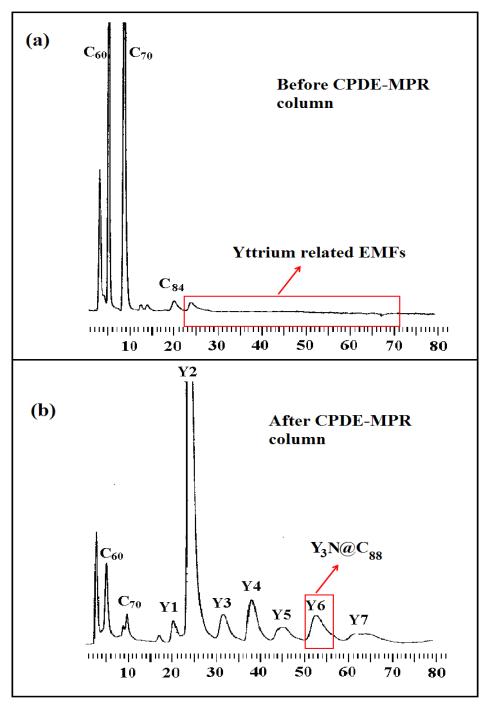
Supporting Information

Electronic Properties and ¹³C NMR Structural Study of Y₃N@C₈₈


Wujun Fu, Jianyuan Zhang, Hunter Champion, Tim Fuhrer, Hugo Azuremendi, Tianming Zuo, Jianfei Zhang, Harich, Kim and Harry C. Dorn*

Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061,

USA

* Author to whom correspondence should be addressed; email: hdorn@vt.edu, Fax: 540-231-3255 Tel: 540-231-5953.

1. Information for Figure 2: The experimental ¹³C NMR shifts of Y₃N@*D*₂-C₈₈ (22 lines) in CS₂ with 10 mg Cr(acac)₃ relaxant, acetone-d₆ lock) after 64,000 scan at 25 °C. The chemical shifts for the 22 lines are at δ: 149.36, 148.89, 146.44, 146.21, 145.77, 144.44, 143.92, 143.64, 141.89, 140.07, 139.69 (double intensity), 139.59, 139.10 (double intensity), 138.34, 137.88, 136.14, 135.19, 133.76, 133.65, 132.06, 131.99 ppm. 2. The computational ¹³C NMR chemical shifts of Y₃N@*D*₂(35)-C₈₈ (22 lines): 151.66, 147.21, 146.76, 146.24, 144.00, 143.89, 143.18, 142.14, 142.10, 141.66, 141.27, 140.53, 140.02, 139.76, 139.29, 139.27, 137.99, 137.43, 136.25, 135.66, 135.54, 131.94 ppm.

Figure S1. (a) HPLC chromatogram of the toluene extract from the raw soot (b) HPLC chromatogram of the eluent from CPDE-MPR column (Both chromatogram on a 4.6×250 mm 5PBB column; λ =390 nm; flow rate 2.0 mL/min; toluene as eluent; 25 °C)

Fraction	Main component	Yield (mg)*
Y1	Y ₂ @C ₇₉ N	0.005
Y2	Y ₃ N@C ₈₀	2
Y3	$Y_{3}N@C_{82}$	0.05
Y4	Y ₃ N@C ₈₄	0.1
Y5	Y ₃ N@C ₈₆	0.01
Y6	Y ₃ N@C ₈₈	0.01
¥7	Y_2C_{94}	0.01

Table S1. The component and yield of each Yttrium fractions

• (the estimated yield is based on "burning" 3, 6 x 1 inch rods. However, 50-100 rods were burned to obtain the sample utilized in this study.)

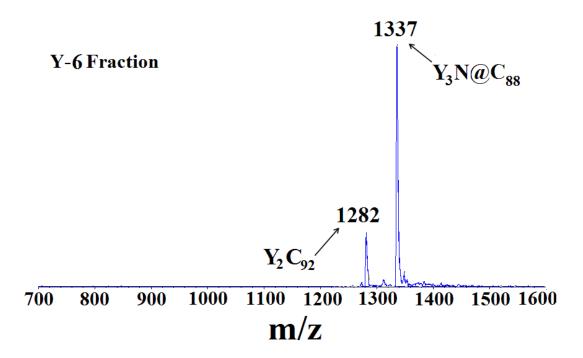
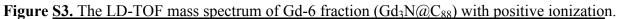
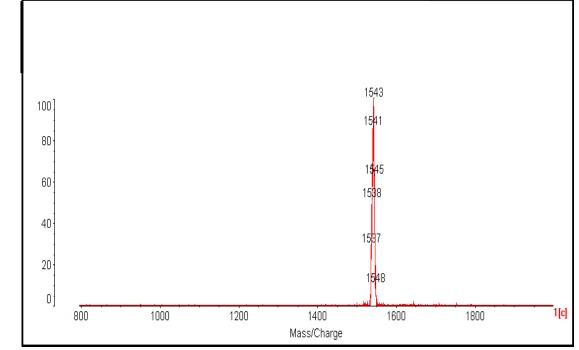




Figure S2. The LD-TOF mass spectrum of Y-6 fraction with positive ionization.

