Supporting Information For

Exploiting Metal-Organic Coordination Polymers as Highly Efficient Immobilization Matrices of Enzymes for Sensitive Electrochemical Biosensing

Yingchun Fu,[†] Penghao Li,[†] Lijuan Bu,[†] Ting Wang,[†] Qingji Xie,^{†,}* Jinhua Chen,[‡] and Shouzhuo Yao^{†, ‡}

[†] Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China

[‡] State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

^{*}Corresponding author. Tel./Fax: +86 731 88865515. E-mail: xieqj@hunnu.edu.cn.

[†]Hunan Normal University.

[‡]Hunan University

Scheme S-1. Illustration of the possible structures of a MOCPs 1's unit (top) and $PDMcT_{c/e}$ (bottom).

Experimental variable	Testing range	Optimized value	
$c_{\rm DMcT} ({\rm mg \ mL^{-1}})$	0.25-2.5	0.5	
$c_{\rm GOx} ({\rm mg \ mL}^{-1})$	2-8	4	
c _{NaAuCl4} (mM)	0.5-8	4	
$c_{\mathrm{Na_2}^{\mathrm{PtCl}_6}}$ (mM)	1.2-4.8	2.4	
Cast-coating volume of MEBCs	0.5-4.5	1	
1 's suspension (μ L)	0.5-1.5	1	
pH of detection solution	5-9	7	
Detection potential (V)	0.4-0.9	0.7	

Table S-1. Optimization of the experimental variables

Biosensors	Sensitivity	LDR	LOD
	$(\mu A m M^{-1} cm^{-2})$		(nM)
Nano-hydroxyapatite/chitosan			
/tyrosinase-modified	2110	10 nM to 7 μ M	5
Au electrode ¹			
Colloidal gold nanoparticles/graphite-	407	0.01 to 8 μM	20
Teflon/tyrosinase ²	407		
polyacrylamide microgels/tyrosinase-modified	469	0.5 to 24 µM	300
glassy carbon electrode ³	409	0.5 to 24 µM	500
Nano-CaCO ₃ -polyphenol oxidase biocomposite	6992	6 nM to 0.2 μM	0.44
modified glassy carbon electrode ⁴	0772		
Molecularly imprinted polymers-tyrosinase	274	0 228 to 144 uM	228
modified Gold slides ⁵	271	0.220 to 144 µW	220
chitosan/tyrosinase-modified screen printed	2590	10 nM to 15 μ M	10
carbon electrode ⁶	2390		10
MEBCs 3 /Au	6780	0.2 nM to $15 \ \mu\text{M}$	0.2
MEBCs 4/Au	1430	$2.5 \ nM$ to $44 \ \mu M$	1.9

Table S-2. Comparison of the performance of the proposed biosensors with analogues for

detection of catechol

References (only for **Table S-2**)

- (1) Lu, L.; Zhang, L.; Zhang, X.; Huan, S.; Shen, G.; Yu, R. Anal. Chim. Acta, 2010, 665, 146-151.
- (2) Carralero, V.; Mena, M. L.; Gonzalez-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J. M. Biosens. Bioelectron. 2006, 22, 730-736.
- Pérez, J. P. H.; López, M. S. P.; López-Cabarcos, E.; López-Ruiz, B. *Biosens. Bioelectron.* 2006, 22, 429-439.
- (4) Shan, D.; Zhu, M.; Han, E.; Xue, H.; Cosnier, S. *Biosens. Bioelectron.* 2007, 23, 648-654.
- Lakshmi, D.; Bossi, A.; Whitcombe, M. J.; Chianella, I.; Fowler, S. A.; Subrahmanyam, S.;
 Piletska, E. V.; Piletsky, S. A. Anal. Chem. 2009, 81, 3576-3584.
- (6) Zhang, Y.; Ji, C. Anal. Chem. 2010, 82, 5275-5281.

Added / µM	Found / μM	RSD / %	Recovery / %
0.20	0.19	5.7	95
0.50	0.53	6.5	106
1.00	0.97	3.3	97
2.86	2.89	6.0	101
4.29	4.51	4.1	105
8.58	9.1	3.7	106

 Table S-3. Determination of catechol in river water using the MEBCs 3/Au electrode (three parallel determinations for each).

Figure S-1. UV-Vis spectra of DMcT (1), the MEBCs **1**'s suspension before centrifugation (2), the centrifugation-isolated supernatant of MEBCs **1**'s suspension (3), and the suspension of rinsed MEBCs **1** (4). PBS was used thoroughly.

Figure S-2. TEM images of MEBCs 1.

Figure S-3. FT-IR spectra of DMcT (1), PDMcT_c (2), MOCPs 1 (3), and MOCPs 2 (4).

Figure S-4. Raman spectra of MOCPs 1 (2) and MOCPs 2 (1).

Figure S-5. The cyclic voltammetric curves of bare glassy carbon electrode (GCE) in 0.1 M pH 7.0 PBS in the absence (1) and presence (2) of 0.5 mg mL⁻¹ DMcT, as well as PDMcT_c (3), MOCPS **1** (4), and MOCPs **2** (5) films modified GCE via cast-coating method in 0.1 M pH 7.0 PBS. Scan rate: 0.1 V s⁻¹.

Figure S-6. (A) UV-vis spectra for centrifugation-isolated supernatants of the suspension of MEBCs **1** prepared in the presence of 2, 3, 4, 5, 6, 8, or 9 mg mL⁻¹ GOx (curves from bottom to top), as well as the GOx load (versus mass of DMcT) in the MEBCs **1** (Insert). The concentrations of DMcT and NaAuCl₄ were 0.5 mg mL⁻¹ and 4 mM, respectively. (B) UV-vis spectra for centrifugation-isolated supernatants of the suspension of MEBCs **1** prepared in the presence of 2, 3, 4, 4.5, 5, 5.5, or 6 mM NaAuCl₄ (curves from top to bottom), as well as the GOx load (versus mass of DMcT) in the MEBCs **1** (Insert). The concentrations of DMcT and 4 mg mL⁻¹, respectively.

Figure S-7. The AFM images of MEBCs 1/Au (A) and MEBCs 2/Au (B) electrode surfaces.

Figure S-8. Chronoamperometric responses (A) and calibration curves (B) of the MEBCs 1/Au (1), MEBCs 2/Au (2), and PDMcT_c-GOx/Au (3) electrodes to successive additions of glucose at 0.7 V in pH 7.0 PBS. The PDMcT_c-GOx/Au electrode was prepared by addition of H_2O_2 to suspension of DMcT and GOx to yield PDMcT_c-GOx composites followed by its cast coating on an Au electrode.

Figure S-9. Calibration curves of the MEBCs 3/Au (1) and MEBCs 4/Au (2) electrodes to successive additions of *p*-cresol (A), and phenol (B) at -0.1 V in pH 7.0 PBS.

Figure S-10. The fabrication reproducibility (A) and storability (B) of the MEBCs 3/Au electrodes (three parallel determinations for each).

Figure S-11. Chronoamperometric responses of the MEBCs 3/Au electrode to successive additions of 10 μ M catechol, 0.2 mM uric acid (UA), 0.1 mM ascorbic acid (AA), 10 mM glucose (Glu), and 0.5 mM H₂O₂ at -0.1 V in pH 7.0 PBS.