Kinetic and Thermodynamic Investigation of Lipase-Catalyzed Hydrolysis of (R,S)-3-Phenylbutyl Azolides

Jin-Ru Chen, Chia-Hui Wu, Pei-Yun Wang, and Shau-Wei Tsai*

Institute of Biochemical and Biomedical Engineering, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, 33302, ROC

Supplementary Information

1. EXPERIMENTAL SECTION

The synthesized substrates are confirmed from the retention time in HPLC analysis (Table S1) or 1 H NMR spectra recorded at 500 MHz on Brucker spectrometer (Avance DRX 500) in DMSO- d_6 solution with TMS as an internal standard as follows:

- (R,S)-3-Phenylbutyl 4-methylpyrazolide (1). ¹HNMR (DMSO- d_6 /TMS) δ : 1.21-1.28 (3H, q), 2.04 (3H, s), 3.28-3.46 (1H and 2H, m), 7.25-7.29 (5H, m), 7.71 (1H, s), 8.09 (1H, s). The abbreviations d, q, m and s are the peak multiplicities of doublet, quartet, multiplet and single, respectively.
- (R,S)-3-Phenylbutyl 4-bromopyrazolide (2). ¹HNMR (DMSO- d_6 /TMS) δ : 1.27-1.29 (3H, d), 3.32-3.47 (1H and 2H, m), 7.25-7.30 (5H, m), 8.00 (1H, s), 8.62 (1H, s).
- (R,S)-3-Phenylbutyl 4-nitropyrazolide (3). ¹HNMR (DMSO- d_6 /TMS) δ : 1.30-1.31 (3H, d), 3.35-3.56 (1H and 2H, m), 7.25-7.31 (5H, m), 8.57 (1H, s), 9.36 (1H, s).
- (R,S)-3-Phenylbutyl 1,2,4-triazolide (8). ¹HNMR (DMSO- d_6 /TMS) δ : 1.30-1.31 (3H, d), 3.36-3.57 (1H and 2H, m), 7.26-7.35 (5H, m), 8.28 (1H, s), 9.27 (1H, s).
- (R,S)-Methyl 3-phenylbutyrate (**9**). ¹HNMR (DMSO- d_6 /TMS) δ: 1.22-1.23 (3H, m), 2.61 (2H, d), 3.15-3.21 (1H, q), 3.54 (3H, s), 7.17-7.36 (5H, m).
- (R,S)-3-(Boc-amino)-3-phenylpropionyl 4-methylpyrazolide (**10**). ¹HNMR (DMSO- d_6 /TMS) δ : 1.32 (9H, s), 2.03 (3H, s), 3.44-3.45 (2H, d), 5.01 (1H, s), 7.28-7.35 (5H, m), 7.51 (1H, s), 7.70 (1H, s), 8.10 (NH, s).

2. KINETIC ANALYSIS

At the initial stage, eq 1 for the fast-reacting substrate without and with adding the acid product is, respectively, reduced to

$$V_R = \frac{k_{2R}(S_R)_0(E_t)K_{mR}^{-1}}{1 + (S_R)_0[K_{mR}^{-1} + K_{mS}^{-1}]}$$
(S1)

$$V_R = \frac{k_{2R}(S_R)_0(E_t)K_{mR}^{-1}}{1 + (S_R)_0[K_{mR}^{-1} + K_{mS}^{-1}] + (I)K_I^{-1}}$$
(S2)

Moreover if the lipase has high (R)-enantioselectivity, the (R)-enantiomer will completely convert to the acid product (i.e. $(I) = (S_R)_0$) when estimating the initial rate V_S . Therefore, the initial rate equation for the slow-reacting substrate is expressed as

$$V_S = \frac{k_{2S}(S_S)_0(E_t)K_{mS}^{-1}}{1 + (S_S)_0[K_{mR}^{-1} + K_I^{-1}]}$$
(S3)

By using the data of Figure 2, $k_{2R}K_{mR}^{-1}$ and $[K_{mR}^{-1} + K_{mS}^{-1}]$ are first estimated from eq S1, and then K_I from eq S2. Similarly, the kinetic constants k_{2S} and K_{mS} are estimated from eq S3, and then k_{2R} , K_{mR} , and enantiomeric ratio E defined as $k_{2R}k_{2S}^{-1}K_{mR}^{-1}K_{mS}$. Therefore, the time-course variations of $(S_R)_0$ and $(S_S)_0$, and hence X_R and X_S (Figures 1 and S1) are predicted from solving eqs 1-3 by using a fourth-order Runge-Kutta numerical method.

