Two-Photon Absorption Properties of Proquinoidal D-A-D and A-D-A Quadrupolar Chromophores

Kimihiro Susumu,^{+,‡} Jonathan A. N. Fisher,^{§,} Jieru Zheng,[⊥] David N. Beratan,^{*,⊥,◊,◆}

Arjun G. Yodh,*.§ and Michael J. Therien*,⊥ ⁺Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 [§]Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 [⊥]Department of Chemistry, Duke University, Durham, North Carolina 27708 ^oDepartment of Biochemistry, Duke University, Durham, North Carolina 27708 [•]Department of Physics, Duke University, Durham, North Carolina 27708

Present Addresses:

[‡]Optical Sciences Division, Naval Research Laboratory, Washington, DC 20375 *Laboratory of Sensory Neuroscience, The Rockefeller University, New York City, NY 10065*

*Corresponding Authors

E-mail: david.beratan@duke.edu (D.N.B.), yodh@physics.upenn.edu (A.G.Y.), and michael.therien@duke.edu (M.J.T.).

Synthesis and Characterization

4-Iodo-*N*,*N***-dihexylaniline (1)**. 4-Iodoaniline (15.05 g, 6.87×10^{-2} mol), K₂CO₃ (19.00 g, 0.137 mol), 1-iodohexane (32.0 ml, 0.217 mol) and dry DMF (170 ml) were added to a 500-ml two-neck round-bottom flask. Ar was bubbled into the reaction mixture for 10 min. The reaction mixture was stirred at 90 °C for 16 h and at 100 °C for 2.5 h under Ar. After cooling, the reaction mixture was filtered to remove inorganic solids. Solvents were removed in vacuo, and water was added to the reaction mixture. The organic layer was extracted with CHCl₃, washed with aq. NaHCO₃ and water, and dried over Na₂SO₄. The residue was chromatographed on silica gel 4:1 hexane:CHCl₃ as the eluent. Yield = 20.47 g (77 % based on 15.05 g of 4-iodoaniline). ¹H NMR (250 MHz, CDCl₃): δ 7.41 (d, 2H, *J* = 8.8 Hz, Ph), 6.40 (d, 2H, *J* = 9.1 Hz, Ph), 3.20 (t, 4H, *J* = 7.6 Hz, -NCH₂-), 1.43-1.61 (m, 4H, -NCH₂CH₂-), 1.18-1.37 (m, 12H, -CH₂-), 0.89 (t, 6H, *J* = 6.5 Hz, -CH₃). CI MS *m*/*z* : 388.149 ((M+H)⁺) (calcd 388.150).

4-[(Trimethylsilyl)ethynyl]-*N,N***-dihexylaniline (2)**. 4-Iodo-*N,N*-dihexylaniline (1) (3.150 g, 8.13×10^{-3} mol), Pd(PPh₃)₂Cl₂ (0.332 g, 4.73×10^{-4} mol), CuI (0.130 g, 6.83×10^{-4} mol) and Et₃N (20 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min before (trimethylsilyl)acetylene (2.40 ml, 1.70×10^{-2} mol) was added. The reaction mixture was stirred at 45 °C for 18 h under Ar. After the solvent was removed in vacuo, the residue was chromatographed on silica gel 4:1 hexane:CHCl₃ as the eluent. Yield = 2.861 g (98 % based on 3.150 g of 4-iodo-*N,N*-

dihexylaniline). ¹H NMR (250 MHz, CDCl₃): δ 7.29 (d, 2H, *J* = 9.0 Hz, Ph), 6.50 (d, 2H, *J* = 9.0 Hz, Ph), 3.24 (t, 4H, *J* = 7.7 Hz, -NCH₂-), 1.43–1.65 (m, 4H, -NCH₂CH₂-), 1.19–1.41 (m, 12H, -CH₂-), 0.89 (t, 6H, *J* = 6.5 Hz, -CH₃), 0.22 (s, 9H, Si-CH₃). CI MS *m*/*z* : 358.292 ((M+H)⁺) (calcd 358.293).

4-Ethynyl-*N*,*N***-dihexylaniline (3)**. 4-[(Trimethylsilyl)ethynyl]-*N*,*N*-dihexylaniline (2) (1.206 g, 3.37×10^{-3} mol), K₂CO₃ (0.558 g, 4.04×10^{-3} mol), THF (20 ml) and MeOH (20 ml) were added to a 100-ml round-bottom flask. The reaction mixture was stirred at room temperature for 4.5 h under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel with 4:1 hexane:CHCl₃ as the eluent. Yield = 0.858 g (89 % based on 1.206 g of 4-[(trimethylsilyl)ethynyl]-*N*,*N*-dihexylaniline). ¹H NMR (250 MHz, CDCl₃): δ 7.32 (d, 2H, *J* = 8.9 Hz, Ph), 6.52 (d, 2H, *J* = 8.9 Hz, Ph), 3.25 (t, 4H, *J* = 7.7 Hz, -NCH₂-), 2.96 (s, 1H, ethynyl-H), 1.46–1.64 (m, 4H, -NCH₂CH₂-), 1.20–1.42 (m, 12H, -CH₂-), 0.90 (t, 6H, *J* = 6.6 Hz, -CH₃). CI MS *m*/*z* : 286.253 ((M+H)⁺) (calcd 286.253).

4,7-Bis[4'-(*N*,*N***-dihexylamino**)**phenylethyn-1'-yl]benzo[c][1,2,5]thiadiazole (4)** [(**DHAt**)₂**BTD**)]. 4,7-Dibromobenzo[c][1,2,5]thiadiazole¹ (0.1009 g, 3.43×10^{-4} mol), 4-Ethynyl-*N*,*N*-dihexylaniline (**3**) (0.2089 g, 7.32×10^{-4} mol), Pd₂dba₃ (66.9 mg, 7.31×10^{-5} mol), AsPh₃ (0.1071 g, 3.50×10^{-4} mol) and dry THF (20 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 10 min before *i*-Pr₂EtN (0.30 ml) was added. The reaction mixture was stirred at 43 °C for 20.5 h under

Ar. After the solvent was evaporated, the reaction mixture was chromatographed on silica gel with 80:10:1 hexane:THF:Et₃N. The product was further purified by size exclusion column chromatography (BioRad Bio-Beads SX-1 packed in THF, gravity flow). Yield = 0.1488 g (62 % based on 0.1009 g of 4,7-

Dibromobenzo[c][1,2,5]thiadiazole). ¹H NMR (250 MHz, CDCl₃): δ 7.68 (s, 2H, Ph), 7.49 (d, 4H, *J* = 8.8 Hz, Ph), 6.59 (d, 4H, *J* = 9.0 Hz, Ph), 3.29 (t, 8H, *J* = 7.6 Hz, -NCH₂-), 1.50-1.70 (m, 8H, -NCH₂CH₂-), 1.19–1.45 (m, 24H, -CH₂-), 0.91 (t, 12H, *J* = 6.6 Hz, -CH₃). MALDI-TOF MS *m/z* : 704.13 (M⁺) (calcd 702.470).

N,*N*-Dihexylaniline (5). A mixture of aniline (5.90 ml, 6.47×10^{-2} mol), 1iodohexane (20.0 ml, 0.136 mol) and K₂CO₃ (18.80 g, 0.136 mol) in 80 ml of EtOH was refluxed for 27 h under Ar. The precipitate was filtered off and washed with CH₂Cl₂. The filtrate was washed with water and dried over Na₂SO₄. The residue was chromatographed on silica gel with 4:1 hexane:CHCl₃ as the eluent. Yield = 14.735 g (87 % based on 5.90 ml of aniline). ¹H NMR (250 MHz, CDCl₃): δ 7.20 (dd, 2H, *J* = 7.1, 8.8 Hz, Ph), 6.57–6.66 (m, 3H, Ph), 3.24 (t, 4H, *J* = 7.7 Hz, -NCH₂-), 1.48–1.65 (m, 4H, -NCH₂CH₂-), 1.22–1.40 (m, 12H, -CH₂-), 0.90 (t, 6H, *J* = 6.6 Hz, -CH₃). CI MS *m*/*z* : 262.253 ((M+H)⁺) (calcd 262.253).

