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Figures and tables mentioned explicitly in the main text:  

 
Figure S1: Probability density for the Ramachandran dihedral ψ2 in simulation 8. The torsion angle ψ2 (see Fig. 

2 of main text) is used as order parameter dividing the conformers α and β. This circular variable delimits the 

conformers at two positions: ψ2,crit is computed as the region with minimum population near ψ2=-140°, which 

varies according to the simulation conditions (See Table S2). The second cut position is fixed at ψ2=25°, since it 

depends on the repulsive wing of the Lennard Jones potential and is identical for all 13 simulation conditions.  

 

 
Figure S2: Convergence of the entropy estimates with the second order MI expansion, using balancing and bias 

correction. The frames are used in time order.  
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Figure S3: Convergence of the thermodynamic variables in the 1 μs trialanine simulation using 5x106 frames. 

The frames are used in time order. a: Free energy change. b: Internal energy change. c: Entropy change 

benchmark. 
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 Table S1: Normalized entropy contributions relative to the total conformational entropy change , 2MIEsβαΔ  in 

2nd order MI expansion using both balancing and bias-correction. The data shown are based on MD simulations 

of 1 μs time for trialanine with simulation condition 8 (parameters: γHφ = 0.045 cal/(mol K Å2) and εattr = 1.00). 

The symbol (1) , 2ˆ / MIEs sβαΔ Δ∑  denotes the normalized sum of entropy contributions from 1st order MI 

expansion with specified types of coordinates. The symbol (2) , 2/ MIEI sβα− Δ Δ∑  denotes the normalized 2nd 

order mutual information component for specified types of coordinate pairs. The coordinate types are denoted by 

B (bond lengths), A (bond angles) and T (torsions and phase angles). The contributions are ordered by absolute 

magnitude.  

coordinates normalized entropy 
contribution  

T (1) , 2/ MIEs sβαΔ Δ∑  88.2% 

T−T (2) , 2/ MIEI sβα− Δ Δ∑  11.5% 

A (1) , 2/ MIEs sβαΔ Δ∑  2.32% 

A−T (2) , 2/ MIEI sβα− Δ Δ∑  -0.84% 

A−A (2) , 2/ MIEI sβα− Δ Δ∑  -0.82% 

B−T (2) , 2/ MIEI sβα− Δ Δ∑  -0.12% 

B (1) , 2/ MIEs sβαΔ Δ∑  -0.09% 

B−B (2) , 2/ MIEI sβα− Δ Δ∑  -0.08% 

B−A (2) , 2/ MIEI sβα− Δ Δ∑  -0.04% 

Total 100% 

 

 
Figure S4: Graphic representation of the information in Table S1 above.  
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Appendix A: Configurational entropy of a macromolecule 

 To define entropy in the canonical ensemble of a macromolecule with N atoms, we 

start with the partition function of the conformer domain α  

   .                    (S1) 3 exp( / )N N N
BQ h d d H k T
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in eq (S1) involves kinetic and potential energy terms of the N atom macromolecule. The 

symbol Ωα signifies the domain of configurations that identify the conformer α. The potential 

energy Uα (r N) is a function in the 3N Cartesian coordinates denoted by the 3N-dimensional 

vector r N. The energy Uα (r N) is infinite outside of the domain α that defines the conformer. 

Integrating over the 3N momenta in eq (S1), we can write Qα as  
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in terms of the configuration integral  

    exp[ ( ) /( )]N N
BZ U k T dα α

αΩ
= −∫ r r                 (S3)  

and the “momentum” contribution, expressed by the 3N-fold product of the thermal de 

Broglie wavelengths  

     / 2 Bn nh m kπΛ = T ,                  (S4)  

where mn is the mass of atom n, kB is Boltzmann’s constant, h is Planck’s constant, and T is 

the absolute temperature.  

