Chiral Amplification Based on Sergeants and Soldiers Principle in Helically Folded Poly(naphthalenecarboxamide)

Koichiro Mikami, Hiroaki Daikuhara, Yuko Inagaki, Akihiro Yokoyama*, and Tsutomu

Yokozawa*

Supporting Information

Experimental

General. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on JEOL ECA-500 and ECA-600 spectrometers. The internal standards of ${ }^{1} \mathrm{H}$ NMR spectra in CDCl_{3} was tetramethylsilane (0.00 ppm), and the internal standards of ${ }^{13} \mathrm{C}$ NMR spectra in CDCl_{3} was the midpoints of CDCl_{3} (77.0 ppm). IR spectra were recorded on a JASCO FT/IR-410. Commercially available dehydrated tetrahydrofuran (THF, stabilizerfree, Kanto) was used as a dry solvent, and dehydrated toluene (Kanto) was used for azeotropically drying the monomers. 1.0 M Lithium hexamethyldisilazide (LiHMDS) in THF (Aldrich) was used as received. The M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of polymer were measured on a Shodex GPC-101 gel permeation chromatography (GPC) unit equipped with Shodex UV-41, Shodex RI-71S, and two Shodex KF-804L columns (bead size $=7 \mu \mathrm{~m}$, pore size $=200 \AA$). THF was used as the eluent (temperature $=40^{\circ} \mathrm{C}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$), and calibration was carried out using polystyrene standards. Isolation of polyamides was carried out with a Japan Analytical Industry LC-908 recycling preparative HPLC (eluent: chloroform) using two TOSOH TSK-gel columns ($2 \times{\mathrm{G} 2000 H_{H R} \text {). UV-vis spectra were measured on a }}$ Shimadzu UV-1800 spectrophotometer. CD spectra were measured on a JASCO J-820 spectropolarimeters using a 10 mm quartz cell. Chiral monomer 1 and achiral monomer 2 were synthesized according to our previous report. ${ }^{1,2} \operatorname{Poly}(p$-benzamide) copolymers 5 were prepared according to the previous literature. ${ }^{3}$

Polymerization

The monomer $\mathbf{1}$ and $\mathbf{2}$ were copolymerized by the procedure as shown in Table 1.

Synthesis of 3c. The monomer $\mathbf{1}$ and $\mathbf{2}$ were azeotropically dehydrated with dry toluene three times and then dried under reduced pressure before use. A flask equipped with a three-way stopcock was purged with argon and then charged with 1.0 M LiHMDS in THF ($0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}$). The flask was cooled to $-30^{\circ} \mathrm{C}$ under an argon atmosphere with stirring. A solution of $\mathbf{1}(44.4 \mathrm{mg}, 0.105 \mathrm{mmol}), \mathbf{2}$ $(40.8 \mathrm{mg}, 0.0996 \mathrm{mmol})$ and initiator $(1.7 \mathrm{mg}, 0.0080 \mathrm{mmol})$ in dry THF $(0.2 \mathrm{~mL})$ was cooled to $-30^{\circ} \mathrm{C}$ and then added at once into the flask containing LiHMDS via a syringe through the three-way stopcock in a stream of dry nitrogen. After the reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 27.5 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with chloroform. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The residue was purified with a preparative HPLC (eluent: CHCl_{3}) using polystyrene gel columns to give $\mathbf{3 c}(21.6 \mathrm{mg}$, $32 \%, M_{\mathrm{n}}=5450, M_{\mathrm{w}} / M_{\mathrm{n}}=1.12$) as brown viscous liquid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00-7.08(\mathrm{~m}$, Ar- H), 4.30-3.38 (m, $-\mathrm{NCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}$ and $\left.-\mathrm{NCH}_{2} \mathrm{CH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{3}\right)$, 3.35-3.254 $\left(\mathrm{m},-\mathrm{OCH}_{3}\right), 3.248-3.16\left(\mathrm{~m},-\mathrm{OCH}_{3}\right), 1.31-1.12\left(\mathrm{~m}, \mathrm{CHCH}_{3}\right)$.

Reference

[1] Mikami, K.; Tanatani, A.; Yokoyama, A.; Yokozawa, T. Macromolecules, 2009, 42, 3849-3851.
[2] Mikami, K.; Daikuhara, H.; Kasama, J.; Yokoyama, A.; Yokozawa, T. submitted
[3] Yokoyama, A.; Inagaki, Y.; Ono, T.; Yokozawa, T. J. Polym. Sci., Part A: Polym. Chem., in press.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of chiral-achiral random copolymers after purification by HPLC in CDCl_{3} at $25^{\circ} \mathrm{C}$ to determine the chiral unit ratio in the copolymer.

Figure S2. (a) UV and CD spectra of $\mathbf{3}$ and $\mathbf{4}$ in (a) chloroform and (b) methanol at $25^{\circ} \mathrm{C}$.

Figure S3. (a) UV and CD spectra of poly(p-benzamide)s ($\mathbf{5 a} M_{\mathrm{n}}=8870, M_{\mathrm{w}} / M_{\mathrm{n}}=1.08 ; \mathbf{5 b} M_{\mathrm{n}}=9200$, $M_{\mathrm{w}} / M_{\mathrm{n}}=1.13 ; 5 \mathbf{c} M_{\mathrm{n}}=8440, M_{\mathrm{w}} / M_{\mathrm{n}}=1.08 ; 5 d M_{\mathrm{n}}=8680, M_{\mathrm{w}} / M_{\mathrm{n}}=1.07$) in water/methanol $=7 / 3$ at $25{ }^{\circ} \mathrm{C}$. (b) Plot of Kuhn dissymmetry factor $(g=\Delta \varepsilon / \varepsilon)$ at 250 nm of the random copolymer in water/methanol $=7 / 3$ (blue circle) against the chiral unit ratio. The dotted lines are meant to guide the eye.
${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 a

${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 b

${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 c

