 on which 𝑓 depends, the corresponding

transaction which calls 𝑓1 can make such a condition satisfied;

thus, the call of 𝑓 can go ahead, say, reaching 𝑏𝑚 , where𝑚 < 𝑛.

We iteratively find a function on which 𝑓 depends and make the

function concretely execute until 𝑏𝑛 is reached when 𝑓 is called.

With Heuristic 1, we aim to efficiently find a transaction sequence

to activate 𝑝 . Otherwise, we have to enumerate all transaction

sequences until 𝜎 is found.

Algorithm 1 searches for transaction sequences to some states at

which the valid paths of a function become feasible, where Table 1

summarizes the symbols used that are not defined in the main text.

Lines 1∼6 activate the valid paths of a function 𝑓 . Lines 2∼3 trigger
the valid paths of 𝑓 by invoking function seq_generation(). Lines
4∼5 update the feasible valid paths and their triggering transaction

sequences and states. Algorithm 1 stops once all infeasible valid

paths of 𝑓 have been checked (Line 6).

At the opcode level, the number of paths of a function could

be extremely large. For example, the contract CityToken has over

250,000 paths in the control flow graph of the opcode. Fortunately,

we observe that these paths share some common opcode blocks,

and thus when a path 𝑝 is found infeasible in Algorithm 1, those

paths with 𝑝 as the prefix are also known to be infeasible. With this

observation, Algorithm 1 mitigates the path exploration problem

to a large extent. Moreover, the subsequent race checking are only

conducted on these activated valid paths instead of all paths, and

thus the efficiency is ensured.

Algorithm 1: Search for transaction sequences to the states

where the valid paths of a function become feasible

Input: 𝑠 - contract state, 𝑓 - function, 𝐹𝑓 = { 𝑓1, ..., 𝑓𝑘 } - the set of functions
that may write variables 𝑓 reads, SEQ_LENGTH - maximum

transaction-sequence length.

Output: Σ = {(𝜎 ′, s′, p) | 𝑠 𝜎 ′→ 𝑠′ ∧ 𝑝 is feasible at 𝑠′}, where p ∈ Pv .

1 Σ ← ∅, s′ ← s, global feasible valid path set 𝑃

2 for each infeasible valid path pv of 𝑓 , ∃ p′v ∈ 𝑃𝑓 ′ such that p′v and pv may
have read/write conflict do

3 𝜎, 𝑠′ ← 𝑠𝑒𝑞_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (F, f , s′, pv)
4 if pv becomes feasible at 𝑠′ then
5 Σ ← Σ ∪ { (𝜎, s′, pv) }, Pf ← Pf ∪ {pv }

6 return Σ
7 Function 𝑠𝑒𝑞_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(Ff , f , s′, pv , SEQ_LENGTH)

8 𝜎 ← ∅
9 for l ← 1, l ≤ SEQ_LENGTH , l++ do
10 dependence_found ← False

11 for each fi ∈ Ff do

12 tfi , pf , FD (fi, f) ← dep_analysis (fi, f , s′, pv)
13 if FD (fi, f) = True then
14 dependence_found ← True

15 if pf = pv then

16 s′ ← concrete_execution(s′, tfi) , 𝜎 ← append (𝜎, tfi)
17 return 𝜎, 𝑠′

18 if dependence_found then

19 s′ ← concrete_execution(s′, tfi) , 𝜎 ← append (𝜎, tfi)
20 else

21 break

22 return null, null

23 Function dep_analysis(fi, f , s′, pv)

24 tfi ← ∅, pf ← ∅, FD (fi, f) ← False, global max_jump_num(pv) , Pfi
25 for each pfi ∈ 𝑃𝑓𝑖

that may write the variables pv reads do
26 s1,Φ1 ← symbolic_execution(s′, pfi)
27 for each path p ∈ 𝑓 such that

jump_num(p, pv) > max_jump_num(pv) do
28 s2,Φ2 ← symbolic_execution(s1, p)
29 s3,Φ3 ← symbolic_execution(s′, p)
30 if Φ1 ∧ Φ2 is satisfiable and Φ3 is unsatisfiable then
31 tfi ← solve (Φ1 ∧ Φ2) , pf ← p, FD (fi, f) ← True

32 max_jump_num(pv) ← jump_num(p, pv)
33 if p = pv then

34 return tfi , pf , FD (fi, f)

35 return tfi , pf , FD (fi, f)

Function seq_generation() in Algorithm 1 implements Heuristic

1 to trigger a valid path of 𝑓 . The input includes the contract state 𝑠 ,

a valid path pv of a function 𝑓 that cannot be executed at 𝑠 , the set of

functions 𝐹𝑓 = {𝑓1, ..., 𝑓𝑘 } that maywrite variables read by 𝑓 , and the

specified maximum transaction-sequence length, SEQ_LENGTH .

The output consists of the found transaction sequence 𝜎 and the

target state 𝑠′. seq_generation() iterates the following procedure

until either a transaction sequence is returned or the number of

iterations reaches the threshold (SEQ_LENGTH). We first iterate

over the functions 𝑓1, ..., 𝑓𝑘 to find the functions on which 𝑓 depends

(Lines 11∼12). The function dep_analysis() then checks whether

𝐹𝐷 (𝑓𝑖 , 𝑓) is True and ensures that the newly found path 𝑝 𝑓 can go

closely to pv than previously found paths do. For a function 𝑓𝑖 , if

𝐹𝐷 (𝑓𝑖 , 𝑓) is True (Line 13), we check whether 𝑝 𝑓 is pv (Line 15). If

so, we return the updated 𝜎 and 𝑠′ (Lines 16∼17). After all the 𝑘
function pairs are analyzed, if a function dependence is found (Line

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chenyang Ma, Wei Song, and Jeff Huang

18), we know that although pv is still infeasible, the invocation of

𝑓 can go closely to pv after 𝑡𝑓𝑖 is executed. Thus, we concretely

execute 𝑡𝑓𝑖 to update the contract state and append 𝑡𝑓𝑖 to 𝜎 (Line

19). Otherwise, seq_generation() returns null (Line 22). The time

complexity of Algorithm 1 is O(𝑚3 × 𝑘 × SEQ_LENGTH), where𝑚

is the average number of feasible valid paths of a function, and 𝑘 is

the number of functions in 𝐹𝑓 .

Function dep_analysis() works as follows. At contract state 𝑠′,
Lines 25∼26 select a feasible valid path 𝑝 𝑓𝑖 of 𝑓𝑖 and symbolically

execute 𝑝 𝑓𝑖 to obtain the updated contract state 𝑠1. Lines 28∼29
obtain the constraints Φ2 and Φ3 that make path 𝑝 of 𝑓 feasible

at states 𝑠1 and 𝑠′, respectively. Line 30 checks the satisfiability

of the constraints to ensure that 𝐹𝐷 (𝑓𝑖 , 𝑓) holds. Line 32 updates
max_jump_num(pv) to ensure that the execution of pv can proceed.

Example 2 (Continuation of Example 1). At the initial con-
tract state, 𝑝𝑣 is infeasible. First, we find that 𝑓 depends on mint().
Note that 𝑓 also depends on setTransferLock(), as the execution
of setTransferLockowner(True) can cause the execution of 𝑡 to end
at REVERT 1414 (referred to as 𝑝′′). Algorithm 1 does not consider
this function dependence because the number of the joint JUMPI in-
structions between pv and 𝑝′ is larger than that between pv and
𝑝′′. Next, Algorithm 1 concretely executes 𝑡1 to update the contract
state. At the new state, Algorithm 1 further finds that 𝑓 depends on
increaseApproval() and that the execution of 𝑡 after increaseAppr-
ovalA(𝑆 , 500) (referred to as 𝑡2) reaches RETURN 327. As a consequence,
after 𝜎 = 𝑡1𝑡2 is executed, pv becomes feasible. Finally, the race bug
in Figure 1(b) is detected.

Consider three functions ℎ, 𝑔, and 𝑓 , where 𝑓 depends on 𝑔, and

𝑔 depends on ℎ. In such case, we say 𝑓 nestedly-dependent on 𝑔

and ℎ. At the initial contract state, if a valid path of 𝑓 is infeasible,

Algorithm 1 only checks whether there are function dependencies

between𝑔 and 𝑓 and betweenℎ and 𝑓 . Since no dependence is found,

Algorithm 1 cannot proceed. In fact, a function 𝑓 may depend on

several functions, and some of the functions cannot be activated

either at the initial state. To activate 𝑓 , such functions should be

activated first. With this in mind, we propose Algorithm 2 which

invokes Algorithm 1 by considering nested function dependencies.