The free energy Fα of the conformer in domain α is  

     Fα = −kBT ln(Qα).                  (S5)  

The ensemble average of the internal energy is  
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where the ensemble average of the potential energy can be written as  

    ( ) ( )N N NU d P Uα α
αΩ

= ∫ r r rα                  (S7)  

using the probability density function  

( ) exp[ ( ) /( )]N N
BP U k T Zα α= −r r α .                (S8) 

Rearranging eq (S8) and taking logarithms of both sides, we get  
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( ) ln[ ( )N N
BU k T P ]Zα α α= −r r .                 (S9) 

Substitution of eq (S9) into eq (S7) gives  
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BU k T d P P Z ]α α α

αΩ
= − ∫ r r r α                (S10) 

Now we define the configurational entropy of the conformer domain α as  

     Sα = (<Eα> − Fα )/T.                (S11)  

Using eq (S6) and (S10) we can rewrite the absolute configurational entropy, eq (S11), as  
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In the configurational entropy difference, ΔSαβ = Sα − Sβ, the first two terms in eq (S13) 

cancel, if both entropies refer to the same temperature, yielding  

         ΔSαβ = kB (ŝα − ŝβ),                 (S14)  

where the relative configurational entropy is defined by  

   , δ = α, β,               (S15)  ˆ ( ) ln[ ( )N N Ns d P P
δ

δ δΩ
= − ∫ r r r

which is analog to the Shannon differential entropy1 for the probability density .  ( )NPδ r

 Eq (S15) is the expression for a relative entropy for two reasons: (i) Its actual value 

varies by an additive constant term dependent on the length units (e.g. Ångström) used for the 

coordinates r N. (ii) It is a differential (continuous2) entropy, which may assume negative or 

positive values (see sec. 20 of Shannon1 and appendix I of ref 3). Conversely, the expression 

(S13) is an absolute entropy4 because: (i) The length units used in the conformational integral 

cancel. (ii) Planck’s constant h discretizes (quantizes) the phase space (cf. eq 7.12 of Landau 

& Lifshitz5). If entropy differences at different temperatures are evaluated, eq (S13) should be 

used. In this work we can use eq (S15), since we compute entropy differences at the same 

temperature. 

Appendix B: Local spherical polar coordinates (BAT) coordinates.  

 To simplify the configurational integrals as for instance eqs (S3) or (S15) of appendix 

A, we introduce local spherical polar coordinates, also referred to as ‘bond-angle-torsion’ 

(BAT) coordinates6-8. This coordinate system is local because the frame of reference is shifted 

and rotated at each new bond to accommodate the molecular topology. These coordinates are 

defined by fixing the coordinate r1 of the terminal atom 1 of the macromolecule at the origin 
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of the coordinate system. All other coordinates refer to the bond vectors bn. The local 

spherical coordinates for the bond vector are bn = (bn, θn, ϕ n), n = 2, 3, .  .  . N, (bond length 

bn, inclination angle θn, azimuthal angle ϕ n). We begin with bond vector b2 = r2 − r1 of the 

end atom 1, using the z- and x-axes from a lab frame as a reference for rotations θ2 and ϕ2. For 

the second bond vector b3 = r3 − r2, we use b2 as a reference for θ2 but still need the x-axis 

from the lab frame as a reference for ϕ3. For a linear molecule, the bond vectors are 

consecutively bn = rn − rn-1, n = 4, 5, . . . N. For the local spherical coordinates of bond vector 

bn we take atom position rn-1, as the coordinate origin, the preceding bond vector bn-1 as z-

axis, and the unit vector parallel to the cross product bn−2×bn−1 as x-axis. In a non-linear, 

branched molecule, we use for all bond vectors following a branch point (atom with more 

than two covalent bonds) the bond vector of the preceding two bonds as reference for z- and 

x-axes. Independently of the degree of branching, a molecule with N atoms and no ring 

structure possesses N−1 covalent bonds. Each ring introduces an additional bond. To avoid 

overcompleteness, one covalent bond in each ring is ignored, which automatically transforms 

the molecular topology back to a branched structure. Thus, together with the coordinates r1 of 

the initial atom 1 a complete set of 3N BAT coordinates (Figure S5) is obtained for an N atom 

molecule. These BAT coordinates are collected in the 3N-dimensional supervector  

  = (r1, b2, b3, . . . . bN-1, bN ), with bn = (b n, θ n, ϕ n),  n = 2, 3, .  .  . N.             (S16)  b

 The potential energy function Uα is independent of position and orientation of the 

solute in the solvent. Therefore, we can separate contributions of those degrees of freedom 

and perform the corresponding integrations in configurational integrals as for instance eqs 

(S3) or (S15) of appendix A in closed form using BAT coordinates6,7,9,10. The integration over 

r1 in configuration integrals like eq (S15) of the appendix A can be performed directly, 

yielding as a result the volume V available to solvent and solute together.  

