Supporting Information

Fibronectin and Bone Morphogenetic Protein-2 Decorated Poly(OEGMA-r-HEMA) Brushes Promote Osseointegration of Titanium Surfaces

Xiaoshuai Ren, Yuanzi Wua,, Yan Cheng, Hongwei Ma, and Shicheng Wei

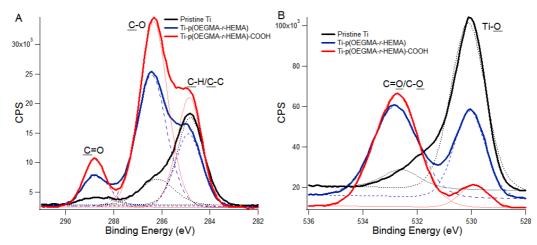


Figure S1. (A) C 1s and (B) O 1s core scan spectra of pristine Ti (black), and Ti-p(OEGMA-*r*-HEMA) before (blue) and after (red) carboxylation as determined by XPS.

Table S1: Elemental Composition of Ti-p(OEGMA-*r*-HEMA) before and after Carboxylation as Determined by XPS.

Atom Ratio%	C 1s Separating Peaks			O 1s Separating Peaks	
	C-H/C-C	C-O	C=O	TiO_2	Polymer
Pristine Ti	67.8	25.4	6.9	89.7	10.3
Ti-p(OEGMA-r-HEMA)	28.7	58.9	12.3	39.9	60.1
Ti-p(OEGMA-r-HEMA)-COOH	30.5	57.5	12.1	11.3	88.7

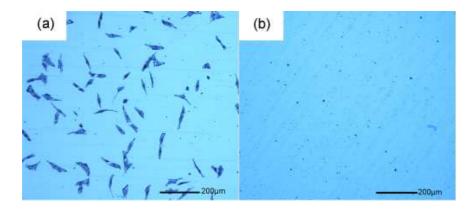


Figure S2. Microscopy images of MC3T3 cells on (a) pristine Ti, and (b) p(OEGMA-r-HEMA)-COOH coated Ti surface without NHS/EDC activation, after 12 h seeding of MC3T3 (4×10^4 cells/mL).