Note that we set a threshold 𝐷𝐸𝑃𝑇𝐻_𝑁𝐸𝑆𝑇 , and if the depth of

the nested function dependence is beyond this threshold, we give

up activating the corresponding function 𝑓 .

Algorithm 2 works as follows. Line 2 only considers the nested

function dependencieswhose depths are not beyond𝐷𝐸𝑃𝑇𝐻_𝑁𝐸𝑆𝑇 .

At each candidate contract state 𝑠 ∈ 𝑆 (Line 6), Algorithm 2 invokes

Algorithm 1 (Line 8) for each function 𝑓 ∈ 𝐹 ′ (Line 7). Next, it

updates the feasible valid paths, the functions whose paths still

need triggering, and the reachable contract states to further call

Algorithm 1 (Lines 9∼13). If all functions in 𝐹 ′ are handled or no

reachable candidate contract state can be found (Line 14), Algo-

rithm 2 returns (Line 16); otherwise, Algorithm 2 iterates until the

number of iterations reaches 𝐷𝐸𝑃𝑇𝐻_𝑁𝐸𝑆𝑇 . The time complexity

of Algorithm 2 is O(𝑚4 × 𝑘 × SEQ_LENGTH × 𝑛2 × DEPTH_NEST),
where 𝑛 is the number of functions in 𝐹 ′.

Example 3. We use contract DAVToken (cf. Figure 4) to show
how Algorithm 2 works. In this contract, there is a nested function
dependence, because transferFrom() depends on approve(), and

Algorithm 2:Activate valid paths of functions in a contract

Input: 𝑠0 - Initial contract state, 𝐹
′
- the set of functions whose paths need

triggering, 𝐷𝐸𝑃𝑇𝐻_𝑁𝐸𝑆𝑇 - For any function 𝑓 ∈ 𝐹 ′ , the threshold
of the depth of nested function dependence we consider.

Output: Σ = {(𝜎 ′, s′, p) | 𝑠 𝜎 ′→ 𝑠′ ∧ 𝑝 is feasible at 𝑠′}, where p ∈ Pv .

1 S ← {s0 },Σ ← ∅
2 for each f ∈ F ′ do
3 Pf ← ∅
4 for l ← 1, l ≤ DEPTH_NEST , l++ do
5 𝑆 ′ ← ∅
6 for each s ∈ S do

7 for each f ∈ F ′ do
8 Σ′ ← call Algorithm 1 for 𝑓 at state 𝑠

9 if Σ′ ≠ ∅ then
10 Σ ← Σ ∪ Σ′

11 for each (𝜎 ′, s′, p) ∈ Σ′ do
12 𝑆 ′ ← 𝑆 ′ ∪ {𝑠′ }

13 𝑆 ← 𝑆 ′

14 if 𝐹 ′ = ∅ ∨ 𝑆 = ∅ then
15 break

16 return Σ

text from your paper may result in your paper not being
published.

IEEE conference templates contain guidance text for com-
posing and formatting conference papers. Please ensure that all
template text is removed from your conference paper prior to
submission to the conference. Failure to remove the template
text from your paper may result in your paper not being
published.

1 contract DAVToken{{
2 contractPaused=True;
3 function unpause() public whenNotPaused {
4 contractPaused = False;}
5 function approve(address _spender, uint256 _value)

{
6 require(!contractPaused)
7 allowed[msg.sender][_spender] = _value;}
8 function transferFrom(address _from, address _to,

uint256 _value){
9 require(_value <= allowed[_from][msg.sender]);

10 require(...);}
11 ...}

Figure 4: A smart contract DAVToken.

approve() depends on unpause(). At the initial state 𝑠0, Algorithm 2
first finds that approve() depends on unpause(), while the function
dependence between approve() and transferFrom() is not found.
After unpause() is concretely executed, a new state 𝑠′ is obtained. In
the next iteration, Algorithm 2 finds that transferFrom() depends
on approve(). This example shows the limitation of Algorithm 1 due
to nested function dependencies, and how Algorithm 2 addresses it.

4.3 Concrete Execution

The concrete executer is used for two purposes. First, it helps analyze
function dependencies. At a contract state 𝑠 , after a function de-

pendence between 𝑓1 and 𝑓 is found, the concrete executer submits

a transaction 𝑡1 to call 𝑓1 with the concrete input returned by the

symbolic dependence analysis. After the execution of 𝑡1, a new con-

tract state 𝑠′ is obtained, i.e., 𝑠
𝑡1→ 𝑠′. Without this state transition, 𝑓

is not callable, and another function dependence cannot be found.

Second, the concrete executer verifies the correctness of the race
detection results. For a detected race, the concrete executer executes
the witness transactions in different orders and checks whether a

read/write conflict exists. To verify the correctness of detected race

bugs, the concrete executer further checks whether reversing the

execution order produces different contract states.

TransRacer: Function Dependence-Guided Transaction Race Detection for Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

5 EVALUATION

In this section, we evaluate the effectiveness and efficiency of Tran-
sRacer on 50 smart contracts. Then, we report the results of a

large-scale empirical study on 6,943 real-world smart contracts.

This evaluation aims to answer the following research questions:

• RQ1: How effective is TransRacer? Is the dependence ana-
lyzer helpful in finding races?

• RQ2: How efficient is TransRacer? Compared with single-

state detection, how much additional time does race detec-

tion consume due to the multiple states reached by executing

interdependent functions?

• RQ3: Are races and race bugs prevalent in practice?

• RQ4: What are the numbers and percentages of races hid-

den at specific contract states (that is, those that cannot be

detected at the initial contract states)?

• RQ5: What are the numbers and percentages of races caused

by calls to the same function (TRI) and to two different func-

tions (TRD), respectively?

• RQ6: What are the consequences of races?

• RQ7: Regarding TRI and TRD, which is more likely to cause

race bugs and even monetary losses?

Experimental setup. Our experiments are executed on a desk-

top PC equipped with a Windows 10 operating system, 32 GB of

memory, and an Intel i7 9700 CPU. We use the Web3 suite and an

agency account provided by Infura2 to interact with the Ethereum

mainnet. The symbolic execution engine is implemented by our-

selves and the SMT solver used is z3. The maximum analysis time

for one contract is set to 120 minutes. The maximum time allowed

for checking races between one function pair is set to two minutes.

The nested dependence threshold is set to three because we did not

find any cases exceeding this threshold in our experiments.

The maximum transaction-sequence length to activate a valid

path of a function is set to four. This is because the experimental

results of ETHRacer on 6,943 real-world smart contracts show that

only 0.24% contracts involve event-order bugs each of which is

triggered by a transaction sequence whose length is greater than

four. In our method, since the maximum length of transaction

sequence to activate a path of a function is four, the maximum

length of transaction sequence to trigger a race is 4+4+2 = 10. Thus,

we believe our setting is sufficient for most contracts.

5.1 Experimental Evaluation

We first conducted an experiment to answer RQ1 and RQ2.

Comparison approaches. The approach most closely related

to our work is ETHRacer [16], which is a fuzzing-based approach

that detects event-order bugs. The input fed to its fuzzer is gen-

erated through symbolic analysis. ETHRacer aims to find a set of

transactions that exhibit output differences under varying transac-

tion sequences, which shares some commonality with TransRacer.
Thus, we incorporate ETHRacer for comparison. Furthermore, we

consider three additional tools (Oyente [22], Securify [35], and Sail-
fish [2]) that detect TOD bugs (i.e., specific race bugs related to

contract balances). Oyente is a symbolic analysis tool that aims to

detect ether flow differences, while Securify and Sailfish are static

2
https://infura.io

analysis tools that can detect bugs that are relevant to inconsis-

tent contract states, such as TOD bugs. The default configurations

of the four tools are used. We realize that there are other tools

that perform multi-state bug detection, such as Smartian [6] and

Teether [17]; however, none of them detect transaction races.

Benchmark. The experiments are performed on 50 real-world

smart contracts whose source code is available (the source code

facilitates manual confirmation of the reported races). These open-

source smart contracts are all randomly selected from the UR dataset

created by Ren et al. [27] for empirical study. The transaction counts

of the 50 read-world smart contracts are all greater than 100. We

do not use the MI [28] and SmartBugs [8] datasets because those

contracts only contain a limited number of manually injected bug

patterns and there are no false positives that can be generated by

different approaches from them. We obtain the initial states of these

50 smart contracts from Ethereum mainnet for the experiments.

