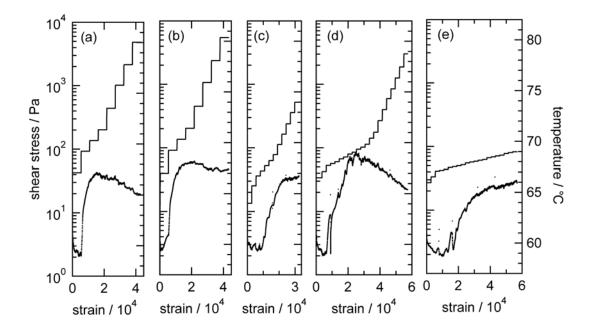
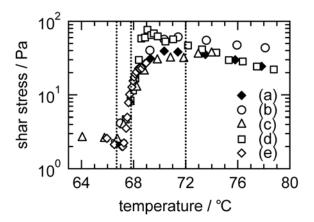

Supporting Information for

Transition Processes from Lamellar to Onion State with Increasing Temperature under Shear Flow in a Nonionic Surfactant/Water System Studied by Rheo-SAXS


by Makiko Ito, Yuriko Kosaka, , Youhei Kawabata, and Tadashi Kato


Figure 1. Evolution of shear stress (the lower lines) versus strain with a stepwise increase in temperature (the upper lines) at the shear rates of $0.05 \, \text{s}^{-1}$ (a), $0.1 \, \text{s}^{-1}$ (b), $0.3 \, \text{s}^{-1}$ (c), $1 \, \text{s}^{-1}$ (d), and $30 \, \text{s}^{-1}$ (e).

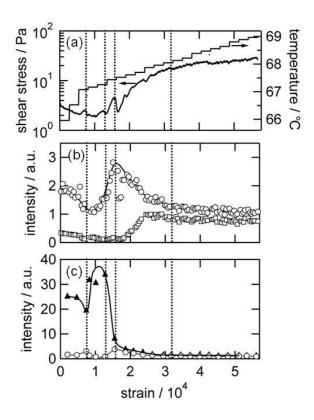

Figure 2. Evolution of shear stress versus strain at 72°C and different shear rates.

Figure 3. Evolution of shear stress versus strain (the lower lines) with a stepwise increase in temperature (the upper lines) at $3 \, s^{-1}$ for different heating rates.

Figure 4. Evolution of the shear stress with increasing temperature at the shear rates of 3 s⁻¹ for the runs (a) - (e) in Figure 2. The vertical lines indicate the temperatures where the shear stress is measured for long time at constant temperature and shear rate (see Figure 4 of the paper).

Figure 5. Evolution of shear stress (the lower line in (a)), the peak intensities for the radial (b), and tangential (e) configurations versus strain with a stepwise increase in temperature (the upper line in (a))

at 3 s⁻¹. The circles, squares, and closed triangles in (b) and (c) indicate the intensities for the neutral, flow, and velocity gradient directions, respectively. The vertical lines indicate the temperatures where the 2-D SAXS patterns shown in Figure 5 of the paper have been observed.