4-(*N*,*N***-Dihexylamino)benzaldehyde (6)**. To a solution of *N*,*N*-dihexylaniline (5) (12.02 g, 4.60×10^{-2} mol) in anhydrous 1,2-dichloroethane (200 ml) at room temperature

were successively added anhydrous DMF (3.60 ml, 4.65×10^{-2} mol) and POCl₃ (5.20 ml, 5.58×10^{-2} mol), and the mixture was refluxed for 5.5 h. After cooling, 2M aqueous NaOAc solution (200 ml) was added and the reaction mixture was stirred overnight. The product was extracted three times with CHCl₃ and the combined organic layers were dried over Na₂SO₄. The residue was chromatographed on silica gel with 1:1 hexane:CHCl₃ as the eluent. Yield = 10.793 g (81 % based on 12.02 g of *N*,*N*-dihexylaniline). ¹H NMR (250 MHz, CDCl₃): δ 9.69 (s, 1H, -CHO), 7.70 (dd, 2H, *J* = 8.9 Hz, Ph), 6.63 (d, 2H, *J* = 9.0 Hz, Ph), 3.34 (t, 4H, *J* = 7.8 Hz, -NCH₂-), 1.48–1.70 (m, 4H, -NCH₂CH₂-), 1.19–1.41 (m, 12H, -CH₂-), 0.91 (t, 6H, *J* = 6.6 Hz, -CH₃). CI MS *m*/*z* : 290.247 ((M+H)⁺) (calcd 290.248).

N,N-Dihexyl-4-vinylaniline (7). To methyltriphenylphosphonium bromide (3.07 g, 8.59×10^{-3} mol) in 50 ml of dry THF was added *n*-BuLi (2.2 M solution in hexane, 4.00 ml, 8.80×10^{-3} mol) dropwise at -78 °C. After 2.5 h, the reaction mixture was gradually warmed up to 0 °C, and again cooled to -78 °C. 4-(*N,N*-Dihexylamino)benzaldehyde (6) (2.26 g, 7.81×10^{-3} mol) in 15 ml of dry THF was slowly added to the reaction mixture. The reaction mixture was stirred overnight and meanwhile gradually warmed up to 10 °C. Aqueous NaCl was added to the reaction mixture. The organic layer was extracted with petroleum ether and dried over Na₂SO₄. After the solvent was evaporated, the residue was chromatographed on silica gel with 1:1 hexane:CHCl₃. Yield = 0.775 g (35 % based on 2.26 g of *N,N*-dihexyl-4-formylaniline). ¹H NMR (250 MHz, CDCl₃): δ 7.27 (d,

2H, *J* = 8.8 Hz, Ph-H), 6.61 (dd, 1H, *J* = 10.9, 17.8 Hz, vinyl-H), 6.58 (d, 2H, *J* = 8.9 Hz, Ph-H), 5.49 (dd, 1H, *J* = 1.1, 17.6 Hz, vinyl-H), 4.97 (dd, 1H, *J* = 0.9, 10.8 Hz, vinyl-H), 3.25 (t, 4H, *J* = 7.7 Hz, NCH₂), 1.48–1.66 (m, 4H, NCH₂CH₂-), 1.20–1.42 (m, 12H, -CH₂-), 0.89 (t, 6H, *J* = 6.6 Hz, -CH₃). CI MS *m*/*z* : 288.269 ((M+H)⁺) (calcd 288.269).

4,7-Bis[4'-(*N*,*N*-dihexylamino)phenylethen-1'-yl]benzo[c][1,2,5]thiadiazole (8) [(DHAd)₂BTD]. 4,7-Dibromobenzo[c][1,2,5]thiadiazole¹ (50.3 mg, 1.71 × 10⁻⁴ mol), *N*,*N*-dihexyl-4-vinylaniline (7) (120.0 mg, 4.17 × 10⁻⁴ mol), Pd₂dba₃ (41.7 mg, 4.55 × 10⁻⁵ mol) and dry THF (10 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min before *i*-Pr₂EtN (0.30 ml) and P(*t*-Bu)₃ (10 wt% in hexane, 0.50 ml, 1.6 × 10⁻⁴ mol) were added. The reaction mixture was stirred at 39 °C for 21 h under Ar. After the solvent was evaporated, the reaction mixture was chromatographed on silica gel with 30:15:1 hexane:CHCl₃:Et₃N. Yield = 0.035 g (29 % based on 50.3 mg of 4,7-dibromobenzo[c][1,2,5]thiadiazole). ¹H NMR (250 MHz, CDCl₃): δ 7.83 (d, 2H, *J* = 16.2 Hz, vinyl-H), 7.61 (s, 2H, Ph), 7.51 (d, 4H, *J* = 8.8 Hz, Ph), 7.45 (d, 2H, *J* = 16.3 Hz, vinyl-H), 6.64 (d, 4H, *J* = 8.8 Hz, Ph), 3.30 (t, 8H, *J* = 7.6 Hz, -NCH₂-), 1.46-1.69 (m, 8H, -NCH₂CH₂-), 1.16-1.40 (m, 24H, -CH₂-), 0.88 (t, 12H, *J* = 6.8 Hz, -CH₃). MALDI-TOF MS *m/z* : 707.55 (M⁺) (calcd 706.501).

3,7-Dimethyloctyl bromide (9). To a solution of 3,7-dimethyl-1-octanol (50.0 ml, 0.264 mol) and triphenylphosphine (86.9 g, 0.331 mol) in 300 ml of CH₂Cl₂ were added

N-bromosuccinimide (56.6 g, 0.318 mol) in portions at 0 °C. After stirring at 0 °C for 2 h, the solvent was evaporated. The residue was treated with hexane and filtered. The solids were washed thoroughly with hexane, and the combined hexane extracts were evaporated. The residue was chromatographed on silica gel with hexane. Yield = 54.13 g (93 % based on 50.0 ml of 3,7-dimethyl-1-octanol). ¹H NMR (360 MHz, CDCl₃): δ 3.37–3.50 (m, 2H, -CH₂Br), 1.07–1.94 (m, 10H,

(CH₃)₂CHCH₂CH₂CH₂CH₂CH₂CH₃)CH₂CH₂Br), 0.89 (d, 3H, *J* = 6.5 Hz, −CH₃), 0.87 (d, 6H, *J* = 6.8 Hz, −CH₃). CI MS *m*/*z* : 220.048 (M⁺) (calcd 220.083).

2,6,13,17-Tetramethyloctadecane-9,10-dione (10). To a suspension of 1,4dimethylpiperazine-2,3-dione² (2.08 g, 1.46×10^{-2} mol) in 50 ml of dry Et₂O was added 3,7-dimethyloctyl lithium (0.45M solution in Et₂O, 65 ml, 2.9×10^{-2} mol, freshly prepared from 3,7-dimethyloctyl bromide (**9**) and lithium) by a syringe. After 40 min of stirring at room temperature under N₂, the solution was hydrolyzed with 100 ml of 10% HCl and extracted with CHCl₃. The combined organic layers were washed with saturated aqueous NaHCO₃ and dried over Na₂SO₄. The product was chromatographed on silica gel with 3:1 hexane:CHCl₃ as the eluent. Yield = 4.446 g (91 % based on 65 ml of 0.45M 3,7-dimethyloctyl lithium in Et₂O). ¹H NMR (250 MHz, CDCl₃): δ 2.69–2.78 (m, 4H, -CH₂CO), 1.06–1.65 (m, 20H, (CH₃)₂CHCH₂CH₂CH₂CH(CH₃)CH₂CH₂CO), 0.87 (d, 6H, *J* = 9.0 Hz, -CH₃), 0.86 (d, 12H, *J* = 9.5 Hz, -CH₃). CI MS *m/z* : 338.3175 (M⁺) (calcd 338.318).