Table 2 shows the experimental results on the 50 contracts. The

columns “#Func”, “#Inst”, and “#Dep” represent the number of func-

tions, the number of instructions, and the number of detected func-

tion dependencies in each smart contract, respectively. The columns

“#TRI” (“#TRBI”) and “#TRD” (“#TRBD”) show the number of trans-

action races (transaction race bugs) caused by transaction calls to

two identical or two different functions, respectively. The columns

“IS (initial state) ” and “US (updated state)” list the number of races

that can be triggered at the initial and updated contract states,

respectively. IS is the initial state when we begin race detection,

which is obtained from Ethereum mainnet. The column “Coverage

Rate” lists the ratio of the number of function pairs checked by

the transaction race checker to the number of function pairs that

are not filtered out by the static filter. In the sub-columns “#TRB”

of the three competitors, the entry with the format of “#TP/#FP”

represents the number of true positives and false positives of the

approach. For instance, at the row of contract “COW”, the entry

“0/1” in the sub-column “#TRB” of Oyente represents that it finds
zero true positive and one false positive transaction race bug.

We only list TRBD (transaction race bugs between two differ-

ent functions) for ETHRacer because it is the only bug type that

ETHRacer detects. Instead of actively seeking contract states that

trigger race bugs, ETHRacer tests different contract states through
fuzzing with longer traces. Thus, we classify the race bugs (also

event-order bugs) reported by ETHRacer into a category of bugs

detected at the updated states when the trace length is larger than

two. We only list #TRB detected by Oyente, Securify, and Sailfish,
as they do not find the contract states to trigger the bugs.

Result validation. We manually check the results of these

tools to determine whether they are true positives. To examine

the correctness of the races detected by TransRacer, we manually

inspect the contract source code to ensure that the two functions

indeed share common variables and that read/write conflicts over

these variables actually exist. The outcome of race bugs is that

they can produce inconsistent contract states. The race bugs de-

tected by TransRacer are all true positives because the concrete
executer ensures that these races can cause inconsistent contract

states. For ETHRacer, we execute the witness transactions provided
by ETHRacer to verify that they can cause inconsistent contract

states. As static analysis tools, Oyente, Securify, and Sailfish only

indicate the functions that could potentially cause race bugs. For

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chenyang Ma, Wei Song, and Jeff Huang

Table 2: Results of Different Race Detectors on 50 Real-world Smart Contracts

Contract Name #Func #Inst #Dep

TransRacer ETHRacer Oyente Securify Sailfish
#TRI #TRD #TRBI #TRBD Time Coverage #TRBD Time

#TRB

Time

#TRB

Time

#TRB

Time

IS US IS US IS US IS US (min.) Rate IS US (min.) (min.) (min.) (min.)

XCTCrowdSale 5 472 0 0 0 1 0 0 0 1 0 0.6 6/6=100.0% 0 0 2.8 1 0.1 1 0.1 1 0.1

BitcoinBlue 9 939 2 1 2 0 1 1 0 0 0 1.7 7/7=100.0% 0 0 3.8 0 0.1 0 0.1 0 0.1

RADIUM 10 1,426 0 1 0 0 0 0 0 0 0 0.2 5/5=100% 0 0 2.5 0 0.2 0 0.1 0 0.1

BMUS 11 1,600 2 1 2 0 2 1 0 0 1 0.9 7/7=100.0% 0 0 3.6 0 0.1 0 0.1 0 0.1

RippleAlpha 11 2,132 3 2 3 1 6 1 0 1 2 5.5 14/14=100.0% 0 0 6.8 0 0.5 0 0.1 0 0.1

PlayCash 12 2,060 3 2 3 0 8 1 0 0 2 1.9 21/21=100.0% 0 0 9.4 0 0.4 0 0.1 0 0.1

Xpense 12 2,136 3 2 3 0 6 1 0 0 2 2.1 21/21=100.0% 0 0 8.4 0 0.4 0 0.1 0 0.1

BB 12 1579 4 1 4 0 7 1 0 0 2 2.4 12/12=100.0% 0 0 6.7 0 0.2 0 0.1 0 0.1

WEBN 13 1,398 3 2 3 1 6 1 0 1 3 5.9 14/14=100.0% 0 0 4.1 0 0.3 0 0.1 0 0.1

CelebrityMarket 13 1,938 1 0 0 0 0 0 0 0 0 0.3 2/32=6.2% 0 0 7.8 0 0.1 0 0.1 0 0.1

NinjaKittyUnit 14 1,887 0 1 0 0 0 1 0 0 0 0.7 2/10=20.0% 0 0 2.9 0 0.1 0 0.1 0 0.1

COW 15 2,501 1 4 1 3 4 1 0 0 1 3.6 29/29=100.0% 0 0 13.9 0/1 0.1 0/1 0.2 0 0.1

UNTY 16 3,127 0 2 0 0 0 1 0 0 0 1.3 5/7=71.4% 0 0 5.7 0 0.1 0 0.2 0 0.1

ChangeBank 16 1,929 3 1 2 0 1 0 0 0 0 1.0 12/22=54.5% 0 0 7.5 0 0.8 0/1 0.1 0/1 0.1

Aavio 16 2,110 3 3 3 1 7 1 0 1 1 4.8 24/24=100% 1 1 15.8 0 0.9 0 0.1 0 0.1

Freedom 17 2,578 1 2 1 2 1 1 0 2 0 2.7 27/43=62.7% 2 0 50.1 0 0.1 0/2 0.2 0/3 0.1

ETJ 17 3,035 3 4 3 1 8 2 0 0 0 7.5 32/32=100.0% 0 0 37.6 0 0.9 0 0.1 0 0.1

HubrisOne 18 2,924 2 2 1 1 3 1 0 1 2 8.7 28/30=93.3% 0 0 12.5 0 0.6 0 0.1 0 0.1

MADANA 18 3,543 2 2 1 1 2 1 0 1 1 2.8 18/28=64.3% 0 0 62.1 0 0.1 0 0.1 0 0.1

GOG 19 3,304 7 2 7 0 8 1 0 0 2 9.1 64/64=100.0% 0 0 25.1 0 0.5 0 0.1 0 0.1

MediBloc 19 3,237 4 2 1 1 2 1 0 1 2 5.4 78/78=100.0% 0 0 24.6 0 0.9 0 0.3 0 0.1

Simmitri 19 1,885 4 3 3 1 8 1 0 1 2 8.2 26/26=100.0% 1 1 10.0 0 0.1 0 0.1 0 0.1

Winsshar 20 2,504 1 6 1 8 5 2 0 0 0 9.6 57/72=79.2% 0 0 41.8 0 0.1 0 0.1 0 0.1

ProofOfReview 20 1,941 3 2 2 0 2 2 0 0 1 1.5 6/8=75.0% 0 0 3.9 0 0.1 0 0.2 0 0.1

HSD 21 3,345 4 2 3 0 6 1 1 0 1 5.2 43/50=86.0% 0 0 87.9 0 0.4 0/1 0.1 0 0.1

LendConnect 22 2,461 0 1 0 0 0 1 0 0 0 2.5 4/14=28.5% 0 0 35.8 0 0.3 0/1 0.1 0/1 0.4

ChickenFarmer 22 1,731 1 0 0 0 0 0 0 0 0 3.6 6/20=30.0% 0 0 10.1 0 0.1 1 0.3 1/4 0.9

EnchantedShop 23 3,312 2 0 0 0 0 0 0 0 0 2.3 13/25=52.0% 0 0 46.9 0 0.6 1/1 0.2 1/2 0.3

MATOX 23 2,692 3 2 2 0 4 2 0 1 0 9.8 54/60=90.0% 0 0 86.4 0 0.2 1 0.1 0 0.1

Dragon 23 3,238 4 1 4 0 9 1 0 0 1 4.8 16/32=50.0% 0 0 20.3 0 0.1 0 0.1 0 0.1

EthernetCash 23 2,577 3 5 3 1 10 3 0 0 1 9.2 53/53=100.0% 0 0 16.6 1 0.3 1 0.1 1/3 0.1

OMPxContract 24 3,479 1 2 1 0 1 2 0 0 0 1.1 20/52=38.5% 0 0 34.2 0 0.1 0 0.1 0 0.1

Sota 24 2,712 5 3 3 1 2 2 0 0 0 14.0 73/80=91.2% 0 0 97.4 0 0.2 0 0.2 0 0.1

Viewly 24 2,510 0 4 0 0 1 4 0 0 1 1.2 36/86=41.9% 0 0 34.9 1 0.4 2 0.2 0 0.1

Crowdsale 25 2,665 1 0 0 0 0 0 0 0 0 1.6 2/18=11.1% 0 0 14.3 0 0.4 0/2 0.1 0/2 0.6

