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1 Raman spectroscopy

Raman spectroscopy is used to verify that the graphene gates are single
layered. A single Lorentzian can be used to fit the G’-band peak which is
strong evidence that the graphene is single layered (figure S1)[1].

Figure S 1: Raman spectrum of the graphene gate in the device in figure 3a
obtained using a 514 nm wavelength laser. A single Lorentzian is used to fit
to the G’ peak (dashed red line).
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2 Electrostatic pull-in of graphene gate

If a sufficiently high voltage difference is applied between the graphene and
the back gate, the attractive electrostatic force is stronger than the restoring
force due to tension in the graphene [2]. For a device with few layered
graphene suspended 170 nm over the CNT a gate voltage difference of 21
V results in a shift of the threshold voltage of 6 V and an improvement of
the inverse subthreshold slope (figure S2a). AFM imaging of the device after
electrical measurements reveal that the graphene has been irreversibly pulled
down to the substrate surface (figure S2b).

Figure S 2: a) IVgg characteristics at different Vbg obtained at room temper-
ature in air with Vd = 500 mV for a CNTFET with a few-layered graphene
gate. b) AFM height image of the device after electrical characterisation.
The central part of the graphene gate has been pulled down to the substrate
surface.

3 Fabrication of test devices for electrostatic

deflection of graphene

Single layered graphene flakes exfoliated from natural graphite and deposited
on Si substrates with 295 nm SiO2 are first located using an optical micro-
scope. The graphene flakes are cut into beams of different length using an
oxygen plasma with the beams protected by PMMA patterned by EBL. Top
electrodes (3 nm Cr / 150 nm Au) are then patterned using EBL. Finally,
250 nm of the SiO2 is etched in HF and subsequent critical point drying
results in suspended graphene beams. Since HF etches SiO2 quickly under-
neath graphene [2], the overlap between the beams and the electrodes are
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designed to only be 300 nm to avoid a too large undercut which may cause
the electrodes to collapse.

4 Simulations of electrostatic deflection of

graphene and CNT transport

We have developed a theoretical model of the electromechanical operation
of the CNTFET with a suspended graphene gate. The mechanics of the
suspended graphene can be described within the elasticity theory for thin
plates [3]. Within the out-of-plain approximation, the static vertical dis-
placement of the graphene flake obeys the equation

T0∇2u(x, y) + T1

(
∂x

(
∂xu|∇u|2

)
+ ∂y

(
∂yu|∇u|2

))
= −Pz(x, y), (1)

where T0 is the initial tension of the suspended graphene, T1 = 112 N/m,
u is the vertical displacement and Pz(x, y) is the vertical external force per
unit area exerted on the graphene.

The graphene gate is mechanically actuated by applying a voltage differ-
ence ∆V = Vgg−Vbg between the graphene and the back-gate electrode. The
vertical component of the electrostatic force Pz per unit area of graphene at
position r is given by

Pz(r) = −σ(r)∂zϕ(r), (2)

where ϕ(r) is the electrostatic potential and σ(r) the surface charge distri-
bution [4]. These are connected through the integral Poisson equation

ϕ(r) =
1

4πϵ0

∫
S

σ(R)ds

|R− r|
, (3)

where the integral is taken over the surfaces of all conductors and ds is a
small surface area of a conductor located at position R carrying the charge
σ(R)ds [4]. The boundary conditions for this equation are the values of ϕ on
the surfaces of the conductors (Vgg and Vbg on the graphene gate and backgate
respectively). It is important to note that upon deforming the graphene
gate, the changed geometry of the system leads to a change of electrostatic
potential and hence electrostatic force. Therefore, the force exerted on the
graphene gate is a function of the deflection, Pz = Pz[u(x, y)].

The electron and hole current densities in the semiconducting CNT are
given by

jn = σn
∂

∂x

(
ξ

e
− ϕscnt

)
(4)

jp = σp
∂

∂x

(
ξ

e
− ϕscnt

)
, (5)
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where σn and σp are the electron and hole conductivities, respectively, ϕscnt

is the electrostatic potential induced on the channel CNT, ξ is the chemical
potential which is connected to the concentrations of electrons n and holes p
through

n(ξ) =
8

3πE0

∫ ∞

E0

EdE√
E2 − E2

g

1

1 + e
E−ξ
kT

p(ξ) =n(−ξ) (6)

where the energy and the chemical potential are counted from the middle
of the band gap, E0 = Eg/2 where Eg is the bandgap width, and d is the
diameter of the CNT.

In the case when no bias is applied along the channel CNT, the absent
electric currents in equilibrium are equivalent to the condition

ξ − eϕCNT = C (7)

where C is a constant. Since the CNT is connected to grounded leads, we
have C = 0. The potential ϕCNT can be found from the Poisson equation (3)
where the surface charge density on the CNT is given by σCNT = 1

πd
e(p−n).