Supporting Information

Susumu et al.

4,9-Dibromo-6,7-bis(3',7'-dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (11).

5,6-Diamino-4,7-dibromobenzo[c][1,2,5]thiadiazole³ (0.224 g, 6.91 × 10⁻⁴ mol) was dissolved in acetic acid (40 ml). 2,6,13,17-Tetramethyloctadecane-9,10-dione (**10**) (0.261 g, 7.71 × 10⁻⁴ mol) was added, and the reaction mixture was stirred for 71 h at room temperature under N₂. After the solvent was evaporated, water was added, and the mixture was extracted with CHCl₃. The combined organic layers were washed with water, aq. NaHCO₃ and dried over Na₂SO₄. After the solvent was evaporated, the residue was chromatographed on silica gel with CHCl₃ and further purified by size exclusion column chromatography (BioRad Bio-Beads SX-1 packed in THF, gravity flow). Yield = 0.360 g (83 % based on 0.224 g of 5,6-diamino-4,7-dibromobenzo[c][1,2,5]thiadiazole). ¹H NMR (250 MHz, CDCl₃): δ 3.01–3.22 (m, 4H, Ar-CH₂), 1.11–2.09 (m, 20H, (CH₃)₂CHCH₂CH₂CH₂CH(CH₃)CH₂CH₂Ar), 1.03 (d, 6H, *J* =

6.5 Hz, -CH₃), 0.88 (d, 12H, *J* = 6.6 Hz, -CH₃). CI MS *m*/*z* : 625.157 ((M+H)⁺) (calcd 625.158).

4-(*n*-Dodecyloxy)iodobenzene (12). 4-Iodophenol (3.03 g, $1.38 \times 10^{-2} \text{ mol}$), 1bromododecane (6.65 ml, $2.77 \times 10^{-2} \text{ mol}$) and K₂CO₃ (3.81 g, $2.76 \times 10^{-2} \text{ mol}$) were dissolved in 50 ml of dry DMF and refluxed for 3.5 h under N₂. After cooling, the solution was diluted with 2M HCl, and extracted with CH₂Cl₂. The combined organic layers were washed with saturated aq. NaHCO₃, water, and dried over Na₂SO₄. The product was chromatographed on silica gel with 3:1 hexane:CHCl₃ as the eluent. Yield =

5.274 g (98 % based on 3.03 g of 4-iodophenol). ¹H NMR (250 MHz, CDCl₃): δ 7.53 (d, 2H, *J* = 8.8 Hz, Ph), 6.67 (d, 2H, *J* = 9.0 Hz, Ph), 3.90 (t, 2H, *J* = 6.5 Hz, -OCH₂-), 1.76 (quint, 2H, *J* = 6.6 Hz, -OCH₂CH₂-), 1.13–1.48 (m, 18H, -CH₂-), 0.88 (t, 3H, *J* = 6.4 Hz, -CH₃). CI MS *m*/*z* : 388.125 (M⁺) (calcd 388.126).

4-*n*-Dodecyloxy[(trimethylsilyl)ethynyl]benzene (13). 4-(Dodecyloxy)iodobenzene (12) (4.04 g, 1.04×10^{-2} mol), triphenylphosphine (0.165 g, 6.29×10^{-4} mol), CuI (0.108 g, 5.67×10^{-4} mol) and Pd(PPh₃)₂Cl₂ (0.153 g, 2.18×10^{-4} mol) were dissolved in 40 ml of dry piperidine under N₂. (Trimethylsilyl)acetylene (3.00 ml, 2.12×10^{-2} mol) was added and the mixture was stirred at 50 °C for 6 h under N₂. After cooling, the reaction mixture was poured into aq. NH₄Cl and extracted with CH₂Cl₂ (three times). The combined organic layers were washed with aq. NH₄Cl, water, and dried over Na₂SO₄. The crude product was chromatographed on silica gel with 4:1 hexane:CH₂Cl₂ as the eluent. Yield = 3.633 g (97 % based on 4.04 g of 4-(dodecyloxy)iodobenzene). ¹H NMR (250 MHz, CDCl₃): δ 7.39 (d, 2H, *J* = 8.9 Hz, Ph), 6.80 (d, 2H, *J* = 9.0 Hz, Ph), 3.94 (t, 2H, *J* = 6.6 Hz, -OCH₂-), 1.77 (quint, 2H, *J* = 6.6 Hz, -OCH₂CH₂-), 1.17–1.50 (m, 18H, -CH₂-), 0.88 (t, 3H, *J* = 6.6 Hz, -CH₃), 0.24 (s, 9H, Si-CH₃). CI MS *m*/*z* : 358.268 (M⁺) (calcd 358.269).

4-n-Dodecyloxyethynylbenzene (14). 4-

Dodecyloxy[(trimethylsilyl)ethynyl]benzene (**13**) (3.09 g, 8.62×10⁻³ mol) was dissolved in a mixture of 20 ml of MeOH and 20 ml of THF. 5N NaOH (2.1 ml, 1.05×10⁻² mol) was

added and the solution was stirred for 3.5 h at room temperature under N₂. Water was added to the reaction mixture. The aqueous mixture was extracted three times with CH₂Cl₂. The combined organic layers were dried over MgSO₄. The product was chromatographed on silica gel with 4:1 hexane:CH₂Cl₂ as the eluent. Yield = 2.430 g (98 % based on 3.09 g of 4-dodecyloxy[(trimethylsilyl)ethynyl]benzene). ¹H NMR (250 MHz, CDCl₃): δ 7.41 (d, 2H, *J* = 8.8 Hz, Ph), 6.83 (d, 2H, *J* = 8.7 Hz, Ph), 3.95 (t, 2H, *J* = 6.6 Hz, -OCH₂-), 2.99 (s, 1H, ethynyl-H), 1.78 (quint, 2H, *J* = 6.9 Hz, -OCH₂CH₂-), 1.10-1.51 (m, 18H, -CH₂-), 0.88 (t, 3H, *J* = 6.6 Hz, -CH₃). CI MS *m*/*z* : 287.236 ((M+H)⁺) (calcd 287.237).

4,9-bis[(4"-n-dodecyloxy)phenylethyn-1"-yl]-6,7-bis(3',7'-

dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (15) [(ROPht)₂TDQ]. 4,9-Dibromo-6,7-bis(3',7'-dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (11) (82.3 mg, 1.31 × 10⁻⁴ mol), 4-dodecyloxyethynylbenzene (14) (50.0 mg, 1.7×10^{-4} mol), Pd₂dba₃ (25.4 mg, 2.77 × 10⁻⁵ mol), AsPh₃ (60.4 mg, 1.97×10^{-4} mol) and dry THF (10 ml) were added to a 100ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min before *i*-Pr₂NH (0.50 ml) was added. The reaction mixture was stirred at 40 °C for 37 h under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel with 2:3 hexane:CHCl₃ as the eluent. Yield = 0.037 g (42 % based on 50 mg of 4dodecyloxyethynylbenzene). ¹H NMR (250 MHz, CDCl₃): δ 7.74 (d, 4H, *J* = 8.8 Hz, Ph), 6.94 (d, 4H, *J* = 8.9 Hz, Ph), 4.01 (t, 4H, *J* = 6.6 Hz, -OCH₂-), 3.00–3.23 (m, 4H, Ar-CH₂),

1.1–2.2 (m, 60H, -CH₂-), 1.06 (d, 6H, *J* = 6.6 Hz, -CH₂-), 0.89 (t, 6H, *J* = 6.6 Hz, -CH₃), 0.86 (d, 12H, *J* = 6.6 Hz, -CH₃). MALDI-TOF MS *m*/*z* : 1037.7 (M⁺) (calcd 1036.757).