Char 25 3,653 3 6 2 1 2 4 0 1 2 8.0 52/52=100.0% 0 0 27.4 0 0.3 0 0.1 0 0.1

CityToken 25 3,918 4 2 0 0 2 2 0 0 2 3.5 37/37=100.0% 0 0 11.0 0 0.1 2 0.2 2 0.5

ROD 26 3,539 6 5 4 2 6 3 0 2 4 11.0 144/144=100.0% 0 0 83.9 0 0.9 0 0.1 0 0.1

BrownChipMain 26 3,707 0 2 0 0 0 1 0 0 0 0.5 4/36=11.0% 0 0 16.5 0 0.7 0 0.1 1/4 4.5

grip 27 3,728 4 4 2 0 6 3 0 0 1 15.9 59/66=89.3% 0 0 86.2 0 0.3 1 0.1 0 0.1

TokensWarContract 27 4,722 3 2 1 0 1 2 1 0 1 1.9 42/42=100.0% 0 0 16.4 1 0.3 2 0.2 2/1 0.3

Dentacoin 29 3,322 2 7 2 2 1 6 0 0 1 4.5 48/64=75.0% 0 1 23.0 0 0.7 0 0.1 0/3 0.6

LAAR 29 4,937 7 2 5 1 3 1 0 1 3 9.1 94/112=87.5% 0 0 65.1 0 0.1 0 0.1 0 0.1

INRD 30 4,701 2 4 1 1 2 3 0 1 1 6.3 78/118=66.1% 1 1 47.7 0 0.1 0 0.1 0 0.1

UniondaoDollarToken 31 4,926 0 5 0 0 0 5 0 0 0 2.3 24/36=66.7% 0 0 79.8 0 0.6 0/1 0.2 0/1 1.0

Genaro 34 6,990 0 2 0 0 0 2 0 0 0 1.0 32/40=80.0% 0 0 14.3 0 0.1 0 0.2 0 0.1

CSTK_CLT 34 4,842 6 4 5 1 7 3 0 0 1 6.9 73/111=65.8% 0 0 75.2 0 3.1 0 0.4 0 0.1

Yihaa 37 4,626 3 2 2 0 2 2 0 0 1 3.1 6/8=75.0% 0 0 5.3 0 0.4 0 0.1 0 0.1

IgfContract 37 3,886 7 4 4 2 16 3 0 1 2 21.8 68/108=62.9% 0 0 62.7 0 0.1 2 0.1 0 0.1

Scale 41 4,214 10 3 4 1 7 2 0 1 3 16.4 28/90=31.1% 0 0 84.3 0 0.1 0/1 0.1 0 0.1

Total 1,064 148,618 130 122 94 35 175 81 2 16 50 255.9 / 5 4 1,553.0 4/1 18.5 14/11 7.1 9/25 13.2

Average 21.3 2,972.4 2.6 2.4 1.9 0.7 3.5 1.6 0.1 0.3 1.0 5.1 75.1% 0.1 0.1 31.1 0.1/0.1 0.4 0.3/0.2 0.1 0.2/0.5 0.3

these race bugs, we first deploy the corresponding contracts to a

private chain. Then, based on the contract source code and their

detection results, we carefully generate and execute transactions to

determine whether they can cause inconsistent contract states.

Effectiveness. In the 50 smart contracts, TransRacer finds 426
races, including 149 race bugs. Among the 426 races and 149 race

bugs, our manual analysis confirms that all are true positives. For

the 50 contracts, there are 187 functions that are not callable at

the initial contract state. Heuristic 1 successfully activates 69.5%

(130/187) of them.

ETHRacer flags nine event-order bugs for the 50 smart contracts.

Our manual analysis confirms that all of the detected bugs are true

positives and are detected by TransRacer as well. In other words,

TransRacer finds all the bugs reported by ETHRacer but detect 57
additional true positive TRB𝐷 . A close investigation shows that

there are two main reasons why ETHRacer finds fewer bugs. First,

ETHRacer cannot easily generate witness transactions because

it does not infer the three constraints that trigger races. Second,

ETHRacer does not infer the contract states that enable race bugs
to emerge. Consider the example illustrated in Figure 1. The hid-

den race can only be triggered at specific contract states. Since

ETHRacer does not infer such states, the probability of generating

the transactions that trigger this race is small.

As shown in Table 2, Oyente finds five race bugs, four of which
are true positives that can be detected by TransRacer. Securify and

Sailfish find 25 and 34 race bugs, respectively. We manually check

these results and confirm that Securify and Sailfish find 14 true

positives and 9 true positives, respectively. Of these true positives,

TransRacermisses four. One of them is relevant to the transfer of the

ERC-721 token. We cannot generate the input (i.e., token identifier)

that triggers this race because the token that can be transferred

is unobtainable solely through the contract bytecode. TransRacer

TransRacer: Function Dependence-Guided Transaction Race Detection for Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 contract UniondaoDollarToken {
2 address public owner;
3 function withdrawToken(address token, uint256

amount) {
4 if (token == address(0x0)){
5 owner.transfer(amount);}...}}

1 contract CityToken{
2 mapping (uint256 => address) tokenIndexToOwner;
3 mapping (uint256 => address) tokenIndexToPrice;
4 function _purchaseCity(uint256 _tokenId) {
5 address oldOwner = tokenIndexToOwner[_tokenId];
6 uint256 price = tokenIndexToPrice[_tokenId];
7 uint256 payment = price*92/100;
8 oldOwner.transfer(payment);
9 tokenIndexToPrice[_tokenId] = price*120/92;...}}

1 contract generic_holder {
2 address owner;
3 function execute(address _to, uint _value, bytes

_data) onlyowner payable{
4 return _to.call.value(_value)(_data);}...}

1 contract MAL{
2 uint256 withdrawTaxPercent=30;
3 uint256 totalTaxCollected;
4 address owner;
5 function withdrawMAL(uint256 amount) {
6 require(...);
7 uint256 tax = (amount * withdrawTaxPercent) /

100;
8 totalTaxCollected += tax;...;}
9 function updateWithdrawTaxPercent(uint256

_taxPercent) public onlyOwner {
10 require(_taxPercent <= 100);
11 withdrawTaxPercent = _taxPercent;}

1 contract CityToken{
2 function setCEO(address _newCEO) public onlyCEO {
3 require(_newCEO != address(0));
4 ceoAddress = _newCEO;}
5 function payout(address _to) onlyCLevel {
6 if (_to == address(0)) {
7 ceoAddress.transfer(this.balance);
8 } else {
9 _to.transfer(this.balance);}}...}

1 contract TokenSaleChallenge {
2 mapping(address => uint256) public balanceOf;
3 uint256 constant PRICE_PER_TOKEN = 1 ether;
4
5 function buy(uint256 numTokens) public payable {
6 require(msg.value == numTokens *

PRICE_PER_TOKEN);
7 balanceOf[msg.sender] += numTokens;
8 }
9 }

1 contract Promise {
2 bool public signedByPromisor;
3 uint[3] public votedFoul;
4
5 function voteFoul(uint _number) public{
6 require(signedByPromisor);
7 require(msg.sender == judges[_number]);
8 require(votedFoul[_number] != 1);
9 require(...)

10
11 foulVotes = foulVotes + 1;
12 votedFoul[_number] = 1;
13 if((foulVotes >= 2) && !sentMoney){
14 beneficiary.transfer(deposit);

15 sentMoney = true;
16 }
17 }
18 function selfDestruct() public{
19 require(sentMoney);
20 require(now >= (endDate+432000));
21
22 selfdestruct(msg.sender);
23 }
24 }

1 contract DYCOIN {
2
3 function approve(address _spender, uint256 _value)

returns (bool success) {
4 allowed[msg.sender][_spender] = _value;
5 ...;
6 }
7
8 function transferFrom(address _from, address _to,

uint256 _value) returns (bool success) {
9 require(

10 allowed[_from][msg.sender] >= _value
11 && balances[_from] >= _value
12 && _value > 0);
13 balances[_from] -= _value;
14 balances[_to] += _value;
15 allowed [_from][msg.sender] -= _value;
16 return true;
17 }
18 }

1 contract GraceCoin{
2 uint256 public sellExchangeRate = 1*10**8;
3 function setExchangeRate(uint rate) public returns

(uint){
4 sellExchangeRate = rate;}}

Figure 5: A false positive reported by Securify.

fails to detect the other three true positives because the distinct

post-state constraints of these races involve nonlinear constraints

that cannot be solved by the SMT solver. TransRacer misses four

race bugs detected by Securify or Sailfish because it attempts to

infer the conditions to trigger race bugs, whereas Securify and

Sailfish only check the statements that are susceptible to race bugs.