Rotating the first bond vector b2 = r2 − r1 together with the whole solute molecule is 

described by varying the polar coordinate angles (θ 2, ϕ 2). Similarly the whole molecule can 

be rotated about the bond b2 described by the azimuthal angle ϕ 3. The potential energy 

function Uα of the solute does not depend on the orientation of the whole solute molecule. 
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Figure S5: Local spherical polar coordinates (BAT coordinates) of a branched molecule. The lab frame (purple) 

is the initial reference for external rotations θ 2, ϕ 2 and ϕ 3. Further up the chain, the frame of reference is local 

and defined by the chemical bonds.  

 

 Hence, the integrations over θ 2, ϕ 2 and ϕ 3 in the configuration integrals like eq (S15) 

in appendix A can be performed directly to give the factor 8π2. As a result we have for 

instance for the (configurational) state sum, eq (S3)  

 (3)2 2 2
2 2 3 3 3 30

2π

4
8 sin exp[ ( ) / ]

N

Bn
n

Z V db b db b d d U kα απ θ θ
=

′= −∏∫ ∫ ∫ ∫ b b T ,             (S17)  

with the vector differential of the local spherical polar coordinates  

    d(3)bn  = bn
2dbn sinθn dθn dϕ n                (S18)  

and the 3N−6 BAT variables combined in the (3N-6)-dimensional vector  

     = (b2, b3, θ 3, b4, b5, . . . . bN−1, bN ).               (S19)  ′b

In analogy to eq (S19) we also define the vector-valued differential form  

  d(3N−6)b′ = b2
2db2 × b3

2db3 × sinθ 3 dθ 3  ×  .               (S20)  (3)
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∏ b

The notation of  and d(3N−6)b′ is used in the main text. Thus, we can write now the 

(configurational) state sum, eq (S17) in the compact form  

′b

   (3 6)
2 exp[ ( ) / ]

8
N

B
Z d U k T

V
zα

α
απ

− ′ ′= −∫ b b ≡  ,              (S21)  

where žα of the second part of eq (S21) is now the conformational state sum exclusive of the 

position and orientations of the solute. We can now define the reduced conformational 

probability distribution  

    ( ) exp[ ( ) / ] /BU k T zαα αρ ′ ′= −b b ,               (S22) 

and the reduced relative conformational entropy, which neglects translation and orientation of 

the considered macromolecule, is  

   (3 6) ( ) ln[ ( )]Ns d
δ

δ δρ ρ−

Ω δ′ ′= − ∫ b b b′ , δ = α, β.              (S23) 
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Hence, the entropy differences of a molecular system can be expressed by the dimensionless 

configurational entropies as it is done in eq (S14) of Appendix A or alternatively by the 

reduced dimensionless conformational entropies, eq (S23) according to  

    ΔSαβ = kB (ŝα − ŝβ) ≡ kB (sα − sβ) .                (S24) 

The above expression for the conformational entropy difference will be used in the main text. 

Appendix C: Automated selection of BAT coordinates  

 For a given molecular topology, a set of non-redundant internal BAT coordinates is 

constructed using the procedure described above. In practice, this translates into a tree 

algorithm also described by Gilson et al8. The PERL implementation of the BAT tree 

algorithm by Thomas Steinbrecher11, which in turn uses ptraj12, is adapted and modified to 

use Charmm/NAMD trajectories.  

Phase angles 

Azimuthal (torsion) angles, which are defined through three shared atoms, tend to 

show highly correlated motions. The hydrogens of a methyl group display such behavior, for 

which we define a master torsion angle, say ϕ i, and two phase angles13 φ k. Generally, if the 

torsion angles ϕ i and ϕ j have three atoms in common, we keep ϕ i and substitute ϕ j by the 

phase angle  

φ j = ϕ j − ϕ i.                (S25) 

This transformation has a unit Jacobian and preserves a complete geometric description of the 

molecule. In Figure S5, the atoms with coordinates r4 and r5 give rise to torsions ϕ 4 and ϕ 5. 

According to eq (S25) we substitute torsion ϕ 5 by the phase angle φ 5 = ϕ 5 − ϕ 4. Such phase 

angles13 have narrower distributions than torsion angles.  

 In our algorithm, main chain torsions (of the polypeptide backbone) are kept as full 

torsions, and the ones defined at branches (describing side chain orientations) are converted 

into phase angles. Both phase angles and the ability to define main chain atom types are 

implemented in our modified version of the BAT tree algorithm.  