The system of equations (1), (3), (6) and (7) is solved numerically in
a self-consistent way to obtain the deflection of graphene u(x, y) and the
concentration profiles n(x) and p(x) in the CNT. Equation (1) is solved
using the finite element method and equation (3) using the boundary element
method [5].

The conductance of the channel CNT is calculated from the carrier con-
centrations in the following way. The resistance ρ per unit length of a semi-
conducting CNT with the electron concentration n is given by

ρ(n) =
1

G0l0

1 +
(
3π
8
nd

)2(
3π
8
nd

)2 , (8)

where G0 = 4e2/h is the conductance quantum and l0 is the scattering length
in the CNT [6]. The total resistance Rtot and the conductance G of a CNT
with a charge density distribution n(x) can be found by dividing the CNT into
small segments of length dx and noticing that these segments are connected
in series, which yields

Rtot = G−1 =

(∫ L

0

ρ(n(x))dx

)
. (9)

The hole conductance can be calculated from p(x) using equations (8) and
(9) with n substituted by p.
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4.1 Scaling of inverse subthreshold slope

In order to assess the scaling of the inverse subthreshold slope S with the
suspension height h and initial tension T0 of the graphene gate, we have
developed a lumped-parameter electrostatic model for the deflection of the
graphene gate and the carrier concentration in the section of the channel
CNT beneath it.

The inverse subthreshold slope gives the voltage needed to change the
current in the channel by one order of magnitude, and can be calculated as

S =

∂log
(

Id
I0

)
∂Vgg

−1

. (10)

Assuming that the section of the channel CNT of length Lg electrostatically
controlled by the graphene gate is uniformly charged with electron concen-
tration n, we infer from equation (7) that the CNT is effectively kept at a
uniform potential ϕCNT = ξ(n)/e. Treating the system of the CNT and gates
as a capacitive network, we write down the relation between the potential
ϕCNT and the charge Q = −enL in the CNT,

Q = Cgg(ϕCNT − Vgg) + Cbg(ϕCNT − Vbg) + ϕCNTCp, (11)

which is easily transformed to

ϕCNT (Q)− Q

C∑ =
VggCgg + VbgCbg

C∑ , (12)

where Cgg (Cbg) is the capacitance between the channel CNT and the graphene
gate (backgate), Vgg (Vbg) is the graphene gate voltage (backgate voltage) and
C∑ = Cgg + Cbg + Cp where Cp is the parasitic capacitance of the CNT.

Since the switching of the transistor occurs when the channel CNT is de-
pleted, we analyze the above expression in the limit of very small accumulated
charge on the CNT. In this limit, equation (6) is reduced to

Q = Q0e
ξ/kBT , (13)

where Q0 = eniLg, ni =
8

3πE0d

∫∞
E0

EdE√
E2−E2

0

exp
(
− E

kBT

)
is the intrinsic carrier

concentration in a semiconducting CNT. This is used to express the potential
in the CNT as a function of the charge Q as

ϕCNT (Q) =
ξ

e
=

kBT

e
log

(
Q

Q0

)
(14)
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Inserting this into equation (12), we find that

kBT

e
log

(
Q

Q0

)
+ E0 −

Q

C∑ =
VggCgg + VbgCbg

C∑ (15)

In the small charge limit Q ≪ Q0, the capacitive contribution to the total
potential in the CNT Q

C∑ can be neglected, and the above equation simplified

to
kBT

e
log

(
Q

Q0

)
=

VggCgg + VbgCbg

C∑ (16)

Assuming that the current in the channel CNT is proportional to the carrier
concentration in it, we can express S as a function of capacitances between
the CNT and the gates, and voltages on the gates, as

S−1 =
e

kBT log(10)

∂

∂Vgg

[
CggVgg + CbgVbg

C∑
]

(17)

Taking the derivative with respect to Vgg in the above equation, and noticing
that a change of Vgg leads to a displacement of the graphene gate and hence
a change of Cgg, we come to the following expression for S

kBT log(10)

e
S−1 =

Cgg

C∑
(
1 +

C ′
ggCbg

CggC∑
(
∆V + Vgg

Cp

Cbg

))
(18)

where C ′
gg = ∂Cgg

∂Vgg
. The first term in the above expression gives S of the

static gate transistor, while the second term, summarizes the effect of the
non-static gate. Note that assuming the full depletion of the channel, which
is expressed by CggVgg + CbgVbg = 0, the above equation can be reduced to

S = kBT ln(10)
q

Ctot

Cg+Vgg∂Cgg/∂Vgg
, which yields equation (4) in the main article.

We note that (i) the first term is bounded by Cgg

C∑ < 1, which results in

a lower limit for S equal to kBT log(10)/e known as the thermal limit, and
(ii) since the graphene gate capacitance Cgg will increase when the graphene
sheet is deflected, the second term will always be positive, meaning that
the subthreshold slope will always be larger for a non-static gate transistor
as compared to a static gate transistor. The developed model is used to
determine the parameter ranges where the mechanical motion of the graphene
gate reduces S below the thermal limit.

