Supporting Information

Theoretical evaluation of trends in the bond distances and dissociation energies of actinide oxides AnO and AnO₂

By:

Attila Kovács,^{*a,b} Peter Pogány,^a Rudy J. M. Konings^a ^aEuropean Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe, Germany

^bDepartment of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Szt. Gellért tér 4

An	m	ΔΕ	Bond	1-electron orbitals
		(kJ/mol)	(Å)	
Bk	8	0.0	1.835	$5f_{-2}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+2}, 5f_{+3}, 7s$
		5.9	1.827	$5f_{-3}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+2}, 5f_{+3}, 7s$
		73.4	1.849	$5f_{-3}, 5f_{-2}, 5f_{-1}, 5f_{+1}, 5f_{+2}, 5f_{+3}, 7s$
	6	20.4	1.835	$5f_{-3}, 5f_{-2}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+2}, 7s^{\beta}$
		27.4	1.828	$5f_{-3}, 5f_{-2}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+3}, 7s^{\beta}$
		80.0	1.844	$5f_{-3}, 5f_{-2}, 5f_{-1}, 5f_0, 5f_{+2}, 5f_{+3}, 7s^{\beta}$
		108.7	1.859	$5f_{-3}, 5f_{-2}, 5f_{-1}, 5f_{+1}, 5f_{+2}, 5f_{+3}, 7s^{\beta}$
	4	225.6	1.826	$5f_{-3}, 5f_{-2}, 5f_{+1}, 5f_{+2}, 7s^{\beta}$
	10	256.7	1.803	$6d_{+2}, 5f_{-3}, 5f_{-2}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+2}, 5f_{+3}, 7s$
Cf	7	0.0	1.822	$5f_{2}, 5f_{1}, 5f_{0}, 5f_{11}, 5f_{13}, 7s$
		31.5	1.836	$5f_{-2}, 5f_{-1}, 5f_{0}, 5f_{+2}, 5f_{+3}, 7s$
		32.2	1.836	$5f_{-3}, 5f_{-2}, 5f_{-1}, 5f0, 5f_{+2}, 7s$
		42.7	1.836	$5f_{-1}, 5f_{-2}, 5f_0, 5f_{+1}, 5f_{+2}, 7s$
		45.2	1.814	5f ₋₃ , 5f ₋₁ , 5f ₀ , 5f ₊₁ , 5f ₊₃ , 7s
		71.3	1.834	5f ₋₃ , 5f ₋₂ , 5f ₋₁ , 5f ₀ , 5f ₊₃ , 7s
		130.0	1.846	$5f_{-3}, 5f_{-2}, 5f_0, 5f_{+2}, 5f_{+3}, 7s$
	5	14.0	1.827	$5f_{-3}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+2}, 7s^{\beta}$
		42.8	1.840	$5f_{-3}, 5f_{-2}, 5f_0, 5f_{+1}, 5f_{+2}, 7s^{\beta}$
		58.6	1.819	$5f_{-3}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+3}, 7s^{\beta}$
		92.8	1.840	$5f_{-2}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+2}, 7s^{\beta}$
		100.7	1.886	$5f_{-3}, 5f_0, 5f_{+2}, 5f_{+3}$
		104.7	1.849	$5f_{-3}, 5f_{-1}, 5f_{+1}, 5f_{+2}, 5f_{+3}, 7s^{\beta}$
	3	237.5	1.848	$5f_{-3}, 5f_{-1}, 5f_{+1}, 7s^{\beta}$
	9	336.7	1.804	$6d_{+2}, 5f_{-3}, 5f_{-2}, 5f_{-1}, 5f_0, 5f_{+1}, 5f_{+2}, 7s$
Es	6	0.0	1.822	$5f_{-3}, 5f_{-2}, 5f_0, 5f_{+3}, 7s$
		27.0	1.845	5f ₋₃ , 5f ₋₂ , 5f ₋₁ , 5f ₊₁ , 7s
		28.2	1.810	$5f_{-3}, 5f_{-1}, 5f_0, 5f_{+1}, 7s$
		51.7	1.837	$5f_{-2}, 5f_0, 5f_{+2}, 5f_{+3}, 7s$
		69.5	1.828	$5f_{-1}, 5f_{-2}, 5f_0, 5f_{+1}, 7s$