Continuity Maximization for Torsions  

In contrast to molecular bond angles, torsion angles can vary over the whole angular regime 

from 0 to 2π, such that the 2π periodicity must be considered to avoid discontinuities. We 

apply a ‘continuity maximization’ algorithm to deal with this problem. For each torsion angle, 

its one-dimensional probability distribution is discretized with a large number of histogram 

bins (say 1000), many more than will finally be used for entropy computations. In this 
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histogram, the longest continuous stretch of empty bins is detected. The end points of the 

angular interval for the histogram used to evaluate the entropies are placed such that they 

exclude this regime. If no histogram bin is empty, the original angular distribution is kept and 

used for the entropy evaluation. For a torsional coordinate with values that cover the whole 2π 

span, the choice of the end points formally has no effect, and numerically it would only have a 

vanishing one. However, for a torsional coordinate that covers only part of the 2π span, this 

algorithm avoids considering a large number of empty (unused) histogram bins. 

Appendix D: Underestimating entropy for finite samples and its correction  

Entropy is underestimated (biased) when using finite samples14,15. To demonstrate the 

need for bias correction, we show here for a toy example that sest ≤ sbench and how eq (13) of 

the main text functions.  

Take a system consisting of a single conformer characterized by M = 2 histogram bins. 

Assume that the actual probability density (source probability) of occupying either bin is 

ρ i = ½ (uniform distribution) yielding  

sbench = −Σ ρ i ln ρ i = ln(2) ≈ 0.6931 .    (S26) 

The sample entropy estimate can be calculated from the sample frequency pi as 

sest = −Σ pi ln pi .     

(S27) 

Let us assume that a simulation consists of Nframes = 4. If we repeat the simulation and the 

entropy estimation several times, we get results as shown below in Figure S6.  

 
Figure S6: The 5 possible outcomes of the simulation with two discrete states (M=2 histogram bins). Above each 

letter is the binomial probability of obtaining this outcome from the simulation. The resulting entropy estimates 

are given above the histograms.  
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In Figure S6, we show the (binomially distributed) probabilities of obtaining the five 

possible distributions (a-e) of the histograms from the simulation. We see that only for 

6/16=37.5% of the simulation results (case c) we get the correct value of entropy. For the 

remaining 10/16=62.5% (cases a,b,d,e) we observe underestimated entropy values. For cases 

b and d in Figure S6, the bias correction (eq (13) of the main text) essentially compensates for 

the underestimation yielding 
ˆ 1

2ˆ
frames

est est
iM

Ns s −= + = 0.5623 + 1/8 = 0.6873. In realistic 

applications the number of frames and histogram bins (Nframes and M, respectively) is much 

larger such that the bias correction is smaller and works more precisely.  

Appendix E: Convergence of the entropy estimates for trialanine  

In this section, we analyze the convergence properties of entropy and entropy 

difference estimates. For the sake of clarity, only the final converged benchmark values of the 

entropy difference ΔSβα,bench (eq (15) of the main text) are shown as dashed lines in Figure S7 

and Figure S8. The convergence properties of the entropy difference for the benchmark values 

are treated separately in the next section.  

In the following discussion we will use the example of trialanine with simulation 

condition 8 (parameters γHφ = 0.045 cal/(mol K Å2) and εattr = 1.00) using the 2nd order MIE 

expansion (MIE2). The individual entropies Sδ are not fully converged, whether unbalanced 

(Figure S7a, b) or balanced data are used (Figure S8a, b), and independently of whether bias 

correction a b is applied or not. As matter of fact, balancing will slow down the convergence 

of entropies of the majority conformer Sα. However, our main focus is to compute entropy 

differences ΔSβα. There, we observe a beneficial effect of balancing. Without balancing, the 

entropy difference ΔSβα  diverges (Figure S7c, d), while with balancing the entropy difference 

converges (Figure S8c, d). This is due to the fact that after balancing the individual conformer 

entropies (Sα,MIE2 and Sβ,MIE2) possess similar systematic errors, which cancel in the entropy 

difference ΔSβα,ΜΙΕ2. The bias correction method c d provides an additional beneficial fine-

tuning for the entropy difference.  

Importance of choosing frames at random in the balancing method  

In the balancing method, only a subset of the frames of the majority conformer is used. 

It is important to choose those frames at random16 instead of simply taking a contiguous 

subset of the trajectory, since that results in a nonequivalent exploration of the phase space. 