3. THERMODYNAMIC ANALYSIS

According to the transition theory with $k_{-1R} >> k_{2R}$ and $k_{-1S} >> k_{2S}$ for eqs 1 and 2 in the Michaelis-Menten kinetics, the logarithm of enantiomeric ratio can be expressed as $Rln(E) = -\Delta\Delta G/T = -\Delta\Delta H/T + \Delta\Delta S$. Therefore from the variation of ln(E) with T^{-1} ,

one may estimate $-\Delta\Delta H$, $-\Delta\Delta S$, and hence $-\Delta\Delta G$ at a specified temperature between the transition states of both enantiomers. The results of $-\Delta\Delta H$ and $-\Delta\Delta S$ along with others for Novozym 435-catalyzed resolution of (R,S)-azolides containing an α -chiral center are represented in Table S2.

REFERENCES

- (1) Wang, P. Y.; Chen, Y. J.; Wu, A. C.; Lin, Y. S.; Kao, M. F.; Chen, J. R.; Ciou, J. F.; Tsai, S. W. (*R*,*S*)-Azolides as novel substrates for lipase-catalyzed hydrolytic resolution in organic solvents. *Adv. Syn. Cat.* **2009**, *351*, 2333-2341.
- (2) Wu, A. C.; Wang, P. Y.; Lin, Y. S.; Kao, M. F.; Chen, J. R.; Ciou, J. F.; Tsai, S. W. Improvements of enzyme activity and enantioselectivity in lipase-catalyzed alcoholysis of (*R*,*S*)-azolides. *J. Mol. Cat. B: Enzymatic* **2010**, *62*, 235-241.
- (3) Ciou, J. F.; Wang, P. Y.; Wu, A. C.; Tsai, S. W. Lipase-catalyzed alcoholytic resolution of (R,S)-flurbiprofenyl azolides for preparation of (R)-NO-flurbiprofen ester prodrugs. *Proc. Biochem.* **2011**, *46*, 960-965.
- (4) Lin, Y. S.; Wang, P. Y.; Wu, A. C.; Tsai, S. W. Lipase-catalyzed enantioselective resolution of (*R*,*S*)-*N*-2-methylalkanoyl-3-(2-pyridyl)pyrazoles in organic solvents. *J. Mol. Cat. B: Enzymatic*, **2011**, *68*, 245-249.
- (5) Kao, M. F.; Lu, P. Y.; Kao, J. Y.; Wang, P. Y.; Wu, A. C.; Tsai, S. W. (*R*,*S*)-2-Chlorophenoxyl pyrazolides as extreme substrates for improving lipase-catalyzed hydrolytic resolution. Chiralty, **2011** (in press)

Table S1. HPLC analytical conditions for various substrates illustrated in Scheme 1.

Substrate	Column	UV	Flow rate	Internal	Mobile phase ^[b]	Retention time (min)		
		(nm)	(mL min ⁻¹)	standard ^[a]	(HEX:IPA:AA,	Internal standard	(R)-substrate	(S)-substrate
					v/v)			
1	OJ-H	270	2.0	A	89.5:10:0.5	13.5, 14.7	4.7	8.0
2	OJ	270	2.0	В	88:12.0:0	3.0	4.5	5.2
3	OJ-H	270	1.5	В	85:15:0	3.2	8.9	9.8
4	OJ-H	270	2.0	В	95:5:0	2.7	3.6	4.1
5	OJ-H	270	2.0	C	90:10:0	2.0	5.3	6.4
6	(<i>S</i> , <i>S</i>)-Whelk-O1	270	2.0	C	99:1:0	1.7	4.8	5.7
7	OJ-H	270	2.0	C	88:12:0	2.0	16.8	19.9
8	OD-H	220	1.0	C	50:50:0	3.6	11.1	6.4
9	OJ-H	220	2.0	В	95:5:0	3.4	4.4	3.2
10	OJ-H	270	2.0	C	90:10:0	2.0	5.1	7.9