STable1. Computed molecular properties of AnO species

* To whom correspondence should be addressed. E-mail: <u>attila.kovacs@ec.europa.eu</u>

		91.2	1.822	5f ₋₂ , 5f ₋₁ , 5f ₀ , 5f ₊₁ , 7s
		108.6	1.852	$5f_{-2}, 5f_{-1}, 5f_{+1}, 5f_{+2}, 7s$
	4	0.2	1.835	$5f_{-1}, 5f_0, 5f_{+1}, 5f_{+2}, 7s^{\beta}$
		20.1	1.839	$5f_{-1}, 5f_0, 5f_{+1}, 5f_{+3}, 7s^{\beta}$
		104.0	1.853	$5f_{-2}, 5f_{-1}, 5f_0, 5f_{+1}, 7s^{\beta}$
		109.8	1.826	$5f_{-3}, 5f_{-1}, 5f_0, 5f_{+3}, 7s^{\beta}$
	2	102.0	1.829	$5f_{-3}, 5f_0^{\beta}, 5f_{\pm 1}, 5f_{\pm 2}, 7s^{\beta}$
	8	418.5	1.967	6d ₋₂ , 5f ₋₃ , 5f ₋₂ , 5f ₀ , 5f ₊₁ , 7s, O2pz
Fm	3	0.0	1.850	$5f_{2}$, $5f_{2}$, $5f_{0}$, $7s^{\beta}$
		17.5	1.892	5f_2, 5f_0
		22.2	1.881	$5f_{-1}, 5f_{+1}$
		28.9	1.860	$5f_{-3}, 5f_0$
		43.4	1.860	$5f_{-2}, 5f_0, 5f_{+2}, 7s^{\beta}$
		47.3	1.856	$5f_{-2}, 5f_0, 5f_{+1}, 7s^{\beta}$
	5	17.8	1.823	$5f_{-2}, 5f_0, 5f_{+3}, 7s$
		33.5	1.848	$5f_{-2}, 5f_{-1}, 5f_{+1}, 7s$
		66.2	1.829	$5f_{-2}, 5f_0, 5f_{+2}, 7s$
	1	182.9	1.860	$(5f_0, 7s \text{ empty})$
Md	2	0.0	1.898	5f. ₁
		3.8	1.899	$5f_0$
		7.1	1.901	$5f_{+2}$
		32.2	1.890	$5f_{+3}$
	4	64.2	1.845	$5f_{-1}, 5f_0, 7s$
		70.9	1.878	$5f_{-1}, 5f_{+1}, 7s$
		91.7	2.169	5f ₋₁ , 7s, O2p _y
	6	547.4	1.963	$5f_{-1}, 5f_{+1}, 7s, 7p_x, O2p_z$
No	1	0.0	1.923	5f ₀ , 7s2
	3	65.3	2.163	7s, O2p _x
	5	594.7	2.264	$6d_{+2}$, 7s, $O2p_y$, $O2p_x$
Lr	2	0.0	1.871	7s
	4	344.0	2.116	$6d_{+2}$, 7s, $O2p_y$
	6	916.8	2.896	$6d_{-2}, 6d_{+2}, 7s, O2p_x, O2p_y$