However, this also causes Securify to report 11 false positives and

Sailfish to report 25 false positives. For instance, Securify suggests

that a race bug can occur at Line 5 of Figure 5. However, since the

contract does not have any function that can write to the variable

𝑜𝑤𝑛𝑒𝑟 , race access to 𝑜𝑤𝑛𝑒𝑟 can never occur.

Efficiency. As listed in Table 2, for the 50 smart contracts, Tran-
sRacer requires an average of 5.1 minutes to analyze a smart con-

tract. The maximum, minimum, and median execution time of Tran-
sRacer is 21.8 minutes, 0.2 minutes, and 3.5 minutes, respectively.

These values are reasonable because smart contracts that call more

functions usually require checking more candidate function pairs.

Given the 5.1-minute average, the average time required to perform

static filtering and race checking at the initial contract states is 1.0

minutes and 0.9 minutes, respectively. For the 41 contracts involv-

ing function dependencies, TransRacer finds a total of 130 function
dependencies with an average time cost of 1.8 minutes. The number

of detected dependencies is 130, which led to race checking an aver-

age of 3.2 more states per contract. Consequently, TransRacer race
detection averages 1.1 minutes and 1.7 minutes per contract at the

initial and updated contract states, respectively. Therefore, Tran-
sRacer is efficient for multistate detection. In contrast, ETHRacer
requires 31.1 minutes to analyze one smart contract on average,

indicating that TransRacer is more efficient than ETHRacer. For
the evaluated smart contracts, the execution time of the concrete

executions is usually less than one second per smart contract. We

do not discuss the time cost of the concrete executions as it has

little impact on the overall time cost. Because Oyente, Securify, and
Sailfish are lightweight and do not yield witness transactions, these

three approaches require much less time than TransRacer.
We look into the smart contracts on which TransRacer takes

more than ten minutes to finish the analysis, and find that these

contracts usually involve many functions, functions dependencies,

loops or branches, and race constraints that are not easy to solve.

Answer to RQ1: TransRacer detects 426 races, including

149 race bugs, in the 50 smart contracts without generating

false positives. The number (percentages) of races and race

bugs flagged at updated states are 63.1% (269/426) and 35.0%

(52/149), respectively.

Implications: TransRacer can accurately find races (including
race bugs) in smart contracts, and dependence analysis is

helpful in race detection.

Table 3: The Numbers of Races and Race Bugs Detected in

6,943 Smart Contracts

111 Initial state Updated state Total

#TRI 8,791 3,706 12,497

#TRD 4,479 7,490 11,969

Total 12,081 12,385 24,466

#TRBI 5,004 225 5,229

#TRBD 730 1,775 2,505

Total 5,734 2,000 7,734

Table 4: The Number of Smart Contracts Involving Races and

Race Bugs

111 Initial state Updated state Total unique

#TRI 3,535 1,661 3,664

#TRD 1,340 1,681 2,304

Total unique 3,539 1,861 3,680

#TRBI 2,589 143 2,620

#TRBD 451 871 1,111

Total unique 2,648 953 2,710

Answer to RQ2: For the 50 smart contracts, TransRacer
spends an average of 5.1 minutes analyzing each smart con-

tract. For the 41 smart contracts involving function dependen-

cies, the average race detection times at the initial and updated

contract states are 1.1 minutes and 1.7 minutes, respectively.

Implications: As a tool based on symbolic execution, Tran-
sRacer is efficient and scales well for race detection.

5.2 Empirical Study

To investigate the severity of races in practice, we further apply

TransRacer to 6,943 real-world smart contracts. These smart con-

tracts are initially used by ETHRacer to study event-order bugs [16].
We do not differentiate malignant and benign races. Tables 3 and 4

report the results of TransRacer on this large dataset.

Answer to RQ3: Of 6,943 smart contracts, TransRacer finds
3,680 (3,680/6,943 = 53.0%) smart contracts involving races.

Of these, 2,710 (2,710/3,680 = 73.6%) lead to race bugs. Over-

all, TransRacer detects 24,466 races and 8,360 (7,734/24,466 =

31.6%) race bugs.

Implications: Races and race bugs are prevalent in real-world

smart contracts.

For RQ3, the average numbers of races and race bugs among the

3,680 smart contracts are 6.6 and 2.1, respectively. These results

indicate that races have been overlooked by developers.

The answer to RQ4 indicates that stateful exploration is helpful

for race detection. For practitioners attempting to design a race

detector, it is desirable to balance detection ability and efficiency.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chenyang Ma, Wei Song, and Jeff Huang

Answer to RQ4: Among the 3,680 smart contracts that in-

volve races, 1,861 (1,861/3,680 = 50.6%) and 953 (953/3,680 =

25.9%) lead to races and race bugs that can only be triggered

at updated contract states, respectively.

Implications: Numerous races and race bugs are hidden at

specific contract states. Therefore, in addition to the initial

state, it is desirable to explore other reachable contract states

to seek races.

Answer to RQ5: Among the 3,680 smart contracts, Tran-
sRacer finds 12,497 (12,497/24,466 = 51.1%) TRI races in

3,664 (3,664/3,680 = 99.5%) smart contracts. Furthermore,

11,969 (11,969/24,466 = 48.9%) TRD races are found in 2,304

(2,304/3,680 = 62.6%) smart contracts.

Implications: TRI and TRD races are prevalent in practice.

It is reasonable that TRI races are common in smart contracts

because two transactions that invoke the same function usually race

to write the same variables. However, it is clear that there are also

numerous instances of TRD races. To prevent TRD from occurring,

a smart contract needs to precisely block unwanted transaction

sequences and allow only the intended transaction sequences. Thus,

the contract logic needs to be designed carefully.

Answer to RQ6: Races can cause consequences such as ether

losses and token losses. For the 2,710 smart contracts that

lead to race bugs, we find that 338 (338/2,710 = 12.5%) and 548

(548/2,710 = 20.2%) lead to bugs that result in ether and token

losses, respectively.

Implications: Many real-world smart contracts involve race

bugs that can lead to harmful consequences.

We verify whether a race bug that is relevant to two trans-

actions can cause ether losses by checking whether executing

two transactions in different orders leads to different contract bal-

ances. We verify the race bugs that cause token losses by check-

ing whether at least one of the transactions can invoke the token

transfer functions specified by the Ethereum token standards (e.g.,

ERC20, ERC721 [4]).

Figure 6 shows a money loss case found by TransRacer. One
important task of this contract is to recruit money from an investor.

The function withdraw() is used to withdraw the investment of the

current investor. Suppose a new investor decides to join the project

and the previous investor wants to quit and get a refund. Thus, the

contract owner might invoke setInvestor() immediately after

invoking withdraw(). If the miner executes setInvestor() before
withdraw(), the previous investor will lose some money because

his/her investment is withdrawn to the new investor. The intention

of the contract designer is only to allow the investor to withdraw

his/her own money. Since the contract behaviour is different from

the intention of the contract designer, this race is malignant. The

reason for this race is that both withdraw() and setInvestor()
are callable at the contract state before the investor receives his/her

1 contract UniondaoDollarToken {
2 address public owner;
3 function withdrawToken(address token, uint256

amount) {
4 if (token == address(0x0)){
5 owner.transfer(amount);}...}}

1 contract CityToken{
2 mapping (uint256 => address) tokenIndexToOwner;
3 mapping (uint256 => address) tokenIndexToPrice;
4 function _purchaseCity(uint256 _tokenId) {
5 address oldOwner = tokenIndexToOwner[_tokenId];
6 uint256 price = tokenIndexToPrice[_tokenId];
7 uint256 payment = price*92/100;
8 oldOwner.transfer(payment);
9 tokenIndexToPrice[_tokenId] = price*120/92;...}}

1 contract generic_holder {
2 address owner;
3 function execute(address _to, uint _value, bytes

_data) onlyowner payable{
4 return _to.call.value(_value)(_data);}...}

1 contract CityToken{
2 function setCEO(address _newCEO) public onlyCEO {
3 require(_newCEO != address(0));
4 ceoAddress = _newCEO;}
5 function payout(address _to) onlyCLevel {
6 if (_to == address(0)) {
7 ceoAddress.transfer(this.balance);
8 } else {
9 _to.transfer(this.balance);}}...}

1 contract Yiha{
2 uint challengeNumber;
3 uint challenge_digest;
4 function mint(uint256 nonce, bytes32

challenge_digest) public returns (bool success)
{

5 bytes32 digest = keccak256(challengeNumber,
msg.sender, nonce);