We model the capacitances between the CNT and the gates by analytical
expressions for the capacitance between a cylinder and a metallic plate known
from elementary electromagnetics,

C =
2πϵ

log
(
4H
d

) (19)

6



where H is the distance between the plate and the cylinder, d is the diameter
of the cylinder and ϵ is the dielectric constant of the surrounding medium.
For Cbg, the distance H is equal to the distance between the CNT and the
backgate while for Cgg, H = h − u, where u is the maximum deflection
of the graphene gate. This deflection can be expressed through ∆V by an
approximate relation

u = u1∆V α (20)

where u1 depends on the initial tension. For a completely linear graphene
sheet, α = 2 for deflections that are negligible compared to the distance
between the graphene and the backgate. Mechanical nonlinearities cause α
to decrease, so for small deflections we can assume α . 2. This expression
gives a good fit to both simulated and experimentally measured functions
u(∆V ) and a derivative of the gate capacitance

C ′
gg =

∂Cgg

∂u

∂u

∂Vgg

=
αu

∆V

∂Cgg

∂u
(21)

From equation (18) we see that S is a function of the gate deflection
u, however for a given geometry and back gate bias, the switching of the
transistor will occur at a specific gate voltage, and hence at a specific gate
deflection. To find this deflection, we note that the switching occurs when
the applied voltages deplete the channel CNT. As a result, the following
condition holds to a good approximation,

VggCgg + VbgCbg = 0, (22)

which can be rewritten as

∆V =
|Vbg|(Cgg + Cbg)

Cgg

. (23)

Substituting equations (19), (20) and (22) into (18) we arrive to

kBT log(10)

e
S−1 =

Cgg

C∑
(
1 +

Cggαu

2πϵ(h− u)(1 + Cgg/Cbg)

)
, (24)

where Cgg is a function of the deflection u. This equation gives S as a function
of the graphene suspension height h and the parameter u1 which is a function
of the initial tension of graphene T0.

The scaling of S with the suspension height h and the initial tension T0

calculated using the above equation is presented in Figure S3. The solid
lines give S as a function of h with fixed initial tension values T0 for each
line, while the dotted lines give the same dependence with fixed ratios of
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the maximum deflection u to the suspension height h. The ratio u/h which
exceeds ∼ 0.7 leads to irreversible pull-in and adhesion of graphene to the
substrate [7], which is why combinations of S and h that lie below the line
that corresponds to u/h = 0.7 are unattainable. The maximum suspension
height at which an S below the thermal limit can be obtained without pull-in
is therefore given by the intersection of the u/h = 0.7 line with the horizontal
line that corresponds to S/S0 = 1. This point is marked by arrows in the
figures. The optimal value of initial tension T0 is obviously such such that the
curve S(h) with T = T0 goes through this point. Generally, lower T0 allows
for easier deflection of the graphene, resulting in a lower Vgg and hence higher
S at the pull-in threshold.

A B

Figure S 3: The inverse subthreshold slope S as a function of the graphene
gate suspension height h. Solid lines correspond to different values of initial
tension T0 of the graphene sheet. Dashed lines show the scaling of S for the
CNTFET with a fixed graphene gate. Dotted lines show the S(h) dependence
for fixed displacement to suspension height ratios, u/h. On both figures,
thick arrows indicate maximum suspension heights where S below the thermal
limit can be obtained without pull-in. In (A), the parasitic capacitance of the
channel CNT was extracted by fitting S at h = 120 nm to the experimentally
obtained value 286 mV/dec (indicated by a circle) for each initial tension. In
(B), the parasitic capacitance is assumed to be zero.

The results shown in Figure S3A are fitted to the experimental S = 286
mV/dec at h = 120 nm by choosing the parasitic capacitance level. These
results reveal that due to considerable parasitic capacitance contributions,
the suspension height would have to be reduced to 3 nm with an initial
tension T0/T1 ≈ 0.45% in order to obtain S below the thermal limit without
pull-in.

On the other hand, reducing the effect of parasitic capacitances improves
the scaling of S considerably. In Figure S3B, the scaling of S in the absence
of parasitic capacitance of the channel is presented. As seen from the figure,
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in order to obtain S lower than the thermal limit in this case, an initial CNT-
graphene distance of 20 nm is sufficient. The corresponding initial tension in
the case is T0/T1 ≈ 0.08%.

We note that there is a trade-off between a desired sharp response of the
graphene sheet to the applied voltage and pull-in at large deflections. This
balance is reflected in the existence of an optimal value of the parameter T0.
If the initial tension is higher than this value, the suspension height required
to reach the thermal limit has to be reduced, and if it is lower, the graphene
will always snap-in to the substrate before reaching the thermal limit.
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