Δn	m	ΔΕ	Bond	Angle	1-electron orbitals
	111	(kJ/mol)	(Ă)	(°)	
Bk	6	0.0	1.820	180.0	5f ₋₃ 5f ₋₁ 5f ₊₁ 5f ₊₂ 5f ₊₃
		0.0	1.820	180.0	$5f_{-3} 5f_{-2} 5f_{-1} 5f_{+1} 5f_{+3}$
		0.8	1.834	180.0	$5f_{-2} 5f_{-1} 5f_{+1} 5f_{+2} 5f_{+3}$
		0.8	1.834	180.0	$5f_{-2}, 5f_{-1}, 5f_{+1}, 5f_{+2}, 5f_{-3}$
	4	134.4	1.808	180.2	$5f_{-3}^{0} 5f_{-2} 5f_{-1} 5f_0 5f_{+2} 5f_{+3}^{\beta}$
	8	76.9	1.783	180.0	$5f_{-3} 5f_{-2} 5f_{-1} 5f_{+1} 5f_{+2} 5f_{+3} 7s$
Cf	5	0.0	1.817	180.0	$5f_{-3} 5f_{-2} 5f_{-1} 5f_{+1}$
		0.1	1.816	180.0	$5f_{-3} 5f_{-1} 5f_{+1} 5f_{+2}$
		33.7	1.803	180.0	5f ₋₃ 5f ₋₁ 5f ₊₁ 5f ₊₃
		63.0	1.840	180.0	$5f_{-3} 5f_{-2} 5f_{+1} 5f_{+2}$
		63.1	1.840	180.0	5f ₋₃ 5f ₋₂ 5f ₋₁ 5f ₊₂
		112.3	1.826	180.0	$5f_{-3} 5f_{-1} 5f_{+2} 5f_{+3}$
		112.9	1.831	180.0	5f ₋₃ 5f ₋₂ 5f ₋₁ 5f ₊₃
		120.6	1.829	180.0	$5f_{-2} 5f_{-1} 5f_{+1} 5f_{+2}$
	3	185.0	1.784	180.0	$5f_{-3} 5f_{-1}^{0} 5f_{+1}$
	7	124.9	1.780	180.0	5f ₋₃ 5f ₋₂ 5f ₋₁ 5f ₊₁ 5f ₊₂ 7s
		128.3	1.769	180.0	$5f_{-3} 5f_{-1} 5f_{+1} 5f_{+2} 5f_{+3} 7s$
		128.3	1.769	180.0	5f ₋₃ 5f ₋₂ 5f ₋₁ 5f ₊₁ 5f ₊₃ 7s
	9	269.9	1.844	106.7	$6d_{-1} 5f_{-2} 5f_{-1} 5f_0 5f_{+1} 5f_{+2} 5f_{+3} 7s 7p_y^{\ \beta} O 2s$
Es	4	0.0	1.795	180.0	$5f_{-1} 5f_{+1} 5f_{+3}$
		6.9	1.817	180.0	$5f_{-1} 5f_{+1} 5f_{+2}$
		6.9	1.817	180.0	$5f_{-2} 5f_{-1} 5f_{+1}$
		42.0	1.818	180.0	$5f_{+1} 5f_{+2} 5f_{+3}$
		42.3	1.824	180.0	$5f_{-2} 5f_{+1} 5f_{+3}$
		81.9	1.817	180.0	$5f_{-2} 5f_{-1} 5f_{+1}$
		98.3	1.841	180.0	$5f_{-3} 5f_{-2} 5f_{+2}$
		98.8	1.806	180.0	$5f_{-2} 5f_{-1} 5f_{+1}$
		99.2	1.842	180.0	$5f_{-2} 5f_{+2} 5f_{+3}$
		122.3	1.810	180.0	$5f_{-3}5f_{+1}5f_{+3}$
	2	83.3	1.788	180.0	$5f_{-3}^{p}5f_{-1}5f_{+1}$
		83.5	1.803	180.0	$5f_{-1}^{\mu} 5f_{+1} 5f_{+3}$
		99.5	1.811	180.0	$5f_{-2} 5f_{-1}{}^{p} 5f_{+3}$
		135.0	1.812	180.0	$5f_{-3}^{\mu} 5f_{-1} 5f_{+2}_{\mu}$
		135.1	1.813	180.0	$5f_{-2} 5f_{+1} 5f_{+3}^{P}$
		175.4	1.798	180.0	$5f_{-1} 5f_{+1} 5f_{+2}^{p}$
		184.5	1.803	180.0	$5f_{-3} 5f_{+1} 5f_{+3}^{\mu}$
	6	97.5	1.891	113.3	$6d_{-1} 5f_{-2} 5f_{-1} 5f_{+2} 5f_{+3}$
	8	357.1	1.945	180.0	$5f_{-3} 5f_{-2} 5f_{+3} 7s + O: 2p_x 2p_y 2p_z$
Em	2	0.0	1 701	190.0	5f. 5f.
1.111	3	0.0	1.791	180.0	$51_{-1} \\ 51_{+3} \\ 5f_{-} \\ 5f_{-} \\ 5f_{-} \\ $
		0.1	1.794	100.0	51_{-3} 51_{+1}
		5.5 10 1	1.191	100.0	$51_{+1} \\ 51_{+3} \\ 5f \\ 0 \\ 2n$
		10.1	1.013	100.0	$51_{+2} \cup 2p_x$
		20.7	1.813	180.0	$31_2 \bigcirc 2p_x$
		52.5	1./80	180.0	$\mathfrak{I}_{-1} \mathfrak{I}_{+1}$