6 if (digest != challenge_digest) revert();
7 ...}

1 contract TokenSaleChallenge {
2 mapping(address => uint256) public balanceOf;
3 uint256 constant PRICE_PER_TOKEN = 1 ether;
4 function buy(uint256 numTokens) public payable {
5 require(...);
6 balanceOf[msg.sender] += numTokens;
7 }
8 }

1 contract Promise {
2 bool public signedByPromisor;
3 uint[3] public votedFoul;
4 uint public deposit;
5
6 function voteFoul(uint _number) public{
7 require(signedByPromisor);
8 require(msg.sender == judges[_number]);
9 require(votedFoul[_number] != 1);

10 require(...)
11
12 foulVotes = foulVotes + 1;
13 votedFoul[_number] = 1;
14 }
15 function sent() public{
16 require(foulVotes >= 2)
17 require(sentMoney)
18 beneficiary.transfer(deposit);
19 sentMoney = true;

20 }
21 function selfDestruct() public{
22 require(sentMoney);
23 require(now >= (endDate+432000));
24 selfdestruct(msg.sender);
25 }
26 }

1 contract DYCOIN {
2
3 function approve(address _spender, uint256 _value)

returns (bool success) {
4 allowed[msg.sender][_spender] = _value;
5 ...;
6 }
7
8 function transferFrom(address _from, address _to,

uint256 _value) returns (bool success) {
9 require(

10 allowed[_from][msg.sender] >= _value
11 && balances[_from] >= _value
12 && _value > 0);
13 balances[_from] -= _value;
14 balances[_to] += _value;
15 allowed [_from][msg.sender] -= _value;
16 return true;
17 }
18 }

1 contract GraceCoin{
2 function judgeSigns(uint _number) public{
3 require(msg.sender == judges[_number]);
4 signedByJudge[_number] = 1;
5 }
6 function promisorSigns() payable public{
7 require(...);
8 require(signedByJudge[2] == 1);
9 signedByPromisor = true;

10 }

1 contract Preallocation{
2 address investor;
3 function withdraw() onlyOwner{
4 uint bal = this.balance;
5 if (!investor.send(bal)) {
6 throw;}}
7 function setInvestor(address _investor) onlyOwner

{
8 investor = _investor;}
9 }

Figure 6: A transaction race leads to a money loss.

investment. To prevent this race, one can add constraints to ensure

that only withdraw() is callable at this contract state.

Answer to RQ7: The numbers (percentages) of TRI and TRD

that can result in race bugs are 5,229 (5,229/12,497 = 41.8%)

and 2,505 (2,505/12,497 = 20.0%), respectively. Moreover, we

find that 1.7% (86/5,229) of the TRBI and 47.8% (1,198/2,505) of

the TRBD can cause financial losses.

Implications: A TRI is more likely to lead to race bugs than a

TRD. However, the race bugs induced by TRD are more likely

to cause financial losses.

The answer to RQ7 indicates that developers should pay at-

tention to race bugs because many can lead to financial losses.

Financial-loss cases usually emerge when one transaction affects

the arguments (including 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 , 𝑠𝑝𝑒𝑛𝑑𝑒𝑟 , 𝑎𝑚𝑜𝑢𝑛𝑡) of an ether

(token) transfer operation initiated by other transactions. A TRBD

is more likely to cause money losses than a TRBI because develop-

ers usually implement the token transfer configuration and token

transfer initiation in two separate functions.

5.3 Threats to Validity and Limitations

Internal validity. TransRacer begins race checking at the initial
state of each smart contract, because our approach is expected

to be used by the developers before they deploy the contracts to

the Ethereum. Our experimental results may vary if the state to

begin the analysis is changed. In Section 5.2, we determine whether

a race bug between two transactions can lead to token loss by

checking whether at least one of the two transactions invokes a

token transfer function. One may argue that if such transactions

calling the token transfer function do not affect user balances, our

results may be inaccurate in practice. Fortunately, we find that

most of the smart contracts compliant with the token standards of

Ethereum implement the transfer function solely for transferring

tokens, and thus such race bugs can probably cause token losses.

Limitations. TransRacer uses function dependencies to seek

reachable contract states that activate certain functions. However,

this heuristic rulemay not alwayswork. Currently, we only consider

transaction races in one smart contract, while inter-contract races

are not considered.

6 RELATEDWORK

Inconsistent contract state detection. A TOD bug is a race bug

that leads to a difference in the contract balance. TOD bug detection

techniques include symbolic execution, static analysis, and contract

TransRacer: Function Dependence-Guided Transaction Race Detection for Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

fuzzing [1, 15, 21, 22, 34–37]. For example, Luu et al. [22] implement

the first tool Oyente for detecting TOD bugs. It symbolically exe-

cutes all the paths in the control flow graph of the smart contract

to determine whether there are two paths that have different ether

flows. ZEUS [15] first taints the global variables that are written

to. Then, it determines whether there is a TOD bug by checking

whether the tainted variables can influence the ether flow. Oyente
and ZEUS employ symbolic execution only for path exploration,

whereas TransRacer uses symbolic execution to capture constraints

that directly lead to races. Securify [35] is a static analysis tool that

detects TOD bugs by defining and checking the TOD violation pat-

terns in the smart contract dependence graph. Sailfish [2] utilizes

a light-weight exploration phase and a symbolic execution-based

refinement phase to improve the efficiency and precision of the race

detection. Several other TOD bug detectors [21, 37] use machine

learning techniques to detect race bugs, but they do not generate

witness transactions. ConFuzzius [34] tries to generate transactions
that can trigger TOD bugs via fuzzing, while TransRacer generates
witness transaction sequences with symbolic execution.

In addition to detecting ether flow differences, ETHRacer [16]
is the first tool to detect differences at all variable states caused by

the nondeterministic transaction execution order. The authors first

employ symbolic execution to generate candidate transactions for

fuzzing and then check the fuzzing results to determine whether

different execution sequences result in different contract states. In

contrast to ETHRacer, TransRacer aims to detect transaction (data)

races between two function invocations. Moreover, instead of ex-

ploring different contract states through fuzzing, TransRacer infers
function dependencies to seek contract states that can activate cer-

tain functions. As a result, TransRacer finds more smart contracts

that involve race bugs than ETHRacer.
Dependence-based bug detection. Different notions of depen-

dence have been proposed to help detect smart contract bugs [9,

31, 34, 40, 42, 43]. The framework for Ethereum transaction at-

tack detection (TXSpector) [40] first determines whether an opcode

SLOAD (JUMPI) depends on another opcode SSTORE to capture the
data(control) flow dependence in a program path. Then, it uses

these dependencies to construct rules for bug detection, such as

reentrancy bugs and unchecked calls. Slither [9] is a static analysis
tool that models data dependencies and uses them as features to

trigger bugs such as uninitialized variables and reentrancy bugs.

Symbolic value-flow static analysis (symvalic) [31] is a static bug de-
tector that employs symbolic analysis to capture the dependencies

among a small set of values to improve the precision and scalability

of the detection results. MPro [41] utilizes the data dependence

between two functions to reduce the number of paths that need

to be symbolically executed. Torres et al. [34] propose a genetic

algorithm that leverages data dependence analysis to rearrange the

transaction order and generate new populations for fuzzing. In con-

trast to these studies, we define and use function dependencies to

help detect contract bugs and yield witness transaction sequences.

Transaction sequence-based bug detection. Many detectors

aim to generate transaction sequences to detect hidden smart con-

tract bugs. Most of them are based on techniques of symbolic ex-

ecution [11, 17, 24, 26, 41], fuzzing [14, 19, 25, 38, 39], machine

learning [13, 32], and model checking [33]. For instance, Manti-
core [24] and Teether [17] detect different bugs by symbolically

executing a sequence of functions and checking whether the safety

violations exist in the executed paths. Fuzzing-based tools such

as ConFuzzer [14] and ReGuard [19] randomly generate transac-

tion sequences to trigger smart contract bugs. Harvey [38] and

sFuzz [25] generate transaction sequences by randomly mutating

the execution orders of their selected seed transactions. Similarly,

Fluffy [39] utilizes a multi-transaction differential fuzzer to mani-

fest consensus bugs in Ethereum. Imitation learning-based fuzzer

(ILF) [13] and Smartest [32] adopt machine learning techniques to

learn a predictive model [27, 29] to generate transaction sequences

to trigger bugs. Smartian [6] employs static analysis to generate

transaction sequences as seeds. Then, it leverages data flow analysis

to mutate these seeds for fuzzing. Notably, the detectors based on

symbolic execution win in accuracy, while those based on fuzzing

and machine learning win in efficiency. To balance accuracy and

efficiency, TransRacer employs function dependencies and concrete

execution to guide the procedure of transaction race detection with

symbolic execution. To generate transaction sequences that violate

the liveness properties of smart contracts, SmartPulse [33] initially
invokes a random sequence of functions with random values to

generate transaction sequences. Then, it checks whether there is a

sequence that violates the liveness properties.