While the convergence of the individual entropies Sδ,MIE2 using time order or random order is 

indistinguishable to the eye due to the large magnitude of the individual entropies (Figure 
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S8a, b), the consequences for the convergence of the entropy difference ΔSβα,ΜΙΕ2 are clearly 

visible. In Figure S8c, d we see that the convergence of the entropy difference is accelerated 

by choosing the frames at random. The reason for this does not lie in the numerical properties 

of the bias of the histogram method, but rather in the fact that the randomly ordered 

conformations result in a more complete phase space exploration at a given number of frames. 

Choosing the frames at random is important for MD and MC simulations, where the frames 

are correlated with each other. The convergence behavior of ΔSβα,ΜΙΕ2 for all 13 simulation 

conditions using balancing and bias correction is presented in Figure S2.  

 

 
Figure S7: Unbalanced number of frames, 2nd order estimator (MIE2) used to plot individual (relative) entropies 

Sα, Sβ and the entropy difference ΔSαβ. Convergence of the entropy estimates versus number of frames used for 

the trialanine simulation condition 8 (parameters: γHφ = 0.045 cal/(mol K Å2) and εattr = 1.00). Frames are used in 

time order. The abscissa denotes with N(δ)
frames the effective number of frames used for δ=α, β. This differs from 

Nframes used elsewhere, which refers to all frames of the simulation. The dashed line marks the final benchmark 

value. a: Individual conformer entropies without bias correction. b: Individual conformer entropies using bias 

correction. c: Entropy difference without bias correction. d: Entropy difference using bias correction. 
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Figure S8: Balanced number of frames, 2nd order estimator (MIE2) used to plot individual (relative) entropies Sα, 

Sβ and the entropy difference ΔSαβ. Convergence of the entropy estimates versus number of frames used for the 

trialanine simulation condition 8 (parameters: γHφ = 0.045 cal/(mol K Å2) and εattr = 1.00). Frames are used in 

time and random order as indicated in the figure. The abscissa denotes with N(δ)
frames the effective number of 

frames used, which is identical for δ=α, β when applying the balancing method. This differs from Nframes used 

elsewhere, which refers to all frames of the simulation. The dashed line marks the final benchmark value. a: 

Individual conformer entropies without bias correction. b: Individual conformer entropies using bias correction. 

c: Entropy difference without bias correction. d: Entropy difference using bias correction.  

Appendix F: Convergence of benchmarks and clustering of conformers for 
trialanine  

In Figure S3, we observe that the free energy difference ΔFβα converges the fastest 

among thermodynamic variables. The energy difference ΔUβα is slower in convergence, and 

ΔSβα,bench, being calculated as a difference, is the slowest one to converge. The simulation ID 

is assigned by ascending values of ΔFβα. The order in the values of the energy difference 

ΔUβα and the entropy difference ΔSβα,bench differs somewhat with respect to the ascending 

ΔFβα order (see bars on the right of Figure S3). The free energy ΔFβα is the result of the 

interplay of energetic and entropic contributions, which are related but not identical. A given 

potential energy surface (which varies among simulation conditions 1 to 13) determines 

which microstates are accessible to each conformer at temperature T. The energetic 

component results from the microstates’ average energy (average “funnel depth”), and the 

entropic component from their multiplicity (average “funnel width”), adapting the concepts of 
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Wolynes17 to our system. Thus, there is no a priori reason to believe that the ascending order 

of the values of energy, entropy and free energy differences should be identical. See color 

labels in Figure S3a, b and c.  

 Krivov et al. simulated tetraalanine18 with the PARAM19 force field of CHARMM19 

and the ACS20 implicit solvent model. To evaluate entropy, the tetraalanine conformers were 

clustered using not a geometric, but a kinetic criterion. The simulation was done both with 

Langevin dynamics and with a method that confines and explores conformations in a given 

conformer basin. They also find that the extended β conformer has higher energy but is 

stabilized by entropy. The entropy difference between the helical α and extended β 

conformations of tetraalanine was found to be ΔSβα = 20.4 J/(mol K)18, comparable to our 

results for trialanine, which range from about 5.8 to 17.3 J/(mol K) depending on the 

simulation conditions.  

 
Table S2: Converged values of the thermodynamic variables for trialanine simulation with 13 different 

conditions.  

