(Thio)Ureido Anion Receptors Based on a 1,3-Alternate Oxacalix[2]arene[2]pyrimidine Scaffold

Wim Van Rossom,[†] Jef Caers,[†] Koen Robeyns,^{‡,§} Luc Van Meervelt,[‡] Wouter Maes,^{*,†,⊥} and Wim Dehaen^{*,†}

[†] Molecular Design and Synthesis, Department of Chemistry, Katholieke Universiteit Leuven (KU Leuven), Celestijnenlaan 200F, 3001 Leuven, Belgium

[‡] Biomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven (KU Leuven), Celestijnenlaan 200F, 3001 Leuven, Belgium

[§] Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCL), Bâtiment Lavoisier, place Louis Pasteur 1, bte 3, 1348 Louvain-la-Neuve, Belgium

[⊥] Design & Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan 1 – Building D, 3590 Diepenbeek, Belgium

wim.dehaen@chem.kuleuven.be; wouter.maes@uhasselt.be

Table of Contents

1.	¹ H and ¹³ C NMR spectra	S2	
2.	X-ray crystallographic data and additional figures for heteracalix[2]arene[2]pyrimidines		
	3 and 6	S10	
3.	Variable temperature NMR data	S14	
4.	Additional data on the ¹ H NMR titrations	S15	

1. ¹H and ¹³C NMR spectra

S4

S9

2. X-ray crystallographic data and additional figures for heteracalix[2]arene[2]pyrimidines 3 and 6

The crystals of **3**, grown by vapor diffusion of pentane into a CHCl₃ solution of the macrocycle (at rt), belong to the triclinic space group *P*-1. A colorless transparent crystal with approximate dimensions of 0.35x0.25x0.20 mm was selected for data collection using monochromated (Göbel mirrors) CuK α radiation ($\lambda = 1.54178$ Å) and phi and omega scans. Data were collected at a temperature of 100 K on a SMART 6000 diffractometer equipped with a CCD detector. Cell refinement and data reduction were carried out by the program SAINT¹ on a total of 12469 reflections (4861 independent reflections, R_{int} = 8.72%). The structure was solved by direct methods (SHELXS) and refined by full-matrix least squares on $|F^2|$ using the SHELXTL program package,² converging to a final $R_1 = 0.0663$, $\omega R_2 = 0.1585$ for 3285 reflections with I_o > 2 σ (I_o) and GOOF = 1.013. Non-hydrogen atoms were anisotropically refined and the hydrogen atoms were placed on calculated positions with temperature factors fixed at 1.2 times U_{eq} of the parent atoms and 1.5 times U_{eq} for methyl groups. The fundamental crystal data and experimental parameters for the structure determination are summarized below.

	formula	C ₂₄ H ₂₀ N ₄ O ₄ S ₂ , CHCl ₃
	M (gmol ⁻¹)	611.93
	crystal dimensions (mm ³)	0.35x0.25x0.20
	crystal system	Triclinic
	space group	<i>P</i> -1
	<i>a</i> (Å)	10.7931(13)
	<i>b</i> (Å)	11.7407(12)
	<i>c</i> (Å)	12.4871(12)
	α (deg)	116.859(5)
	β (deg)	104.689(7)
	$\gamma(\text{deg})$	93.089(5)
	$V(A^3)$	1374.3(3)
	Ζ	2
	$\rho_{\rm calc} ({\rm gcm}^{-3})$	1.479
	$2\theta_{\max}$ (deg)	69.72
	radiation	СиКа
	λ (Å)	1.54178
	<i>F</i> (000)	628
	$T(\mathbf{K})$	100(2)
	measured reflections	12469
	unique reflections	4861
	observed reflections $(I_o > 2\sigma(I_o))$	3285
	parameters refined	375
	R_1	0.0663
	$\omega R_2^{\ a}$	0.1585
	R_1 (all data)	0.1067
	ωR_2 (all data)	0.1810
	GOOF	1.013
	$\mu \text{ (mm}^{-1})$	4.778
117		$1/(\Gamma^2/(\Gamma^2)) + (0,0000, R)^2 + 0.2014 R = R (\Gamma^2 + 0.000)$

^{*a*} Weighting scheme as defined for this component: $\omega = 1 / [\sigma^2(F_o^2) + (0.0000 P)^2 + 0.3014 P], P = (F_o^2 + 2F_c^2) / 3$

¹ SAINT, Manual Version 5/6.0, Bruker Analytical X-ray systems Inc.: Madison, 1997.

