Supporting information for: Enhanced protective properties and structural order of Self-Assembled Monolayers of aromatic thiols on copper in contact with acidic aqueous solution Fabrizio Caprioli*, Andrea Martinelli, Delia Gazzoli, Valeria Di Castro and Franco Decker Dipartimento di chimica, Università "Sapienza" P. le Aldo Moro 5, 00185, Rome, Italy Best fit performed on C1s XP spectra relative to as prepared a) BT; b) 1-UT and c) 2-NT samples. — : aromatic (for BT and 2-NT, $284.1 \pm 0.1 \text{ eV}$) or alkylic (for 1-UT, $285.0 \pm 0.1 \text{ eV}$) backbone ---: carbon atom bonded to the sulfur. The ratio between the two components is perfectly in agreement with the molecular structure: 5:1 for BT, 9:1 for 2-NT, 10:1 for 1-UT Best fit obtained by XP S2p spectra of different samples: a), b) and c) BT; d), e) and f) 2-NT; g), h) and i) 1.UT; at different ageing time: a), d) and g) as prepared samples; b), e) and h) after 24 h ageing in aerated H_2SO_4 0.5 M; c), f) and i) after 170 h ageing in aerated H_2SO_4 0.5 M. The fit component have been assigned to: —— chemisorbed thiol (main peak maximum at 162.3 ± 0.1 eV); —— disulphide and/or physisorbed material (main peak maximum at 163.4 ± 0.1 eV); —— sulphonate (main peak maximum at 167.7 ± 0.2 eV); —— Cu_2S (main peak maximum at 161.6 ± 0.1 eV) CuLMM Auger spectra recorded on as prepared: —— bare Cu; —— BT; —— 2-NT; —— 1-UT. Peaks at 916.5 ± 0.1 eV (naked copper) and 916.1 ± 0.1 eV (coated copper) are ascribable to Cu(I) species, whereas the signals lying at 918.7 ± 0.1 eV are ascribable to bulk Cu atoms. Cu2p spectra recorded on as prepared: — BT; — 2-NT; — 1-UT. The symmetric shape of the peaks clearly indicate the absence of Cu(II) species. The position of the peak Cu2p $_{3/2}$ at 932.7 eV has been used as internal standard. Nyquist plot relative to EIS measurements performed in aerated H_2SO_4 0.5 M on Cu electrodes coated by films of: a) BT; b)1-UT and c) 2-NT after different ageing time: \circ 5 min; \circ 6 h; \circ 24 h; \circ 72 h and \circ 170 h.