Existing race detection techniques for traditional programming

languages such as C/C++ or Java mostly focus on detecting low-

level data races, caused by missing locks or improper synchroniza-

tions between parallel threads (see classical papers [10] and [18]).

However, in smart contracts, the races are high-level logical races

due to abnormal or non-deterministic transaction orderings. Exist-

ing techniques cannot be easily adapted to detect transaction races

because all transactions are executed by a single thread (miner)

sequentially and locks are not available.

7 CONCLUSIONS

In this paper, we present TransRacer, a tool that combines symbolic

execution and concrete execution for transaction race detection in

Ethereum smart contracts. By leveraging symbolic execution and

constraint solving, TransRacer effectively generates transactions

that can trigger races. TransRacer employs function dependence

analysis and concrete execution to find contract states that can

activate certain functions, which allows TransRacer to find more

races hidden at specific contract states. An experimental evaluation

of 50 real-world smart contracts demonstrates the effectiveness

and efficiency of TransRacer. An empirical study on 6,943 smart

contracts demonstrates that races are prevalent in practice, and

many race bugs can cause ether or token losses.

DATA AVAILABILITY

All artifacts, including TransRacer3 and the datasets (smart contract

addresses) of the article are publicly available [23].

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science

Foundation of China under Grant No. 61761136003.

3
https://github.com/wsong-nj/TransRacer

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chenyang Ma, Wei Song, and Jeff Huang

REFERENCES

[1] Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio, and Ilya Sergey.

2018. EthIR: A Framework for High-Level Analysis of Ethereum Bytecode. In

Proceedings of the 16th International Symposium on Automated Technology for
Verification and Analysis, ATVA’18, Los Angeles, CA, USA, October 7-10 (Lecture
Notes in Computer Science, Vol. 11138). Springer, Los Angeles, CA, USA, 513–520.
https://doi.org/10.1007/978-3-030-01090-4_30

[2] Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng, Christopher Kruegel, and

Giovanni Vigna. 2022. SAILFISH: Vetting Smart Contract State-Inconsistency

Bugs in Seconds. In Proceedings of the 43rd IEEE Symposium on Security and
Privacy, SP’22, San Francisco, CA, USA, May 22-26. IEEE, San Francisco, CA, USA,

161–178. https://doi.org/10.1109/SP46214.2022.9833721

[3] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized

application platform. white paper 3, 37 (2014), 2–1.
[4] Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melko-

nian, Jann Müller, Michael Peyton Jones, Polina Vinogradova, and Philip Wadler.

2020. Native Custom Tokens in the Extended UTXO Model. In Proceedings of the
9th International Symposium on Leveraging Applications of Formal Methods Part
III - Leveraging Applications of Formal Methods, Verification and Validation: Appli-
cations, ISoLA’2020, Rhodes, Greece, October 20-30, Vol. 12478. Springer, Rhodes,
Greece, 89–111. https://doi.org/10.1007/978-3-030-61467-6_7

[5] Weili Chen, Tuo Zhang, Zhiguang Chen, Zibin Zheng, and Yutong Lu. 2020.

Traveling the token world: A graph analysis of Ethereum ERC20 token ecosystem.

In Proceedings of the The Web Conference, WWW’20, Taipei, Taiwan, April 20-24.
ACM/IW3C2, Taipei, Taiwan, China, 1411–1421. https://doi.org/10.1145/3366423.

3380215

[6] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and

Sang Kil Cha. 2021. SMARTIAN: Enhancing Smart Contract Fuzzing with Static

and Dynamic Data-Flow Analyses. In Proceedings of the 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE’21, Melbourne, Aus-
tralia, November 15-19. IEEE, Melbourne, Australia, 227–239. https://doi.org/10.

1109/ASE51524.2021.9678888

[7] Chris Dannen. 2017. Introducing Ethereum and solidity (1 ed.). Springer. 1–185

pages. https://doi.org/10.1007/978-1-4842-2535-6

[8] Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical

review of automated analysis tools on 47, 587 Ethereum smart contracts. In

Proceedings of 42nd International Conference on Software Engineering ICSE’20,
Seoul, South Korea, 27 June - 19 July. ACM, 530–541. https://doi.org/10.1145/

3377811.3380364

[9] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In Proceedings of the 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain, WETSEB@ICSE’19,
Montreal, QC, Canada, May 27. IEEE/ACM, Montreal, QC, Canada, 8–15. https:

//doi.org/10.1109/WETSEB.2019.00008

[10] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient and precise

dynamic race detection. In Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI’09, Dublin, Ireland, June
15-21. ACM, 121–133. https://doi.org/10.1145/1542476.1542490

[11] Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. ETHBMC: A

Bounded Model Checker for Smart Contracts. In Proceedings of the 29th USENIX
Security Symposium, USENIX Security’20, August 12-14. USENIXAssociation, 2757–

2774. https://www.usenix.org/conference/usenixsecurity20/presentation/frank

[12] Alex Groce, Josselin Feist, Gustavo Grieco, and Michael Colburn. 2020. What

are the Actual Flaws in Important Smart Contracts (And How Can We Find

Them)?. In Proceedings of the Financial Cryptography and Data Security - 24th
International Conference, FC’20, Kota Kinabalu, Malaysia, February 10-14. Springer,
Kota Kinabalu, Malaysia, 634–653. https://doi.org/10.1007/978-3-030-51280-4_34

[13] Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov, and Martin T.

Vechev. 2019. Learning to Fuzz from Symbolic Execution with Application to

Smart Contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS’19, London, UK, November 11-15. ACM, London,

UK, 531–548. https://doi.org/10.1145/3319535.3363230

[14] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: fuzzing smart contracts

for vulnerability detection. In Proceedings of the 33rd ACM/IEEE International Con-
ference on Automated Software Engineering, ASE’18, Montpellier, France, September
3-7. ACM, Montpellier, France, 259–269. https://doi.org/10.1145/3238147.3238177

[15] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:

Analyzing Safety of Smart Contracts. In Proceedings of the 25th Annual Net-
work and Distributed System Security Symposium, NDSS’18, San Diego, Califor-
nia, USA, February 18-21. The Internet Society, San Diego, California, USA, 1–

15. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/

ndss2018_09-1_Kalra_paper.pdf

[16] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena.

2019. Exploiting the laws of order in smart contracts. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA’19, Beijing, China, July 15-19. ACM, Beijing, China, 363–373. https://doi.

org/10.1145/3293882.3330560

[17] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum to

Automatically Exploit Smart Contracts. In Proceedings of the 27th USENIX Security
Symposium, USENIX Security’18, Baltimore, MD, USA, August 15-17. USENIX As-

sociation, Baltimore, MD, USA, 1317–1333. https://www.usenix.org/conference/

usenixsecurity18/presentation/krupp

[18] Bozhen Liu, Peiming Liu, Yanze Li, Chia-Che Tsai, Dilma Da Silva, and Jeff Huang.

2021. When threads meet events: efficient and precise static race detection with

origins. In PLDI’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25. ACM,

725–739. https://doi.org/10.1145/3453483.3454073

[19] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe.

2018. ReGuard: finding reentrancy bugs in smart contracts. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings,
ICSE’18, Gothenburg, Sweden, May 27 - June 03. ACM, Gothenburg, Sweden, 65–68.

https://doi.org/10.1145/3183440.3183495

[20] Lu Liu, Lili Wei, Wuqi Zhang, Ming Wen, Yepang Liu, and Shing-Chi Cheung.

2021. Characterizing Transaction-Reverting Statements in Ethereum Smart Con-

tracts. In Proceedings of the 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE’2021, Melbourne, Australia, November 15-19. IEEE, Mel-

bourne, Australia, 630–641. https://doi.org/10.1109/ASE51524.2021.9678597

[21] Oliver Lutz, Huili Chen, Hossein Fereidooni, Christoph Sendner, Alexandra

Dmitrienko, Ahmad-Reza Sadeghi, and Farinaz Koushanfar. 2021. ESCORT:

Ethereum Smart COntRacTs Vulnerability Detection using Deep Neural Network

and Transfer Learning. CoRR abs/2103.12607 (2021), 1–17. https://arxiv.org/abs/

2103.12607

[22] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS’16, Vienna, Austria,
October 24-28. ACM, Vienna, Austria, 254–269. https://doi.org/10.1145/2976749.