Simulation 
condition 

εattr 

[dimless] 
γHφ 

[cal/(mol K Å2)]
ΔFβα 

[kJ/mol] 
ΔUβα 

[kJ/mol] 
ΔSβα,bench 

[J/(mol K)] 
ψ2,crit 

[degrees] 
1 0.00 0.045 -0.25 1.49 5.80 -134.5 
2 0.00 0.025 0.21 2.03 6.08 -138.5 
3 0.00 0.000 0.73 2.58 6.15 -140.5 
4 0.50 0.045 1.01 3.57 8.54 -135.5 
5 0.25 0.000 1.37 3.44 6.92 -139.5 
6 0.50 0.025 1.51 3.86 7.85 -139.5 
7 0.50 0.000 2.06 4.53 8.23 -141.5 
8 1.00 0.045 2.87 6.22 11.17 -140.5 
9 0.75 0.000 2.92 6.03 10.37 -140.5 

10 1.00 0.025 3.30 6.85 11.83 -141.5 
11 1.00 0.000 3.93 7.45 11.72 -141.5 
12 1.25 0.000 5.16 9.60 14.79 -144.5 
13 1.50 0.000 6.81 12.01 17.34 -144.5 

 

 In Table S2 the final asymptotic values for the thermodynamic variables are provided. 

For each simulation condition, the numerical values for the hydrophobic “surface tension” 

term γHφ and the 1/r6 attractive Lennard Jones potential scaling factor εattr used in each 

simulation can be read. Also, the critical value of ψ2, a Ramachandran dihedral angle of the 

middle residue of trialanine21,22, which we use as order parameter, is provided. ψ2,crit is the 

value of that angle at which the ensemble population is the lowest, and used to divide the 

conformers α and β. The second value at which the circular variable ψ2 is cut is fixed at 25°, a 
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value identical for all simulations. It is the consequence of the repulsive wing of the Lennard 

Jones potential (identical in all 13 simulations) and physically interpretable as a steric 

constraint. See Figure S1 for an example of the probability distribution ρ(ψ2) corresponding 

to simulation ID 8.  

Appendix G: Generation of conformations of the three atom molecule  

A simple Monte Carlo (MC) procedure is used to generate 5 x 107 frames of the free, 

unrestricted 3-atom molecule by a Random Walk, (RW). To generate each frame in Cartesian 

coordinates, we proceed as follows:  

1. Place the first atom at the origin: r1 = (0, 0, 0) 

2. Place atom 2 at r2 = r1+b2  

3. Place atom 3 at r3 = r2+b3.  

Here, bn is a vector whose tip is uniformly randomly distributed on a sphere of radius b, 

where b is the fixed bond length. This is accomplished through an algorithm due to 

Marsaglia23, which is an optimized version of von Neumann’s algorithm24. The independent, 

identically distributed pseudorandom numbers required by Marsaglia’s algorithm23 are 

generated by the pseudorandom number generator Taus088 due to L’Ecuyer25.  

 The ensemble of free conformations is now subject to restriction by a hard wall 

described by, eq (17) of the main text with ε = 0.612. The constant ε is chosen arbitrarily to 

provide a positive curvature and divide the conformers unevenly. The conformer regime α 

comprises the frames where all atoms are above zwall. The rest, where any or all atoms are 

below zwall, is denominated β.  

Appendix H: Trialanine simulations: Detailed results for 1st, 2nd and 3rd order MI 
expansion  

Entropy estimates using all BAT coordinates 

In the main text, we present the 2nd order MI expansion (MIE2) estimators for the 

entropy differences ΔSβα between the two the conformers (α, β) of the trialanine model. The 

MIE2 results are chosen, since the entropy estimates are well converged and agree best with 

the benchmark. Here, we present the results for the 1st and 3rd order MI expansion, and more 

detailed results for the 2nd order MI expansion. In Figure S9, Figure S10 and Figure S11, the 

four panels demonstrate the effect of using either or both correction methods. Upper left: 

unbalanced, biased; upper right: unbalanced, bias-corrected; lower left: balanced, biased; 

lower right: balanced, bias-corrected. In these figures, we consider all 96 BAT degrees of 

freedom of the trialanine model: bonds, angles, torsions and if necessary phase angles that 
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replace corresponding torsion angles. The lower right panel (d) presents the best results using 

both methods: balancing and bias correction. Also shown in each panel is the average and 

standard deviation of the estimate-to-benchmark ratio ΔSβα,MIE1 / ΔSβα,bench. Average and 

standard deviation for this ratio are calculated over all 13 simulation conditions and all five of 

histogram schemes with different numbers of bins M.  