² Sheldrick G. M. Acta Crystallogr. A 2008, 64, 112.

The difference in C-O bond distances of the bridging oxygen atoms confirmed the electrophilic character of the pyrimidine rings (mainly conjugation to the neighboring pyrimidine components). On average, the C-O bond is 0.043 Å shorter toward the pyrimidine (<1.354 Å>; range 1.346(4)–1.359(5) Å) than toward the benzenoid (<1.397 Å>; range 1.387(4)–1.411(4) Å) ring (Figure S1). The short contacts (3.285 Å) in the packing between neighboring pyrimidine rings of different calixarene molecules can be considered as weak π - π interactions.

Figure S1. Single-crystal structure for oxacalix[4]arene **3**, showing displacement ellipsoids drawn at the 50% probability level (CHCl₃ not shown).

The crystals of thiacalix[4]arene **6**, also grown by vapor diffusion of pentane into a CHCl₃ solution of the macrocycle (at rt), belong to the monoclinic space group *C*2/c. A colorless transparent crystal with approximate dimensions of 0.5x0.3x0.15 mm was selected for data collection using monochromated (Göbel mirrors) CuK α radiation ($\lambda = 1.54178$ Å) and phi and omega scans. Data were collected at a temperature of 100 K on a SMART 6000 diffractometer equipped with a CCD detector. Cell refinement and data reduction were carried out by the program SAINT¹ on a total of 13282 reflections (2692 independent reflections, R_{int} = 8.72%). The structure was solved by direct methods (SHELXS) and refined by full-matrix least squares on |F²| using the SHELXTL program package,² converging to a final $R_1 = 0.0480$, $\omega R_2 = 0.0999$ for 2692 reflections with I₀ > 2 σ (I₀) and GOOF = 1.050. Non-hydrogen atoms were anisotropically refined and the hydrogen atoms were placed on calculated positions with temperature factors fixed at 1.2 times U_{eq} of the parent atoms and 1.5 times U_{eq} for methyl groups. The fundamental crystal data and experimental parameters for the structure determination are summarized below.

formula	$C_{24}H_{20}N_4S_6, C_5H_{12}$
M (gmol ⁻¹)	600.89
crystal dimensions (mm ³)	0.5x0.3x0.15
crystal system	monoclinic
space group	<i>C</i> 2/c
a (Å)	14.5105(5)
b (Å)	13.5453(6)
c (Å)	15.6906(5)
β (deg)	104.689(7)
$V(Å^3)$	2864.96(18)
Z	4
$\rho_{\rm calc} ({\rm gcm}^{-3})$	1.393
$2\theta_{\max}$ (deg)	70.45
radiation	CuKa
λ (Å)	1.54178
<i>F</i> (000)	1256
T(K)	100(2)
measured reflections	13282
unique reflections	2692
observed reflections $(I_o > 2\sigma(I_o))$	2283
parameters refined	375
R_1	0.0480
ωR_2^{a}	0.0999
R_1 (all data)	0.0480
ωR_2 (all data)	0.1067
GOOF	1.050
$\mu \text{ (mm}^{-1})$	4.601
• • • /	

^{*a*} Weighting scheme as defined for this component: $\omega = 1 / [\sigma^2(F_o^2) + (0.0000 P)^2 + 0.3014 P], P = (F_o^2 + 2F_c^2) / 3$

The electrophilic character of the pyrimidine rings (mainly conjugation to the neighboring pyrimidine components) is less pronounced, as the difference between the C-S bonds is only 0.013 Å shorter on the pyrimidine (<1,764 Å> (range 1.763(3)–1.765(3) Å) vs. <1.777 Å> (range 1.776(2)–1.778(2) Å)) side of the bridging sulfur atoms. The calixarene is situated on a 2-fold rotational axis, with the opposite phenyl rings at an angle of 30.9° and the SMe groups on the pyrimidine rings pointing away from the calixarene centre (Figure S2). Short contacts (3.599(1) Å) between a bridging S atom and a neighboring S from a SMe group are observed. For the same bridging S atom, a weak hydrogen contact is observed

with a methyl hydrogen atom of another neighboring SMe group. A pentane molecule is trapped in the crystal structure and is also positioned onto a 2-fold axis.

Figure S2. Single-crystal structure for thiacalix[4]arene 6, showing displacement ellipsoids drawn at the 50% probability level (pentane not shown).