4-*n***-Dodecyloxybenzaldehyde (16)**. 4-Hydroxybenzaldehyde (8.00 g, 6.55×10^{-2} mol), 1-bromododecane (16.50 ml, 6.87×10^{-2} mol), K₂CO₃ (9.05 g, 6.55×10^{-2} mol) and dry DMF (100 ml) were added to a two-neck round-bottom flask. The reaction mixture was stirred at 105 °C for 21.5 h under Ar. After cooling, the solution was diluted with 2M HCl and extracted three times with CH₂Cl₂. The combined organic layers were washed with aqueous NaHCO₃, H₂O and dried over Na₂SO₄. The product was chromatographed on silica gel with 1:1 hexane:CH₂Cl₂ as the eluent. Yield = 19.02 g (~100 % based on 8.00 g of 4-hydroxybenzaldehyde). ¹H NMR (250 MHz, CDCl₃): δ 9.88 (s, 1H, -CHO), 7.83 (d, 2H, *J* = 8.8 Hz, Ph), 6.99 (d, 2H, *J* = 8.7 Hz, Ph), 4.04 (t, 2H, *J* = 6.5 Hz, OCH₂), 1.82 (quint, 2H, *J* = 6.5 Hz, OCH₂CH₂), 1.40–1.54 (m, 2H, -CH₂-), 1.16–1.40 (m, 16H, -CH₂-), 0.88 (t, 3H, *J* = 6.5 Hz, -CH₃). CI MS *m*/*z* : 291.232 ((M+H)⁺) (calcd 291.232).

4-*n***-Dodecyloxystyrene (17)**. To methyltriphenylphosphonium bromide (8.13 g, 2.28 \times 10⁻² mol) in 60 ml of dry THF was added *n*-BuLi (1.6 M solution in hexane, 15.8 ml, 2.53 \times 10⁻² mol) dropwise at –78 °C. After 2.5 h, the reaction mixture was gradually warmed up to 0 °C, and again cooled to –78 °C. 4-Dodecyloxybenzaldehyde (**16**) (6.00 g, 2.07 \times 10⁻² mol) in 20 ml of dry THF was slowly added to the reaction mixture. The

reaction mixture was stirred overnight and meanwhile gradually warmed up to 10 °C. Aqueous NaCl was added to the reaction mixture. The organic layer was extracted with petroleum ether and dried over Na₂SO₄. After the solvent was evaporated, the residue was chromatographed on silica gel with 1:1 hexane:CH₂Cl₂. Yield = 5.358 g (90 % based on 6.00 g of 4-dodecyloxybenzaldehyde). ¹H NMR (250 MHz, CDCl₃): δ 7.33 (d, 2H, *J* = 8.7 Hz, Ph), 6.85 (d, 2H, *J* = 8.7 Hz, Ph), 6.66 (dd, 1H, *J* = 10.8, 17.6 Hz, vinyl-H), 5.60 (d, 1H, *J* = 17.5 Hz, vinyl-H), 5.11 (d, 1H, *J* = 10.6 Hz, vinyl-H), 3.95 (t, 2H, *J* = 6.6 Hz, OCH₂), 1.78 (quint, 2H, *J* = 7.0 Hz, OCH₂CH₂), 1.38–1.52 (m, 2H, -CH₂-), 1.16–1.38 (m, 16H, -CH₂-), 0.88 (t, 3H, *J* = 6.6 Hz, -CH₃). CI MS *m*/*z* : 288.245 (M⁺) (calcd 288.245).

4,9-bis[(4"-n-dodecyloxy)phenylethen-1"-yl]-6,7-bis(3',7'-

dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (18) [(ROPhd)₂TDQ]. 4,9-Dibromo-6,7-bis(3',7'-dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline (11) (75.9 mg, 1.21 × 10⁻⁴ mol), 4-*n*-dodecyloxystyrene (17) (77.0 mg, 2.67 × 10⁻⁴ mol), Pd₂dba₃ (29.5 mg,

 3.2×10^{-5} mol) and dry THF (15 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 10 min before *i*-Pr₂EtN (0.30 ml) and P(*t*-Bu)₃ (10 wt% solution in hexane, 0.37 ml, 1.2×10^{-4} mol) were added. The reaction mixture was stirred at 40 °C for 15 h under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel with 80:10:1 hexane:THF:Et₃N as the eluent. The product was further purified by size exclusion column chromatography (BioRad Bio-Beads SX-1 packed in THF, gravity flow). Yield = 0.065 g (52 % based on 75.9 mg of 4,9-

dibromo-6,7-bis(3',7'-dimethyloctyl)[1,2,5]thiadiazolo[3,4-g]quinoxaline). ¹H NMR (250 MHz, CDCl₃): δ 8.78 (s, 4H, vinyl-H), 7.72 (d, 4H, *J* = 8.7 Hz, Ph), 6.96 (d, 4H, *J* = 8.7 Hz, Ph), 4.02 (t, 4H, *J* = 6.6 Hz, -OCH₂-), 2.98–3.20 (m, 4H, Ar-CH₂), 1.1–2.2 (m, 60H, -CH₂-), 1.07 (d, 6H, *J* = 6.5 Hz, -CH₂-), 0.88 (t, 6H, *J* = 6.7 Hz, -CH₃), 0.87 (d, 12H, *J* = 6.7 Hz, -CH₃). MALDI-TOF MS *m*/*z* : 1040.2 (M⁺) (calcd 1040.788).

4-Bromo-7-(N,N-dihexylamino)benzo[c][1,2,5]thiadiazole (19). 4,7-

Dibromobenzo[c][1,2,5]thiadiazole¹ (0.500 g, 1.70×10^{-3} mol), *N*,*N*-dihexylamine (0.50 ml, 2.1×10^{-3} mol), Pd₂dba₃ (45 mg, 4.9×10^{-5} mol), 2-(di-*t*-butylphosphino)biphenyl (30 mg, 1.0×10^{-4} mol), NaO*t*-Bu (0.242 g, 2.5×10^{-3} mol), toluene (4.0 ml) and DMF (0.40 ml) were added to a reaction vial. The reaction mixture was stirred at 160 °C for 15 min under microwave irradiation. After the reaction mixture was filtered and the solvent was evaporated, the resudie was chromatographed on silica gel with 1:1 hexane:CH₂Cl₂. Yield = 0.271 g (40 % based on 0.500 g of 4,7-dibromobenzo[c][1,2,5]thiadiazole). ¹H NMR (250 MHz, CDCl₃): δ 7.59 (d, 1H, *J* = 8.4 Hz, Ph-H), 6.31 (d, 1H, *J* = 8.5 Hz, Ph-H), 3.68 (t, 4H, *J* = 7.7 Hz, -NCH₂), 1.51–1.75 (m, 4H, -NCH₂CH₂-), 1.20–1.44 (m, 12H, -CH₂-), 0.89 (t, 6H, *J* = 6.7 Hz, -CH₃). CI MS *m/z* : 398.125 ((M+H)⁺) (calcd 398.127).