 
Figure S9: Results with first order MI expansion (MIE1). Entropy difference estimates ΔSβα (abscissa) between 

the two conformers β and α  for the trialanine model are compared with benchmark entropies (ordinate). All 96 

BAT degrees of freedom are used. The symbols stand for the number of histogram bins used:  M=20;  

M=25;  M=35;  M=50;  M=100. The arrows show application of the two correction methods: none (a), 

either (b, c) or both (d). Also given are average and standard deviations for the ratio ΔSβα,MIE1 / ΔSβα,bench of all 13 

simulation conditions and the five histogram schemes with different numbers of bins M. The optimal result is 1.0 

±0.0.  

The first order MI expansion (MIE1) in Figure S9 is well converged. Nevertheless, the 

converged value does not agree well with the benchmarks, as can be seen by the deviation of 

the computed results from the dashed diagonal line representing the perfect agreement. In 

MIE1, the individual entropies are estimated as the sum of the marginal entropies (first term 

of eq (10) of the main text). Compensating the bias according to eq (13) of the main text 

yields for MIE1 a small correction only, which results in no noticeable change from a b and 
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c d in Figure S9. The size of the correction is small because in the 1st order MI expansion 

the number of histogram bins is small such that the bins are well filled and exhibit small 

fluctuations. This contrasts with MIE2 and MIE3 having quadratically and cubically as many 

histogram bins, respectively. Thus, for MIE1 the major correction comes from balancing 

(a c and b d). The balancing method narrows the spread between the estimators for the 

different number of histogram bins M (different symbols), but as expected cannot correct for 

the lack of correlation in MIE1.  

 

 
Figure S10: Results with second order MI expansion (MIE2). Entropy difference estimates ΔSβα (abscissa) 

between the two conformers β and α  for the trialanine model are compared with benchmark entropies 

(ordinate). All 96 BAT degrees of freedom are used. The symbols stand for the number of histogram bins used: 

 M=20;  M=25;  M=35;  M=50;  M=100. The arrows show application of the two error correction 

methods: none (a), either (b, c) or both (d). Also given are average and standard deviations for the ratio 

ΔSβα,MIE1 / ΔSβα,bench of all 13 simulation conditions and the five histogram schemes with different numbers of 

bins M. The optimal result is 1.0 ±0.0.  

The results for MIE2 using all 96 BAT coordinates are commented extensively in 

section 4.2 of the main text. In Figure S10, we see a large and beneficial effect of the 

balancing method (a c and b d). The bias correction acts to fine-tune the entropy 
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differences in c d. It becomes evident that balancing and bias correction act synergistically 

to improve the accuracy of the entropy estimates. If we separate the contributions of the 

different types of coordinates [bonds (B), angles (A), torsions and phase angles (T)] in the 1st 

and 2nd order MI expansions, we realize that the coordinates of type T have the largest 

influence, 99.7% (as shown in Table S1 and Figure S4) when taking the trialanine simulation 

condition 8 as representative [parameters: γHφ = 0.045 cal/(mol K Å2) and εattr = 1.00]. The 

contribution of the coordinates of types B and A, and their correlations with T approximately 

cancel. In particular, the influence of B in the 1st and 2nd order MI expansion has a vanishing 

influence of 0.17% on the final result. 

 The MIE3 entropy difference estimates in Figure S11 show poor agreement with the 

benchmarks. There is definite improvement by using bias correction and balancing, but even 

Figure S11d where both methods have been used is far from optimal. From this we conclude 

that we need more frames than the 5x106 frames used here to obtain well converged MIE3 

estimates.  

 

 
Figure S11: Results with third order MI expansion (MIE3). Entropy difference estimates ΔSβα (abscissa) between 

the two conformers β and α  for the trialanine model are compared with benchmark entropies (ordinate). All 96 

BAT degrees of freedom are used. The symbols stand for the number of histogram bins used:  M=20;  
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M=25;  M=35;  M=50;  M=100. The arrows show application of the corection methods: none (a), either (b, 

c) or both (d). Also given are average and standard deviations for the ratio ΔSβα,MIE1 / ΔSβα,bench of all 13 

simulation conditions and the five histogram schemes with different numbers of bins M. The optimal result is 1.0 

±0.0. 

