Supporting Information

The importance of domain closure for the auto-activation of ERK2

Daniel Barr, Taiji Oashi, Kimberly Burkhard, Sarah Lucius, Ramin Samadani, Jun Zhang, Paul Shapiro, Alexander D. MacKerell Jr., and Arjan van der Vaart

System	MD SASA (Å ²)	X-Ray SASA (Å ²)
Inactive ^a	6.0 ± 2.3	4.7
Q103A ^a	10.8 ± 4.3	
I84A ^a	10.0 ± 3.8	
L73P ^a	7.3 ± 3.3	
Mono-phosphorylated ^b	71.1 ± 16.2	67.0
Active ^a	71.4 ± 7.8	71.3

Table T1. Solvent accessible surface area of Y185.

a) ERK2

b) ERK1

System	Lip-Protein	Whole Protein
Inactive ^a	-0.03070	0.19057
Q103A ^a	-0.01390	0.14649
I84A ^a	-0.01068	0.17141
L73P ^a	-0.03262	0.18115
G83A ^a	-0.01299	0.15649
K162M ^a	0.00970	0.15336
Mono-phosphorylated ^b	0.01246	0.17027
Active ^a	0.00524	0.16801

 Table T2. Mean Correlation Coefficients.

a) ERK2 b) ERK1

Figure S1. Block based convergence tests of a) the RMSD and b) the variancecovariance matrices (see text).

Figure S2. Variance-covariance matrices for: a) inactive ERK2, b) active ERK2, c) monophosphorylated ERK1, d) ERK2 mutant Q103A, e) ERK2 mutant I84A, f) ERK2 mutant L73P g) ERK2 mutant G83A, and h) ERK2 mutant K162M. Secondary structure labels are provided along the axes. The phosphorylation site (TEY motif) is shown by a light grey star, and the 3₁₀ helical region of L16 in the active state is shown in light grey.

Figure S3. Trajectory-averaged distance histograms for contacts between D334 and a) Q64, b) R68, and c) R170 in the inactive, active and Q103A mutant states.