STabl2. Computed molecular properties of AnO₂ species

		82.9	1.834	180.0	5f ₋₂ 5f ₊₂
	1	157.5	1.789	180.0	$5f_0^{0}$
	5	54.7	1.879	146.6	$5f_{-3} 5f_{-1} 5f_{+2} + O: 2p_y$
		61.8	1.878	130.0	$5f_{-3} 5f_{-2} 5f_0 7s^{\beta} + O: 2p_x 2p_y$
		60.8	1.879	129.1	$5f_{-1} 5f_{+2} 5f_{+3} + O: 2p_y$
		104.6	1.866	116.6	$5f_{-3} 5f_{-2} 5f_{-1} + O: 2p_y$
	7	369.1	1.918	180.0	$5_{f-2} 5f_{+2} 7s + O: 2p_x 2p_y 2p_z$
	9	800.3	2.233	179.2	$6d_0 5_{f-3} 5f_{-1} 5f_{+1} 7s + O: 2p_z 2p_x 2p_x$
	11	1373.4	2.763	180.0	$6d_{-2} 6d_{+2} 5f_{0} 5f_{+2} 5f_{+3} 7s + O: 2p_x 2p_y 2p_x 2p_y$
Md	2	0.0	1.812	180.0	5f ₊₂
	4	58.2	1.917	180.0	O: $2p_x 2p_y 2p_z$
	6	312.1	1.933	180.0	$5f_{+3}7s + O: 2p_x 2p_y 2p_z$
	8	930.6	2.087	180.0	$6d_{-2} 5f_{-1} 5f_{+1} 7s + O: 2p_x 2p_y 2p_z$
	10	1408.3	2.803	180.0	$6d_{-2} 6d_{+2} 5_{f0} 5f_{+3} 7s + O: 2p_x 2p_y 2p_x 2p_y$
No	1	0.0	1.843	180.0	_
110	3	75.5	1.997	159.2	$7s^{\beta}$ + O: $2p_{y}$ $2pz$ $2pz$
	5	305.3	2.148	155.9	O: $2p_y 2p_x 2p_z 2p_z$
	7	852.8	2.187	180.0	$6d_{+1}$ 7s O: $2p_x$ $2p_y$ $2p_y$
Lr	2	0.0	1.940	101.5	2p ₇
	4	150.7	2.109	119.0	$O: 2p_x 2p_z 2p_z$
	6	759.6	2.132	180.0	$6d_2 7s + O: 2p_x 2p_y 2p_z$
	-				$ \Gamma \Lambda - \Gamma \gamma - \Gamma L$

Kohn-Sham orbitals representing minor An5f - O2p overlaps in a few oxides.

EsO

MdO

 $\rm FmO_2$