4,7-Bis[4'-(N,N-dihexylamino)benzo[c][1,2,5]thiadiazolylethyn-7'-yl] benzo[c][1,2,5]thiadiazole (20) [(DHA-BTDt)₂BTD]. 4-Bromo-7-(*N,N*dihexylamino)benzo[c][1,2,5]thiadiazole (**19**) (0.493 g, 1.24 × 10⁻³ mol), 4,7bis[(trimethylsilyl)ethynyl]benzo[c][1,2,5]thiadiazole⁴ (0.169 g, 5.14 × 10⁻⁴ mol),

Pd(PPh₃)₄ (73.6 mg, 6.4×10^{-5} mol), CuI (1.3 mg, 6.8×10^{-6} mol), K₂CO₃ (0.334 g, 2.4×10^{-3} mol) and dry THF (20 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 10 min before piperidine (1.0 ml) and MeOH (2.0 ml) were added. The reaction mixture was stirred at 50 °C for 24 h under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel with 1:2 hexane:CHCl₃ as the eluent. Yield = quantitative. ¹H NMR (250 MHz, CDCl₃): δ 7.85 (s, 2H, Ph-H), 7.80 (d, 2H, *J* = 8.3 Hz, Ph-H), 6.41 (d, 2H, *J* = 8.4 Hz, Ph-H), 3.81 (t, 8H, *J* = 7.8 Hz, -NCH₂), 1.62–1.80 (m, 8H, -NCH₂CH₂-), 1.20–1.49 (m, 24H, -CH₂-), 0.91 (t, 12H, *J* = 7.0 Hz, -CH₃). MALDI-TOF MS *m/z* : 820.78 (M⁺) (calcd 818.395).

1,4-Di-*n*-octyloxybenzene (21). Hydroquinone (10.00 g, 9.08×10^{-2} mol) was dissolved in 100 ml of ethanol. After addition of KOH (10.79 g, 0.192 mol), the solution was stirred under reflux for 20 min. 1-Bromooctane (33.0 ml, 0.191 mol) was added dropwise to the light brown solution over 1 h, followed by stirring under reflux for 3 h. After cooling, CHCl₃ and H₂O were added to the reaction mixture and the organic layer was collected. The aqueous layer was further washed with CHCl₃. The combined organic layers were washed with aqueous NaHCO₃ and dried over Na₂SO₄. After the solvent was evaporated, the residue was chromatographed on silica gel with 1:1 hexane:CHCl₃ as the eluent. Yield = 27.33 g (90 % based on 10.00 g of hydroquinone). ¹H NMR (300 MHz, CDCl₃): δ 6.82 (s, 4H, Ph-H), 3.90 (t, 4H, *J* = 6.6 Hz, -OCH₂-), 1.75 (quint, 4H, *J* = 7.0 Hz, -OCCH₂-), 1.37–1.51 (m, 4H, -OCCCH₂-), 1.17–1.37 (m, 16H, -CH₂-)

), 1.20–1.49 (m, 24H, -CH₂-), 0.88 (t, 6H, J = 6.6 Hz, -CH₃). CI MS m/z : 334.287 (M⁺) (calcd 334.287).

1,4-Diiodo-2,5-di-*n*-octyloxybenzene (**22**). 1,4-Di-*n*-octyloxybenzene (**21**) (19.282 g, 5.76 × 10⁻² mol) was dissolved in acetic acid (60 ml) and CCl₄ (20 ml). To this solution were added iodine (32.2 g, 0.127 mol), conc. H₂SO₄ (7.0 ml), distilled water (4.0 ml), and finally potassium iodate (12.4 g, 5.79 × 10⁻² mol). The reaction mixture was stirred for 28 h under reflux. After cooling, aqueous Na₂SO₄ was added until the brown color of iodine disappeared, and the reaction mixture was poured into ice water. The organic layer was extracted with CH₂Cl₂, and the combined organic layers were washed with aqueous NaHCO₃ and dried over Na₂SO₄. After the solvent was evaporated, the residue was chromatographed on silica gel with 4:1 hexane:CHCl₃ as the eluent. Yield = 12.399 g (37 % based on 19.286 g of 1,4-di-*n*-octyloxybenzene). ¹H NMR (300 MHz, CDCl₃): δ 7.17 (s, 2H, Ph-H), 3.92 (t, 4H, *J* = 6.4 Hz, -OCH₂-), 1.80 (quint, 4H, *J* = 6.9 Hz, -OCH₂CH₂-), 1.42–1.57 (m, 4H, -OCH₂CH₂-), 1.18–1.42 (m, 16H, -CH₂-), 0.89 (t, 6H, *J* = 6.8 Hz, -CH₃). CI MS *m*/*z* : 586.078 (M⁺) (calcd 586.080).

1,4-Bis(trimethylsilylethynyl)-2,5-di-*n*-octyloxybenzene (23). 1,4-Diiodo-2,5-di-*n*-octyloxybenzene (22) (4.01 g, 6.84×10^{-3} mol), Pd(PPh₃)₂Cl₂ (0.248 g, 3.53×10^{-4} mol), PPh₃ (0.179 g, 6.82×10^{-4} mol), CuI (0.072 g, 3.8×10^{-4} mol) and piperidine (40 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 5

min before (trimethylsilyl)acetylene (3.0 ml, 2.1×10^{-2} mol) was added. The reaction mixture was stirred at 60 °C for 2 h under Ar. After cooling, the solvent was evaporated. CHCl₃ was added to the residue, and the organic solution was washed with aqueous NH₄Cl (3 times), water, and dried over Na₂SO₄. After the solvent was evaporated, the residue was chromatographed on silica gel with 2:1 hexane:CHCl₃ as the eluent. Yield = 3.455 g (96 % based on 4.01 g of 1,4-diiodo-2,5-di-*n*-octyloxybenzene). ¹H NMR (300 MHz, CDCl₃): δ 6.88 (s, 2H, Ph-H), 3.94 (t, 4H, *J* = 6.4 Hz, -OCH₂), 1.78 (quint, 4H, *J* = 6.9 Hz, -OCH₂CH₂-), 1.42–1.60 (m, 4H, -OCH₂CH₂CH₂-), 1.16–1.42 (m, 16H, -CH₂-), 0.88 (t, 6H, *J* = 6.7 Hz, -CH₃), 0.25 (s, 18H, -Si-CH₃). CI MS *m*/*z* : 526.366 (M⁺) (calcd 526.366).

1,4-Diethynyl-2,5-di-*n*-octyloxybenzene (24). 1,4-Bis(trimethylsilylethynyl)-2,5-di*n*-octyloxybenzene (23) (2.331 g, 4.42×10^{-3} mol) was dissolved in a mixture of THF (25 ml) and MeOH (25 ml). 5N NaOH (2.0 ml, 1.0×10^{-2} mol) was added and the solution was stirred for 3 h under Ar. Water was added to the reaction mixture. The organic layer was extracted three times with CHCl₃. The combined organic layers were dried over Na₂SO₄. The residue was chromatographed on silica gel with 1:1 hexane:CHCl₃ as the eluent. Yield = 1.419 g (84 % based on 2.331 g of 1,4-bis(trimethylsilylethynyl)-2,5-di-*n*-octyloxybenzene). ¹H NMR (300 MHz, CDCl₃): δ 6.95 (s, 2H, Ph-H), 3.97 (t, 8H, *J* = 6.6 Hz, -OCH₂-), 3.33 (s, 2H, -CC-H), 1.80 (quint, 4H, *J* = 7.0 Hz, -OCH₂CH₂-), 1.39–1.52

(m, 4H, -OCH₂CH₂CH₂-), 1.15–1.39 (m, 16H, -CH₂-), 0.88 (t, 6H, J = 6.7 Hz, -CH₃). CI MS m/z: 382.285 (M⁺) (calcd 382.287).

