Supplementary Information:

Ultrafast hybridization screening in Fe³⁺ aqueous solution

Stephan Thürmer,¹ Robert Seidel,¹ Wolfgang Eberhardt,¹

Stephen E. Bradforth,² and Bernd Winter¹

¹Helmholtz-Zentrum Berlin für Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany

²Department of Chemistry, University of Southern California,

Los Angeles, California 90089

Speciation

Figure SI1 compares the flux-normalized RPE spectra from 0.5 and 1.5m FeCl₃ aqueous solution at pH <0.1. Photon energy was 711 eV, which corresponds to the Fe $2p_{3/2}$ X-ray absorption maximum. The overall (total) intensity of the 0.5m spectrum is approximately 2.1 smaller than for 1.5m; this factor is smaller than the ratio of concentrations (which is 3). Apparently, concentration factor (x3) must be adjusted by speciation changes ($\div n$), where *n* is the ratio of number of first-shell water molecules at 0.5 and 1.5m concentration. For the present case *n* is approximately 0.7 (= 3.5/5), corresponding to primarily Fe(H₂O)₅Cl species contained in the low-concentration solution, and a mixture of Fe(H₂O)₄Cl₂ and Fe(H₂O)₃Cl₃ at high concentration, respectively (compare Experimental of the manuscript).

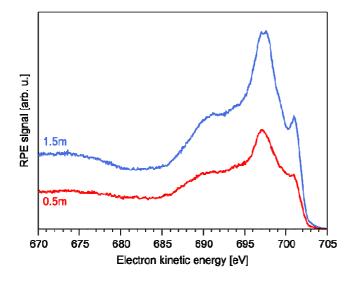


Figure SI1