Figure S3. Overlay of the single-crystal structures for oxacalix[4]arene **3** (green backbone) and thiacalix[4]arene **6** (blue backbone), with an indication of centroid-centroid distances and C-X-C bond angles.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. **CCDC-843478** and **843479**. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44(0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

3. Variable temperature NMR data

Figure S4. VT-NMR analysis of bis(methylsulfanyl)oxacalix[2]arene[2]pyrimidine 3 in CDCl₃.

Figure S5. ¹H NMR titration curve of host **10a** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium acetate added.

Figure S6. Job plot for the complexation of host **10a** (5×10^{-3} M) with tetra-*n*-butylammonium acetate in DMSO- $d_6/0.5\%$ H₂O.

Figure S7. ¹H NMR titration curve of host **10a** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium benzoate added.

Figure S8. Job plot for the complexation of host **10a** (5×10^{-3} M) with tetra-*n*-butylammonium benzoate in DMSO- $d_6/0.5\%$ H₂O.

Figure S9. ¹H NMR titration curve of host **10a** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_b (red) and NH_c (blue) vs. equiv tetra-*n*-butylammonium dihydrogen phosphate added.

Figure S10. Job plot for the complexation of host **10a** (5×10^{-3} M) with tetra-*n*-butylammonium dihydrogen phosphate in DMSO- $d_6/0.5\%$ H₂O.

Figure S11. ¹H NMR titration curve of host **10a** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium chloride added.

Figure S12. ¹H NMR titration curve of host **10b** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium acetate added.

Figure S13. ¹H NMR titration curve of host **10b** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium benzoate added.

Figure S14. ¹H NMR titration curve of host **10b** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black), NH_b (red) and NH_c (blue) vs. equiv tetra-*n*-butylammonium dihydrogen phosphate added.

Figure S15. ¹H NMR titration curve of host **10b** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium chloride added.

Figure S16. ¹H NMR titration curve of host **10c** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium acetate added.

Figure S17. ¹H NMR titration curve of host **10c** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium benzoate added.

Figure S18. ¹H NMR titration curve of host **10c** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_b (red) and NH_c (blue) vs. equiv tetra-*n*-butylammonium dihydrogen phosphate added.

Figure S19. ¹H NMR titration curve of host **10c** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium chloride added.

Figure S20. ¹H NMR titration curve of host **10d** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium acetate added.

Figure S21. ¹H NMR titration curve of host **10d** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium benzoate added.

Figure S22. ¹H NMR titration curve of host **10d** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium dihydrogen phosphate added.

Figure S23. ¹H NMR titration curve of host **10d** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium chloride added.

Figure S24. ¹H NMR titration curve of host **10e** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_b (red) and NH_c (blue) vs. equiv tetra-*n*-butylammonium acetate added.

Figure S25. ¹H NMR titration curve of host **10e** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium benzoate added.

Figure S26. ¹H NMR titration curve of host **10e** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_c (blue) vs. equiv tetra-*n*-butylammonium dihydrogen phosphate added.

Figure S27. ¹H NMR titration curve of host **10e** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium chloride added.

Figure S28. ¹H NMR titration curve of host **10f** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium acetate added.

Figure S29. ¹H NMR titration curve of host **10f** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium benzoate added.

Figure S30. ¹H NMR titration curve of host **10f** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_b (red) and NH_c (blue) vs. equiv tetra-*n*-butylammonium dihydrogen phosphate added.

Figure S31. ¹H NMR titration curve of host **10f** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): variation of chemical shift of NH_a (black) and NH_b (red) vs. equiv tetra-*n*-butylammonium chloride added.

Figure S32. ¹H NMR titration curve of hosts **10a–f** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): overview of the variation of the chemical shift of NH_b vs. equiv tetra-*n*-butylammonium acetate added.

Figure S33. ¹H NMR titration curve of hosts **10a–f** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): overview of the variation of the chemical shift of NH_b vs. equiv tetra-*n*-butylammonium benzoate added.

Figure S34. ¹H NMR titration curve of hosts **10a–f** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): overview of the variation of the chemical shift of NH_b vs. equiv tetra-*n*-butylammonium dihydrogen phosphate added.

Figure S35. ¹H NMR titration curve of hosts **10a–f** (0.5 mL, 5×10^{-3} M in DMSO- $d_6/0.5\%$ H₂O): overview of the variation of the chemical shift of NH_b vs. equiv tetra-*n*-butylammonium chloride added.