ERK2 1ERK_A	SAYDNLNKVRVAIKKISPFEHQTYCQRTLREIKILLRFRHENIIGINDIIR-APTIEQ	95
ERK1 2ZOQ_A	SAYDHVRKTRVAIKKISPFEHQTYCQRTLREIQILLRFRHENVIGIRDILR-ASTLEA	117
P38a 3KF7 A	AAFDTKTGLRVAVKKLSR-PFQSIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEE	98
P38d 3COI A	SAIDKRSGEKVAIKKLSR-PFQSEIFAKRAYRELLLLKHMQHENVIGLLDVFTPASSLRN	100
JNK3 20K1 A	AAYDAVLDRNVAIKKLSR-PFQNQTHAKRAYRELVLMKCVNHKNII <mark>S</mark> LLNVFTPQKTLEE	101
MEK1 1S9J A	KVSHKPSGLVMARKLIHL-EIKPAIRN-QIIRELQVLHECNSPYIVGFYGAFYSDGEIS-	80
MEK2 1S91 A	KVQHRPSGLIMARKLIHL-EIKPAIRN-QIIRELQVLHECNSPYIVGFYGAFYSDGEIS-	90
FGFR1 1EVT C		
FGFR2 1EV2 E		
FGFR3c 1RY7 B	PPPGGGPMGPTVWVKDGT-GLVPSERVLVGPQRLQVLNASHEDSGAYSCRQRLTQRVLCH	89
ASK1 2CLQ A	AGRDLSNQVRIAIKEIPERDSRYSQPLHEEIALHKHLKHKNIVQYLGSFSENGFIK-	95
BRAF 1UWJ A	KGKWHGDVAVKMLNV-TAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAIV	81
CAPK 1BX6 A	LVKHKESGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLY-	117
ERK2 1ERK A	MKDVYIVQDLMETDLYKLLKT-QHLSNDHICYFLYQILRGLKYIHSAN-VLHRDL	148
ERK1 2ZOO A	MRDVYIVQDLMETDLYKLLKS-QQLSNDHICYFLYQILRGLKYIHSAN-VLHRDL	170
P38a 3KF7 A	FNDVYLVTHLMGADLNNIVKC-QKLTDDHVQFLIYQILRGLKYIHSAD-IIHRDL	151
P38d 3COI A	FYDFYLVMPFMQTDLQKIMGLKFSEEKIQYLVYQMLKGLKYIHSAG-VVHRDL	152
JNK3 20K1 A	FODVYLVMELMDANLCOVIOMELDHERMSYLLYOMLCGIKHLHSAG-IIHRDL	153
MEK1 1S9J A	ICMEHMDGGSLDOVLKKAGRIPEOILGKVSIAVIKGLTYLREKHKIMHRDV	131
MEK2 1S91 A	ICMEHMDGGSLDOVLKEAKRIPEEILGKVSIAVLRGLAYLREKHOIMHRDV	141
FGFR1 1EVT C	TDNTKPNRMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCP	39
FGFR2 1EV2 E	APYWTNTEKMEKRLHAVPAANTVKFRCP	34
FGFR3c 1RY7 B	FSVRVTDAPSSGDDEDGEDEAEDTGVDTGAPYWTRPERMDKKLLAVPAANTVRFRCP	146
ASK1 2CLO A	IFMEOVPGGSLSALLRSKWGPLKDNEOTIGFYTKOILEGLKYLHDNO-IVHRDI	148
BRAF 1UWJ A	TQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYLHAKS-IIHRDL	130
CAPK 1BX6 A	MVMEYVAGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLD-LIYRDL	167
ERK2 1ERK_A	KPSNLLLNTTC-DLKICDFGLARVADPDHDHTGFLTEYVATRWYRAPEIMLNSKGYTK	205
ERK1 2ZOQ_A	KPSNLLINTTC-DLKICDFGLARIADPEHDHTGFLTEYVATRWYRAPEIMLNSKGYTK	227
P38a 3KF7_A	KPSNLAVNEDC-ELKILDFGLARHTDDEMTGYVATRWYRAPEIMLNWMHYNQ	202
P38d 3COI_A	KPGNLAVNEDC-ELKILDFGLARHADAEMTGYVVTRWYRAPEVILSWMHYNQ	203
JNK3 20K1_A	KPSNIVVKSDC-TLKILDFGLARTAGTSFMMTPYVVTRYYRAPEVILGMGYKE	205
MEK1 1S9J_A	KPSNILVNSRG-EIKLCDFGVSGQLIDSMANSFVGTRSYMSPERLQGTHYSV	182
MEK2 1S9I_A	KPSNILVNSRG-EIKLCDFGVSGQLIDSMANSFVGTRSYMAPERLQGTHYSV	192
FGFR1 1EVT_C	SSGTPNPTLRW-LKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYT	89
FGFR2 1EV2 E	AGGNPMPTMRW-LKNGKEFKQEHRIGGYKVRNQHWSLIMESVVPSDKGNYT	84
FGFR3c 1RY7 B	AAGNPTPSISW-LKNGREFRGEHRIGGIKLRHQQWSLVMESVVPSDRGNYT	196
ASK1 2CLQ_A	KGDNVLINTYSGVLKISDFGTSKRLAGINPCTETFTGTLQYMAPEIIDKGP-RGYGK	204
BRAF 1UWJ A	KSNNIFLHEDL-TVKIGDFGLATEKSRWSG-SHQFEQLSGSILWMAPEVIRMQDKNPYSF	188
CAPK 1BX6 A	KPENLLIDQQG-YIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNK	217
enere manes freddrifelin 💳 yn si		

Figure S4. Sequence alignment of MAKs. The protein name and PDB access code are shown on the left. The sequence for cAPK is included at the bottom for comparison with Ref. (54). The residues mutated in this study are highlighted in yellow.

Figure S5. Free energy surfaces (in kcal/mol) for backbone rotation of G83. a) active ERK2, b) inactive ERK2, and c) ERK2 mutant G83A.

Figure S6. Fluorescence spectra of ERK2 wild type and mutants.

Movie M1. Quasi-harmonic mode 16 of the ERK2 inactive state showing hinge motion.

Movie M2. Quasi-harmonic mode 13 of the ERK2 active state showing hinge motion.

Movie M3. Quasi-harmonic mode 14 of the ERK2 active state showing twisting motion.

Movie M4. TMD transition pathway of ERK2 activation. The movie starts at the inactive and ends at the active state.