[[]a] (A) (R,S)-Naproxen, (B) 2-nitrotoluene, (C) benzene. [b] IPA and AA as isopropyl alcohol and acetic acid, respectively.

Table S2. - $\Delta\Delta H$ and - $\Delta\Delta S$ for Novozym 435-catalyzed kinetic resolution of (R,S)-azolides.

Substrates	-ΔΔΗ	-ΔΔS	Reaction, solvent, stereo-preference
	(kJ mol ⁻¹)	$(J mol^{-1} K^{-1})$	
(R,S)-3-Phenylbutyl 4-methylpyrazolide	20.39	37.97	Hydrolysis, water-saturated CYC, R
(R,S)-3-Phenylbutyl 4-bromopyrazolide	17.61	26.74	Hydrolysis, water-saturated CYC, R
(R,S)-2-Phenylpropionyl 1,2,4-triazolide ¹	19.39	23.71	Hydrolysis, water-saturated MTBE, R
(R,S)-Naproxenyl 1,2,4-triazolide ²	17.09	15.45	Alcoholysis by methanol, anhydrous MTBE, R
(R,S)-Flurbirpofenyl 1,2,4-triazolide ³	8.43	-10.23	Alcoholysis by methanol, anhydrous MTBE, R
(<i>R</i> , <i>S</i>)-Flurbirpofenyl 4-bromopyrazolide ³	7.54	-20.38	Alcoholysis by 2,3-dibromo-1-propanol, anhydrous MTBE, R
(<i>R</i> , <i>S</i>)-2-Methylheptyl 3-(2-pyridyl)pyrazolide ⁴	27.17	51.12	Hydrolysis, water-saturated MTBE, R
(<i>R</i> , <i>S</i>)-2-Methylheptyl 3-(2-pyridyl)pyrazolide ⁴	12.35	5.43	Hydrolysis, water-saturated IPE, R
(<i>R</i> , <i>S</i>)-2-Methylheptyl 3-(2-pyridyl)pyrazolide ⁴	28.45	51.46	Alcoholysis by methanol by methanol, anhydrous MTBE, R
(<i>R</i> , <i>S</i>)-2-Methylheptyl 3-(2-pyridyl)pyrazolide ⁴	59.10	151.0	Alcoholysis by methanol, anhydrous IPE, R
(R,S)-2-(2-Chlorophenoxy)propionyl	22.89	40.89	Hydrolysis, water-saturated MTBE, S
3-(2-pyridine)pyrazolide ⁵			
(R,S)-2-(3-Chlorophenoxy)propionyl	23.92	47.94	Hydrolysis, water-saturated MTBE, S
3-(2-pyridine)pyrazolide ⁵			
(R,S)-2-(4-Chlorophenoxy)propionyl	9.93	-13.70	Hydrolysis, water-saturated MTBE, S
3-(2-pyridine)pyrazolide ⁵			
(R,S)-2-(2,4-Dichlorophenoxy)propionyl	13.02	-5.51	Hydrolysis, water-saturated MTBE, S

3-(2-pyridine)pyrazolide⁵

Figure S1. Time-course conversions X_R (\bullet) and X_S (\circ) at 25 $^{\circ}$ C in water-saturated CYC containing 40 mg mL⁻¹ of Novozym 435 and (A) 15 mM, (B) 30 mM, (C) 60 mM, and (D) 90 mM of **1**, or those of X_S (\circ) for (E) 75 mM of (S)-**1**; theoretical predictions via eqs 1-3 (—).