Entropy estimates using only soft degrees of freedom  

Recent work from Brüschweiler et al.26 suggested employing only the main torsion 

angles (‘soft degrees of freedom’) and neglecting conformational contributions from ‘hard 

degrees of freedom’, including phase angles. In their work, Brüschweiler et al. calculate only 

the momenta contribution (cf. second term of eq (S13)) for the hard degrees of freedom, 

which is required because the entropy difference is estimated for conformers at two different 

temperatures (T = 380 K and T = 270 K). They assume that the Jacobian determinant (which 

only arises from hard degrees of freedom) will be conformation-independent and thus cancel. 

The momenta contribution and the constant Jacobian are embodied into eq (2) of ref 26. Using 

only torsions as soft degrees of freedom resulted in estimate-to-benchmark ratios between 

0.87 and 0.96 when testing entropy differences of dipeptide conformers at two different 

temperatures (see Table I, last column, of Brüschweiler et al.26). 

Furthermore, Brüschweiler et al. studied the conformational entropy change between 

the bound and unbound conformers of a protein27. They found that linear correlations (as 

obtained from the covariance matrix28) between torsion angles are fairly similar in the bound 

and unbound states. Based on this fact, Brüschweiler et al. suggested27 to neglect correlations 

between the torsion angles (as estimated from mutual information, which includes non-linear 

correlations29). In defining ‘soft degrees of freedom’ Brüschweiler et al. considered only one 

main torsion angle per shared pair of bonds. This is confirmed in the statement that the 

alanine dipeptide “has a total of 7 soft degrees of freedom”26. Translated to our definition of 

BAT coordinates, trialanine has 13 main torsions. However, trialanine also has 18 associated 

phase angles, which may or may not count as ‘soft degrees of freedom’. The remaining 33 

bond lengths and 32 bond angles are considered stiff or ‘hard degrees of freedom’. Although 

their entropy estimation employs different numerical methods26,27, their results are on similar 

footing with ours since: (i) They employ (a subset of) BAT coordinates. (ii) Their data are 

naturally balanced, as their conformers belong to two independent simulations, from which 

they likely take the same number of frames for their analysis.  
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Figure S12: Entropy estimates for the trialanine model using only the main 13 torsion angles as ‘soft degrees of 

freedom’, and neglecting the conformational variations of phase angles, bond angles and bond lengths. Both 

methods (balancing and bias corrections) are used, as they yield the best results. Also given are average and 

standard deviations for the ratio ΔSβα,MIE1 / ΔSβα,bench of all 13 simulation conditions and the five histogram 

schemes with different numbers of bins M. The optimal result is 1.0 ±0.0. a: First order MI expansion (MIE1); 

b: Second order MI expansion (MIE2). 

 

We applied their suggestions to our model. In Figure S12a, we follow both 

suggestions. Using only the main 13 torsions with the 1st order MI expansion (MIE1) yields a 

low value of the estimate-to-benchmark ratio of 0.71 ±0.087. In Figure S12b, we switch to the 

2nd order (MIE2), obtaining a larger estimate-to-benchmark ratio of 0.82 ±0.051. If we now 

alter the definition of soft degrees of freedom to include all 31 torsion and phase angles, we 

obtain a ratio of 0.81 ±0.069 for MIE1 and a ratio of 0.97 ±0.027 for MIE2 (Figure S13).  

 
Figure S13: Entropy estimates for the trialanine model using 31 ‘soft degrees of freedom’ (13 torsions and 18 

phase angles), and neglecting the conformational variations of angles and bonds. Both methods (balancing and 

bias corrections) are used, as they yield the best results. Also given are average and standard deviations for the 

ratio ΔSβα,MIE1 / ΔSβα,bench of all 13 simulation conditions and the five histogram schemes with different numbers 

of bins M. The optimal result is 1.0 ±0.0. a: First order MI expansion (MIE1); b: Second order MI expansion 

(MIE2).  
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In summary, the best estimates for trialanine are obtained when applying both correction 

methods: balancing and bias correction in the 2nd order MI expansion. Furthermore, using all 

96 BAT coordinates with M = 35 bins histogram (Figure S10d) leads to the best estimate-to-

benchmark ratio of 1.01 ±0.037. The second best results are obtained using only the ‘soft 

degrees of freedom’ defined as the torsion and phase angles (Figure S13b). Note that most 

data points in Figure S13b are below the identity line (ratios below 1.0), pointing to a slight 

systematic underestimation of the entropy differences due to small contributions from the 

hard degrees of freedom.  
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