1,4-Bis[(4'-benzo[c][1,2,5]thiadiazolyl)ethynyl]-2,5-di-n-octyloxybenzene (25) **[(BTDt)**₂**ROPh]**. 4-Bromobenzo[c][1,2,5]thiadiazole¹ (0.151 g, 7.02 × 10⁻⁴ mol), 1,4diethynyl-2,5-di-*n*-octyloxybenzene (24) (0.121 g, 3.16 × 10⁻⁴ mol), Pd(PPh₃)₄ (80.0 mg, 6.92×10^{-5} mol), CuI (5.6 mg, 2.9×10^{-5} mol) and dry THF (10 ml) were added to a 100ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min before piperidine (0.50 ml) was added. The reaction mixture was stirred at 53 °C for 12 h under Ar. After cooling, the solvent was evaporated. The residue was chromatographed on silica gel with 4:1 CHCl₃:hexane as the eluent. Yield = 0.145 g (70) % based on 0.121 g of 1,4-diethynyl-2,5-di-*n*-octyloxybenzene). ¹H NMR (300 MHz, CDCl₃): δ 8.01 (dd, 2H, J = 1.0, 8.8 Hz, Ph-H), 7.81 (dd, 2H, J = 1.0, 7.0 Hz, Ph-H), 7.60 (dd, 2H, J = 7.0, 8.8 Hz, Ph-H), 7.17 (s, 2H, Ph-H), 4.11 (t, 4H, J = 6.4 Hz, -OCH₂-), 1.91 (quint, 4H, J = 7.0 Hz, -OCH₂CH₂-), 1.50–1.65 (m, 4H, -OCH₂CH₂CH₂-), 1.12–1.47 (m, 16H, -CH₂-), 0.84 (t, 12H, I = 6.8 Hz, -CH₃). MALDI-TOF MS m/z: 649.97 (M⁺) (calcd 650.275).

1-(4'-*N***,***N***-dihexylaminophenylethyn-1'-yl)-4-iodobenzene (26)**. (4-*N*,*N*-dihexylaminophenyl)ethyne (3) (0.694 g, 2.43×10^{-3} mol), 1,4-diiodobenzene (3.04 g, 9.21 $\times 10^{-3}$ mol), Pd(PPh₃)₂Cl₂ (0.176 g, 2.51×10^{-4} mol), CuI (27.7 mg, 1.45×10^{-4} mol) and

Et₃N (25 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min. The reaction mixture was stirred at 45 °C for 14.5 h under Ar. After cooling, the solvent was evaporated. The residue was chromatographed on silica gel with 3:1 hexane:CHCl₃ as the eluent. Yield = 0.644 g (54 % based on 0.694 g of (4-*N*,*N*-dihexylaminophenyl)ethyne). ¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, 2H, *J* = 8.3 Hz, Ph-H), 7.34 (d, 2H, *J* = 8.8 Hz, Ph-H), 7.20 (d, 2H, *J* = 8.3 Hz, Ph-H), 6.56 (d, 2H, *J* = 8.9 Hz, Ph-H), 3.26 (t, 4H, *J* = 7.7 Hz, -NCH₂-), 1.45–1.68 (m, 4H, -NCH₂CH₂-), 1.18–1.42 (m, 12H, -CH₂-), 0.90 (t, 12H, *J* = 6.5 Hz, -CH₃). CI MS *m*/*z* : 487.172 (M⁺) (calcd 487.174).

1-(4'-*N*,*N*-**dihexylaminophenylethyn-1'-yl)-4-(trimethylsilylethynyl)benzene (27)**. 1-(4-*N*,*N*-dihexylaminophenylethyn-1'-yl)-4-iodobenzene (**26**) (0.530 g, 1.09 × 10⁻³ mol), Pd(PPh₃)₂Cl₂ (81 mg, 1.2 × 10⁻⁴ mol), CuI (11 mg, 5.8 × 10⁻⁵ mol) and Et₃N (20 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min before (trimethylsilyl)acetylene (0.62 ml, 4.4 × 10⁻³ mol) was added. The reaction mixture was stirred at 45 °C for 3 h under Ar. After cooling, the solvent was evaporated. The residue was chromatographed on silica gel with 3:1 hexane:CH₂Cl₂ as the eluent. Yield = 0.484 g (97 % based on 0.530 g of 1-(4-*N*,*N*dihexylaminophenylethyn-1'-yl)-4-iodobenzene). ¹H NMR (300 MHz, CDCl₃): δ 7.40 (s,

4H, Ph-H), 7.34 (d, 2H, *J* = 8.9 Hz, Ph-H), 6.56 (d, 2H, *J* = 9.0 Hz, Ph-H), 3.27 (t, 4H, *J* = 7.7 Hz, -NCH₂), 1.47–1.65 (m, 4H, -NCH₂CH₂-), 1.19–1.38 (m, 12H, -CH₂-), 0.90 (t, 6H, *J* = 6.6 Hz, -CH₃), 0.25 (s, 9H, -Si-CH₃). CI MS *m*/*z* : 458.323 ((M+H)⁺) (calcd 458.324).

1-(4-*N*,*N***-dihexylaminophenylethyn-1**′**-yl**)**-4**-ethynylbenzene (28). 1-(4′-*N*,*N*-dihexylaminophenylethyn-1′-yl)-4-(trimethylsilylethynyl)benzene (27) (0.262 g, 5.72 × 10⁻⁴ mol), K₂CO₃ (0.109 g, 7.89 × 10⁻⁴ mol), THF (5.0 ml) and MeOH (3.0 ml) were added to a 100-ml round bottom flask. The reaction mixture was stirred at room temperature for 2 h under Ar. Subsequently, the reaction mixture was filtered and the filtrate was evaporated. Yield = 0.220 g (~100 % based on 0.262 g of 1-(4′-*N*,*N*-dihexylaminophenylethyn-1′-yl)-4-(trimethylsilylethynyl)benzene). ¹H NMR (300 MHz, CDCl₃): δ 7.43 (s, 4H, Ph-H), 7.35 (d, 2H, *J* = 9.0 Hz, Ph-H), 6.57 (d, 2H, *J* = 9.1 Hz, Ph-H), 3.27 (t, 4H, *J* = 7.7 Hz, -NCH₂-), 3.14 (s, 1H, -CC-H), 1.45–1.65 (m, 4H, -NCH₂CH₂-), 1.18–1.40 (m, 12H, -CH₂-), 0.90 (t, 6H, *J* = 6.6 Hz, -CH₃). CI MS *m*/*z* : 386.284 ((M+H)⁺) (calcd 386.285)

1,4-Bis[4'-(4''-N,N-dihexylaminophenylethyn-1''-yl)phenylethyn-1'-yl]-2,5-di-*n*-octyloxybenzene (29) [(DHAtPht)₂ROPh]. 1-(4'-N,N-dihexylaminophenylethyn-1'-yl)-4-ethynylbenzene (28) (63.6 mg, 1.65×10^{-4} mol), 1,4-diiodo-2,5-di-*n*-octyloxybenzene (22) (46.4 mg, 7.91 × 10⁻⁵ mol), Pd(PPh₃)₄ (20.0 mg, 1.73×10^{-5} mol), CuI (1.6 mg, 8.4 × 10⁻⁶ mol) and dry THF (6.0 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min before piperidine (0.50 ml) was added. The reaction mixture was stirred at 50 °C for 17 h under Ar. After cooling, the solvent was evaporated. The residue was chromatographed on silica gel with 1:1 hexane:CHCl₃ as

the eluent. The crude product was further purified by size exclusion column chromatography (BioRad Bio-Beads SX-1 packed in THF, gravity flow). Yield = 51.5 mg (59 % based on 46.4 mg of 1,4-diiodo-2,5-di-*n*-octyloxybenzene). ¹H NMR (300 MHz, CDCl₃): δ 7.46 (dd, 8H, *J* = 8.4, 9.6 Hz, Ph-H), 7.36 (d, 4H, *J* = 8.8 Hz, Ph-H), 7.01 (s, 2H, Ph-H), 6.57 (d, 4H, *J* = 8.7 Hz, Ph-H), 4.03 (t, 4H, *J* = 6.5 Hz, -OCH₂-), 3.28 (t, 8H, *J* = 7.6 Hz, -OCH₂-), 1.86 (quint, 4H, *J* = 6.8 Hz, -OCH₂CH₂-), 1.47-1.65 (m, 12H, -CH₂-), 1.16-1.43 (m, 40H, -CH₂-), 0.77-0.98 (m, 18H, -CH₃). MALDI-TOF MS *m/z* : 1100.78 (M⁺) (calcd 1100.810).

