Supporting Information

Photodynamic Behavior of Heteroleptic Ir(III) Complexes with Carbazole-Functionalized Dendrons Associated with Efficient Electron Transfer Processes

Ah-Reum Hwang, Won-Sik Han, Kyung-Ryang Wee, Hyun Young Kim, Dae Won Cho, Chyongjin Pac,*

and Sang Ook Kang*

Department of Advanced Materials Chemistry, Korea University, Sejong Campus, Chungnam 339-700, Korea.

Figure S1. Absorption spectra for 10 μ M CH₂Cl₂ solution of dfppy ligand (black) and dpq ligand (red).

Figure S2. Emission spectra taken at room temperature for 10 μ M CH₂Cl₂ solution of $[(dfppy)_2Ir(dpq)]^+$ (black) and $[(dfppy-Cz_n)_2Ir(dpq)]^+$ (n = 1 (red), 2 (blue)); The excitation wavelength is (a) 350 and (b) 400 nm, respectively.

Figure S3. Fluorescence lifetime of carbazole for $[(dfppy-Cz_n)_2Ir(dpq)]^+$ in 2-MeTHF solution at 77 K. Excitation wavelength is 309 nm.

Table S1. Fluorescence lifetime and component rate of carbazole for $[(dfppy-Cz_n)_2Ir(dpq)]^+$ at room temperature.

 $(dfppy-Cz_1)_2Ir(dpq)$

τ_1 (ns)	component	τ_2 (ns)	component
6.2	10 %	0.002	90 %

 $(dfppy\text{-}Cz_2)_2Ir(dpq)$

τ_1 (ns)	component	τ_2 (ns)	component
5.88	67 %	0.062	33 %

Figure S4. Phosphorescence lifetime of Ir(dpq) core for (a) **G0** (b) **G1** (c) **G2** in MC solution at room temperature. Excitation wavelength is 309 nm.

Figure S5. Phosphorescence lifetime of Ir(dpq) core for (a) **G0** (b) **G1** (c) **G2** in MC solution at 77 K. Excitation wavelength is 309 nm.

Figure S6. Transient absorption spectra of **G2** as obtained by laser flash photolysis techniques. Excitation wavelength is 355 nm. Inset decay profiles are measured at 800 nm (blue line).

Figure S7. Optimized structures of (a) **G1** and (b) **G2** using semi-emperical (AM1) calculation. Hydrogen atoms are omitted.