2978309

[23] Chenyang Ma, Wei Song, and Jeff Huang. 2023. Reproduction Package of ‘Tran-

sRacer: Function Dependence-Guided Transaction Race Detection for Smart

Contracts’. https://doi.org/10.5281/zenodo.8198972

[24] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,

Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A User-

Friendly Symbolic Execution Framework for Binaries and Smart Contracts. In

Proceedings of the 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE’19, San Diego, CA, USA, November 11-15. IEEE, San Diego, CA,

USA, 1186–1189. https://doi.org/10.1109/ASE.2019.00133

[25] Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.

sFuzz: an efficient adaptive fuzzer for solidity smart contracts. In Proceedings of
the 42nd International Conference on Software Engineering, ICSE’20, Seoul, South
Korea, 27 June - 19 July. ACM, Seoul, South Korea, 778–788. https://doi.org/10.

1145/3377811.3380334

[26] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceedings
of the 34th Annual Computer Security Applications Conference, ACSAC’18, San
Juan, PR, USA, December 03-07. ACM, San Juan, PR, USA, 653–663. https://doi.

org/10.1145/3274694.3274743

[27] Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion with

statistical language models. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI’14, Edinburgh, United
Kingdom - June 09 - 11. ACM, Edinburgh, United Kingdom, 419–428. https:

//doi.org/10.1145/2594291.2594321

[28] Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang, Chengnian Sun,

Huizhong Li, and Yan Cai. 2021. Empirical evaluation of smart contract testing:

what is the best choice?. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’21, Virtual Event, Denmark,
July 11-17. ACM, 566–579. https://doi.org/10.1145/3460319.3464837

[29] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. 2011. A Reduction of

Imitation Learning and Structured Prediction to No-Regret Online Learning. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, AISTATS’11, Fort Lauderdale, USA, April 11-13, Vol. 15. JMLR.org, Fort

Lauderdale, USA, 627–635. http://proceedings.mlr.press/v15/ross11a/ross11a.pdf

[30] Ilya Sergey and Aquinas Hobor. 2017. A Concurrent Perspective on Smart

Contracts. In Proceedings of the Financial Cryptography and Data Security - In-
ternational Workshops, FC’17, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema,
Malta, April 7, Revised Selected Papers, Vol. 10323. Springer, Sliema, Malta, 478–493.

https://doi.org/10.1007/978-3-319-70278-0_30

[31] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyl-

lou, and Ilias Tsatiris. 2021. Symbolic value-flow static analysis: deep, precise,

complete modeling of Ethereum smart contracts. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–30. https://doi.org/10.1145/3485540

[32] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. 2021. SmarTest: Effectively

Hunting Vulnerable Transaction Sequences in Smart Contracts through Language

Model-Guided Symbolic Execution. In Proceedings of the 30th USENIX Security
Symposium, USENIX Security’21, August 11-13. USENIX Association, 1361–1378.

https://www.usenix.org/conference/usenixsecurity21/presentation/so

https://doi.org/10.1007/978-3-030-01090-4_30
https://doi.org/10.1109/SP46214.2022.9833721
https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1145/3366423.3380215
https://doi.org/10.1145/3366423.3380215
https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1109/ASE51524.2021.9678888
https://doi.org/10.1007/978-1-4842-2535-6
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/1542476.1542490
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://doi.org/10.1007/978-3-030-51280-4_34
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3238147.3238177
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://doi.org/10.1145/3293882.3330560
https://doi.org/10.1145/3293882.3330560
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://doi.org/10.1145/3453483.3454073
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1109/ASE51524.2021.9678597
https://arxiv.org/abs/2103.12607
https://arxiv.org/abs/2103.12607
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.5281/zenodo.8198972
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/3460319.3464837
http://proceedings.mlr.press/v15/ross11a/ross11a.pdf
https://doi.org/10.1007/978-3-319-70278-0_30
https://doi.org/10.1145/3485540
https://www.usenix.org/conference/usenixsecurity21/presentation/so

TransRacer: Function Dependence-Guided Transaction Race Detection for Smart Contracts ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[33] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu K. Lahiri, and Isil

Dillig. 2021. SmartPulse: Automated Checking of Temporal Properties in Smart

Contracts. In 42nd IEEE Symposium on Security and Privacy, SP’2021, San Francisco,
CA, USA, 24-27 May. IEEE, 555–571. https://doi.org/10.1109/SP40001.2021.00085

[34] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.

2021. ConFuzzius: A Data Dependency-Aware Hybrid Fuzzer for Smart Con-

tracts. In Proceedings of the IEEE European Symposium on Security and Privacy,
EuroS&P’21, Vienna, Austria, September 6-10. IEEE, Vienna, Austria, 103–119.
https://doi.org/10.1109/EuroSP51992.2021.00018

[35] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Bünzli, andMartin T. Vechev. 2018. Securify: Practical Security Analysis of

Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS’18, Toronto, ON, Canada, October 15-19. ACM,

Toronto, ON, Canada, 67–82. https://doi.org/10.1145/3243734.3243780

[36] Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting nondetermin-

istic payment bugs in Ethereum smart contracts. Proc. ACM Program. Lang. 3,
OOPSLA (2019), 189:1–189:29. https://doi.org/10.1145/3360615

[37] Wei Wang, Jingjing Song, Guangquan Xu, Yidong Li, HaoWang, and Chunhua Su.

2021. ContractWard: Automated Vulnerability Detection Models for Ethereum

Smart Contracts. IEEE Trans. Netw. Sci. Eng. 8, 2 (2021), 1133–1144. https:

//doi.org/10.1109/TNSE.2020.2968505

[38] Valentin Wüstholz and Maria Christakis. 2020. Harvey: a greybox fuzzer for

smart contracts. In Proceedings of the ACM 28th Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE’20, Virtual Event, USA, November 8-13. ACM, USA, 1398–1409.

https://doi.org/10.1145/3368089.3417064

[39] Youngseok Yang, Taesoo Kim, and Byung-Gon Chun. 2021. Finding Consensus

Bugs in Ethereum via Multi-transaction Differential Fuzzing. In Proceedings of
the 15th USENIX Symposium on Operating Systems Design and Implementation,
OSDI’21, July 14-16. USENIX Association, 349–365. https://www.usenix.org/

conference/osdi21/presentation/yang

[40] Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. 2020.

TXSPECTOR: Uncovering Attacks in Ethereum from Transactions. In Proceedings
of the 29th USENIX Security Symposium, USENIX Security’20, August 12-14. USENIX
Association, 2775–2792. https://www.usenix.org/conference/usenixsecurity20/

presentation/zhang-mengya

[41] William Zhang, Sebastian Banescu, Leonardo Pasos, Steven T. Stewart, and Vijay

Ganesh. 2019. MPro: Combining Static and Symbolic Analysis for Scalable Testing

of Smart Contract. In Proceedings of the 30th IEEE International Symposium on
Software Reliability Engineering, ISSRE’19, Berlin, Germany, October 28-31. IEEE,
Berlin, Germany, 456–462. https://doi.org/10.1109/ISSRE.2019.00052

[42] Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu. 2020.

SMARTSHIELD: Automatic Smart Contract Protection Made Easy. In Proceedings
of the 27th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER’2020, London, ON, Canada, February 18-21. IEEE, London,
ON, Canada, 23–34. https://doi.org/10.1109/SANER48275.2020.9054825

[43] Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming

He. 2020. Smart Contract Vulnerability Detection using Graph Neural Network.

In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI’20. ijcai.org, 3283–3290. https://doi.org/10.24963/ijcai.2020/454

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1109/SP40001.2021.00085
https://doi.org/10.1109/EuroSP51992.2021.00018
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3360615
https://doi.org/10.1109/TNSE.2020.2968505
https://doi.org/10.1109/TNSE.2020.2968505
https://doi.org/10.1145/3368089.3417064
https://www.usenix.org/conference/osdi21/presentation/yang
https://www.usenix.org/conference/osdi21/presentation/yang
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-mengya
https://doi.org/10.1109/ISSRE.2019.00052
https://doi.org/10.1109/SANER48275.2020.9054825
https://doi.org/10.24963/ijcai.2020/454

	Abstract
	1 Introduction
	2 Motivation
	3 Problem Formulation
	4 TransRacer
	4.1 Transaction Race Checking
	4.2 Function Dependence Analysis
	4.3 Concrete Execution

	5 Evaluation
	5.1 Experimental Evaluation
	5.2 Empirical Study
	5.3 Threats to Validity and Limitations

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