4-(4'-N,N-Dihexylaminophenylethyn-1'-yl)-7-iodobenzo[**c**][**1**,**2**,**5**]thiadiazole (30). (4-*N*,*N*-Dihexylaminophenyl)ethyne (**3**) (0.251 g, 8.79 × 10⁻⁴ mol), 4,7diiodobenzo[**c**][**1**,**2**,**5**]thiadiazole⁵ (0.584 g, 1.51 × 10⁻³ mol), Pd₂dba₃ (99.4 mg, 1.1 × 10⁻⁴ mol), AsPh₃ (0.283 g, 9.2 × 10⁻⁴ mol) and dry THF (15 ml) were added to a 100-ml roundbottom flask. Ar was bubbled into the reaction mixture for 5 min before *i*-Pr₂EtN (1.0 ml) was added. The reaction mixture was stirred at 46 °C for 19 h under Ar. After cooling, the solvent was evaporated. The residue was chromatographed on silica gel with 1:1 hexane:CHCl₃ as the eluent. Yield = 0.241 g (50 % based on 0.251 g of (4-*N*,*N*dihexylaminophenyl)ethyne). ¹H NMR (300 MHz, CDCl₃): δ 8.04 (d, 1H, *J* = 7.5 Hz, Ph-H), 7.49 (d, 2H, *J* = 8.9 Hz, Ph-H), 7.45 (d, 1H, *J* = 7.5 Hz, Ph-H), 6.59 (d, 2H, *J* = 8.9 Hz, Ph-H), 3.29 (t, 4H, *J* = 7.7 Hz, -NCH₂-), 1.51–1.66 (m, 4H, -NCH₂CH₂-), 1.19–1.40 (m,

12H, -CH₂-), 0.91 (t, 6H, *J* = 6.7 Hz, -CH₃). MALDI-TOF MS *m*/*z* : 546.147 ((M+H)⁺) (calcd 546.144).

1,4-Bis{[7'-(4''-N,N-dihexylaminophenylethyn-1''-yl)benzo[c][1,2,5]thiadiazol-4'yl]ethynyl}-2,5-di-*n*-octyloxybenzene (31) [(DHAtBTDt)₂ROPh]. 4-(4'-N,N-

Dihexylaminophenylethyn-1'-yl)-7-iodobenzo[c][1,2,5]thiadiazole (**30**) (0.102 g, 1.87 × 10⁻⁴ mol), 1,4-diethynyl-2,5-di-*n*-octyloxybenzene (**24**) (33.1 mg, 8.65 × 10⁻⁵ mol), Pd(PPh₃)₄ (23.2 mg, 2.01 × 10⁻⁵ mol), CuI (1.6 mg, 8.4 × 10⁻⁶ mol) and dry THF (6.0 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min before piperidine (0.50 ml) was added. The reaction mixture was stirred at 40 °C for 12 h under Ar. After cooling, the solvent was evaporated. The residue was chromatographed on silica gel with 5:1 hexane:THF as the eluent. Yield = 0.101 g (96 % based on 33.1 mg of 1,4-diethynyl-2,5-di-*n*-octyloxybenzene). ¹H NMR (300 MHz, CDCl₃): δ 7.76 (d, 2H, *J* = 7.5 Hz, Ph-H), 7.71 (d, 2H, *J* = 7.4 Hz, Ph-H), 7.51 (d, 4H, *J* = 8.3 Hz, Ph-H), 7.16 (s, 2H, Ph-H), 6.60 (d, 4H, Ph-H), 4.11 (t, 4H, *J* = 6.5 Hz, -OCH₂-), 3.30 (t, 8H, *J* = 7.5 Hz, -NCH₂-), 1.92 (quint, 4H, *J* = 7.5 Hz, -CH₂-), 1.46–1.72 (m, 12H, -CH₂-), 1.14–1.46 (m, 40H, -CH₂-), 0.74–1.00 (m, 18H, -CH₃). MALDI-TOF MS *m*/*z* : 1217.02 (M⁺) (calcd 1216.735).

1-(4'-*N*,*N*-**dihexylaminophenylethyn-1'-yl)-4-iodo-2,5-di***-n*-**octyloxybenzene (32)**. (4-*N*,*N*-Dihexylaminophenyl)ethyne (**3**) (0.3317 g, 1.16 × 10⁻³ mol), 1,4-diiodo-2,5-di-*n*-

octyloxybenzene (**22**) (2.046 g, 3.49×10^{-3} mol), Pd(PPh₃)₂Cl₂ (90.4 mg, 1.29×10^{-4} mol), CuI (9.2 mg, 4.8×10^{-5} mol) and triethylamine (16.0 ml) were added to a 100-ml roundbottom flask. Ar was bubbled into the reaction mixture for 5 min and the reaction mixture was stirred at 48 °C for 16.5 h under Ar. After cooling, the solvent was evaporated. The residue was chromatographed on silica gel with 3:1 hexane:CH₂Cl₂ as the eluent. Yield = 0.502 g (58 % based on 0.3317 g of 4-ethynyl-*N*,*N*-dihexylaniline). ¹H NMR (300 MHz, CDCl₃): δ 7.35 (d, 2H, *J* = 8.7 Hz, Ph-H), 7.26 (s, 1H, Ph-H), 6.89 (s, 1H, Ph-H), 6.55 (d, 2H, *J* = 8.7 Hz, Ph-H), 3.90–4.01 (m, 4H, -OCH₂-), 3.26 (t, 4H, *J* = 7.5 Hz, -NCH₂-), 1.73–1.88 (m, 4H, -CH₂-), 1.43–1.61 (m, 4H, -CH₂-), 1.16–1.43 (m, 32H, -CH₂-), 0.76–1.00 (m, 12H, -CH₃). ESI MS *m*/*z* : 744.41 ((M+H)⁺) (calcd 743.410).

4,7-diethynylbenzo[c][1,2,5]thiadiazole (33). 4,7-

Bis(trimethylsilylethynyl)benzo[c][1,2,5]thiadiazole⁴ (0.126 g, 3.83×10^{-4} mol), K₂CO₃ (0.214 g, 1.55×10^{-3} mol), CH₂Cl₂ (5.0 ml) and MeOH (5.0 ml) were added to a 100-ml round-bottom flask. The reaction mixture was stirred at room temperature for 2.5 h under Ar. The reaction mixture was filtered and the solvent was evaporated. The residue was chromatographed on short silica gel column with CH₂Cl₂ as the eluent. Yield = 0.0663 g (94 % based on 0.126 g of 4,7-

bis(trimethylsilylethynyl)benzo[c][1,2,5]thiadiazole). ¹H NMR (300 MHz, CDCl₃): δ 7.78 (s, 2H, Ph-H), 3.70 (s, 2H, ethynyl-H). CI MS *m*/*z* : 184.010 (M⁺) (calcd 184.010).

4,7-Bis{[4'-(4"-N,N-dihexylaminophenylethyn-1"-yl)-2',5'-di-n-

octyloxyphenyl]ethyn-1'-yl}benzo[c][1,2,5]thiadiazole (34) [(DHAtROPht)2BTD]. 1-(4'-*N*,*N*-Dihexylaminophenylethyn-1'-yl)-4-iodo-2,5-di-*n*-octyloxybenzene (32) (0.2952) g, 3.97×10^{-4} mol), 4,7-diethynylbenzo[c][1,2,5]thiadiazole (33) (35.7 mg, 1.94×10^{-4} mol), $Pd(PPh_3)_4$ (49.2 mg, 4.26×10^{-5} mol), CuI (4.1 mg, 2.2×10^{-5} mol) and dry THF (6.0 ml) were added to a 100-ml round-bottom flask. Ar was bubbled into the reaction mixture for 5 min before piperidine (0.50 ml) was added. The reaction mixture was stirred at 48 °C for 3 h under Ar. After cooling, the solvent was evaporated. The residue was chromatographed on silica gel with 8:1 hexane:THF as the eluent. Yield = 0.2187 g (80 % based on 35.7 mg of 4,7-diethynylbenzo[c][1,2,5]thiadiazole). ¹H NMR (300 MHz, CDCl₃): δ 7.76 (s, 2H, Ph-H), 7.38 (d, 4H, J = 8.9 Hz, Ph-H), 7.11 (s, 2H, Ph-H), 7.02 (s, 2H, Ph-H), 6.57 (d, 4H, J = 9.1 Hz, Ph-H), 4.08 (t, 4H, J = 6.5 Hz, -OCH₂-), 4.05 (t, 4H, J = 6.4 Hz, -OCH₂-), 3.28 (t, 8H, J = 7.5 Hz, -NCH₂-), 1.89 (quint, 8H, J = 7.4 Hz, -CH₂-), 1.48-1.69 (m, 8H, -CH₂-), 1.16-1.47 (m, 64H, -CH₂-), 0.78-1.01 (m, 24H, -CH₃). MALDI-TOF MS *m*/*z* : 1415.0 (M⁺) (calcd 1415.013).

	cyclohexane	toluene	THF	CH ₂ Cl ₂	Acetone	DMF
(DHAt) ₂ BTD	264, 324, 356, 492	328, 501	328, 507	329, 512	504	330, 513
(DHAd) ₂ BTD	269, 330, 375, 528	335, 380, 540	273, 332, 381, 543	272, 334, 383, 546	382, 542	275, 334, 386, 551
(ROPht) ₂ TDQ	280, 331, 375, 562	331, 377, 562	277, 331, 561	277, 331, 560	553	
(ROPhd) ₂ TDQ	292, 364, 626	365, 626	288, 364, 622	288, 364, 620		
(DHA-BTDt)2BTD	263, 309, 546	316, 549	267, 317, 555	269, 319, 557	550	319, 558
(BTDt) ₂ ROPh	310, 318, 424	312, 319, 424	310, 318, 419	310, 318, 419	414	
(DHAtPht)2ROPh	300, 317, 396	311, 318, 401	318, 403	320, 406	402	320, 407
(DHAtBTDt)2ROPh	326, 518	330, 515	328, 517	328, 520	511	329, 518
(DHAtROPht) ₂ BTD	376, 491	381, 494	379, 494	383, 495	379, 486	383, 491

Table S1. Absorption Maxima (nm) of Proquinoidal D-A-D and A-D-A Chromophores in Cyclohexane, Toluene, THF, CH₂Cl₂, Acetone, and DMF Solvents.

	cyclohexane	toluene	THF	CH_2Cl_2	Acetone	DMF
(DHAt) ₂ BTD	551	598	646	669	668	703
(DHAd) ₂ BTD	605	651	684	705	708	720
(ROPht) ₂ TDQ	635	655	663	667	666	
(ROPhd) ₂ TDQ	714	727	731	732		
(DHA-BTDt) ₂ BTD	587	612	641	660	681	699
(BTDt)2ROPh	468	501	537	554	575	
(DHAtPht) ₂ ROPh	433	445	495	507	552	576
(DHAtBTDt) ₂ ROPh	550	590	664	676	698	
(DHAtROPht) ₂ BTD	554	587	667	689		

Table S2. Fluorescence Maxima (nm) of Proquinoidal D-A-D and A-D-A Chromophores in Cyclohexane, Toluene, THF, CH₂Cl₂, Acetone, and DMF Solvents.

	cyclohexane	toluene	THF	CH ₂ Cl ₂	Acetone	DMF
(DHAt) ₂ BTD	3576.1	3698.1	3870.5	3850.7	4034.2	4086.6
(DHAd) ₂ BTD	3877.9	3848.4	3980.6	3967.5	4066.9	4074.5
(ROPht) ₂ TDQ	3416.8	3620.6	3673.5	3686.8	3714.0	
(ROPhd) ₂ TDQ	3434.1	3563.8	3602.2	3584.4		
(DHA-BTDt) ₂ BTD	3383.6	3394.5	3411.6	3382.8	3516.8	3521.5
(BTDt) ₂ ROPh	4290.7	4364.9	4568.0	4833.6	5240.4	
(DHAtPht) ₂ ROPh	4650.9	4729.8	4647.4	4607.9	4676.2	4689.9
(DHAtBTDt) ₂ ROPh	3520.3	3707.5	3879.6	3882.3	4084.9	4160.7
(DHAtROPht) ₂ BTD	4018.3	4241.0	4489.3	4551.2	4757.6	4917.1

Table S3. Full Width at Half Maximum (cm⁻¹) of the Lowest Energy Absorption Bands of Proquinoidal D-A-D and A-D-A Chromophores in Cyclohexane, Toluene, THF, CH₂Cl₂, Acetone, and DMF Solvents.

	cyclohexane	toluene	THF	CH_2Cl_2	Acetone	DMF
(DHAt) ₂ BTD	2339.3	2441.1	2520.1	2370.3	2523.9	2241.6
(DHAd) ₂ BTD	2266.1	2159.2	1994.5	1944.8	1909.0	1783.8
(ROPht) ₂ TDQ	1743.4	1832.2	1852.7	1904.5	1964.9	
(ROPhd) ₂ TDQ	1123.9	1259.5	1292.4	1354.6		
(DHA-BTDt) ₂ BTD	1842.6	1938.8	2299.7	2307.6	2480.3	2402.1
(BTDt)2ROPh	2865.8	3356.5	3712.0	3955.0	4038.4	
(DHAtPht)2ROPh	3531.5	2771.7	4272.7	4299.9	4545.7	4556.7
(DHAtBTDt) ₂ ROPh	1229.0	2432.3	2480.9	2385.4	2487.2	
(DHAtROPht) ₂ BTD	1972.1	2312.7	2880.9	2749.0		

Table S4. Full Width at Half Maximum (cm⁻¹) of the Fluorescence Bands of Proquinoidal D-A-D and A-D-A Chromophores in Cyclohexane, Toluene, THF, CH₂Cl₂, Acetone, and DMF Solvents.

	cyclohexane	toluene	THF	CH ₂ Cl ₂	Acetone	DMF
(DHAt) ₂ BTD	2176	3238	4244	4584	5306	4918
(DHAd) ₂ BTD	2410	2433	3796	4131	4326	4260
(ROPht) ₂ TDQ	2046	2526	2742	2865	3068	
(ROPhd) ₂ TDQ	1969	2219	2397	2468		
(DHA-BTDt) ₂ BTD	1279	1875	2417	2802	3498	2985
(BTDt)2ROPh	2217	3625	5244	5816	6763	
(DHAtPht)2ROPh	2158	2466	4612	4907	6760	7209
(DHAtBTDt)2ROPh	1123	2468	4282	4438	5243	
(DHAtROPht)2BTD	2316	3207	5250	5688		

Table S5. Stokes Shifts (cm⁻¹) of Proquinoidal D-A-D and A-D-A Chromophores in Cyclohexane, Toluene, THF, CH₂Cl₂, Acetone, and DMF Solvents.

References

- (1) Pilgram, K.; Zupan, M.; Skiles, R. J. Heterocycl. Chem. 1970, 7, 629–633.
- (2) Mueller-Westerhof, U. T.; Zhou, M. J. Org. Chem. 1994, 59, 4988–4992.
- (3) Tsubata, Y.; Suzuki, T.; Yamashita, Y.; Mukai, T.; Miyashi, T. *Heterocycles* **1992**, *33*, 337–348.
- (4) Susumu, K.; Duncan, T. V.; Therien, M. J. J. Am. Chem. Soc. 2005, 127, 5186–5195.
- (5) Therien, M. J.; Susumu, K. PCT Int. Appl. WO 2007/081991 A2, 2007.