²⁹Si NMR in Cement: a Theoretical Study on Calcium Silicate Hydrates

Pawel Rejmak, Jorge S. Dolado, Malcolm J. Stott, Andrés Ayuela.

Supporting Information

Unit cell formula	Notation	Details	
TOBERMORITE			
$Ca_{20}Si_{24}O_{64}(OH)_8{\cdot}(H_2O)_{28}$	∞T	Infinite silicate chains, initial structure from ref. 4	
	Pentam	neric silicate chains	
$Ca_{22}Si_{20}O_{60}(OH)_4{\cdot}(H_2O)_{28}$	T5-Ca1	Charge compensation with 2 interlayer Ca ²⁺ ions	
Ca ₂₆ (OH) ₄ Si ₂₀ O ₆₄ ·(H2O) ₂₄	T5-Ca2	4 Si(OH) groups replaced with 4 $Ca(OH)^+$ ions	
Ca ₂₈ (OH) ₈ Si ₂₀ O ₆₄ (H ₂ O) ₂₀	T5-Ca3	Total charge compensation with 8 $Ca(OH)^+$ ions	
	T5-H1	1 Q ¹ OH tetrahedron per each pentamer	
$Ca_{20}Si_{20}O_{60}(OH)_4 \cdot (H_2O)_{28}$ (H charge compensation)	Т5-Н2	2 Q ¹ OH tetrahedra per pentamer in one layer and 2 Q ¹ tetrahedra per pentamer in the next layer	
	Т5-Н3	2 Q ¹ OH tetrahedra per each pentamer, Q ² b tetrahedra not protonated	
	Dime	ric silicate chains.	
$Ca_{24}Si_{16}O_{56} \cdot (H_2O)_{28}$	T2-Ca	Charge compensation with 4 interlayer Ca ²⁺ ions	
CapoSiteO48(OH)8:(H2O)28	T2-H1	1 Q ¹ OH tetrahedra per each dimer	
(H charge compensation)	T2-H2	One layer fully protonated (Q^1OH) and the next one deprotonated $(Q^1 \text{ only})$	
		JENNITE	
$Ca_{18}(OH)_{12}Si_{12}O_{36}\cdot(H_2O)_{16}$	$\mathbf{J}\infty$	Infinite silicate chains, initial structure from ref. 3	
	Pentam	neric silicate chains	
	J5-1	2 nearest Q^2b tetrahedra removed from $J\infty$	
$Ca_{18}(OH)_{12}SI_{10}O_{32}(H_2O)_{16}$	J5-2	2 next nearest $Q^2 b$ tetrahedra removed from $J\infty$	
$Ca_{17}(OH)_{14}Si_{10}O_{32}(OH)_4 \cdot (H_2O)_1$	J5-H	4 Q ¹ OH tetrahedra replaced 1 Ca ²⁺ ion and 2 protons from H ₂ O molecules in J5-2 model	
	Dime	pric silicate chains	
$Ca_{18}(OH)_{12}Si_8O_{28}\cdot(H_2O)_{16}$	J2		
$Ca_{17}(OH)_{14}Si_8O_{24}(OH)_4 \cdot (H_2O)_{14}$	J2-H	4 Q ¹ OH tetrahedra replaced 1 Ca ²⁺ ion and 2 protons from H ₂ O molecules in J2 model	

S1. Periodic models of the C-S-H gel based on the experimental structures of tobermorite 14Å and jennite. See also attached .cif file for structures.

S2. Geometries of the cluster models of α -quartz and β -belite in xyz format. These models were cut from the periodic structures optimized by GULP and used for ADF calculations. The outermost Si-O bonds were saturated with H atoms, to avoid artificial open-shell systems. The isotropic NMR shieldings were calculated at the innermost Si atoms, printed in bold style.

S3a Quartz cluster model

141			
XYZ			
Н	6.115700000	18.207300000	26.531300000
Η	8.345100000	14.882100000	26.312700000
Η	8.533100000	22.395700000	21.184800000
Η	9.491600000	20.748100000	24.530500000
Η	3.697600000	22.395700000	21.184800000
Η	4.656200000	20.748100000	24.530500000
0	11.700600000	19.228500000	22.587800000
0	9.282800000	18.460300000	21.967000000
Si	10.763900000	18.692900000	21.386300000
0	8.885300000	20.394600000	23.749500000
Η	12.667900000	19.076600000	22.967100000
Η	11.909500000	16.560000000	24.530500000
0	6.865100000	19.228500000	22.587800000
0	6.467800000	17.293800000	26.151800000
0	8.342100000	17.916400000	24.369600000
0	4.447300000	18.460300000	21.967000000
Si	5.928400000	18.692900000	21.386300000
0	4.049800000	20.394600000	23.749500000
Si	8.346200000	18.995900000	23.168500000
Si	7.400200000	16.750200000	24.950700000
0	2.029700000	19.228500000	22.587800000
0	3.506600000	17.916400000	24.369600000
0	-0.388100000	18.460300000	21.967000000
Si	1.093000000	18.692900000	21.386300000
Si	3.510700000	18.995900000	23.168500000
Η	2.891500000	17.154800000	24.749100000
Η	-0.997100000	18.808500000	22.748200000
0	14.118500000	15.040500000	22.587800000
0	11.700700000	14.272300000	21.967000000
Si	13.181800000	14.504900000	21.386300000
0	11.303200000	16.206600000	23.749500000
Η	15.085700000	14.888600000	22.967100000
0	9.283000000	15.040500000	22.587800000
0	10.760000000	13.728400000	24.369600000
0	6.865200000	14.272300000	21.967000000
Si	8.346300000	14.504900000	21.386300000
0	6.467700000	16.206600000	23.749500000
Si	10.764100000	14.807900000	23.168500000
0	8.342300000	15.584000000	25.531800000

Н	10.144900000	12.966700000	24.749100000
0	4.447500000	15.040500000	22.587800000
0	5.924500000	13.728400000	24.369600000
0	2.029700000	14.272300000	21.967000000
Si	3.510800000	14.504900000	21.386300000
Si	5.928600000	14.807900000	23.168500000
Н	5.309400000	12.966700000	24.749100000
Н	1.420700000	14.620500000	22.748200000
Н	10.762700000	10.694500000	20.966200000
Н	5.927200000	10.694500000	20.966200000
Н	14.326900000	20.748500000	19.184000000
0	8.885100000	21.482200000	20.805300000
0	10.759500000	22.104800000	19.023000000
Н	10.762100000	22.806700000	18.242100000
Si	9.817600000	20.938600000	19.604200000
0	4.049700000	21.482200000	20.805300000
0	5.924000000	22.104800000	19.023000000
Ĥ	5.926600000	22.806700000	18.242100000
Si	4 982100000	20.938600000	19 604200000
Н	0.473500000	20.534000000	19.805800000
0	14 118100000	18 460700000	16 620400000
н	15 085400000	18.612700000	16 241200000
0	13 720600000	20 395100000	18 40300000
0	11 700/000000	19 228900000	17 2/1300000
0	11 30300000	17 29/200000	20.805300000
0	13 177300000	17.916800000	19.023000000
0	9 282600000	18/160700000	16 620/00000
Si	10 763700000	18 603300000	16.020400000
0	8 885100000	20 305100000	18 /0300000
Si	13 181/00000	18 006300000	17 822000000
\mathbf{O}	10 759700000	10.772/100000	20 185200000
Ci Ci	12 235500000	16.750600000	10 604200000
0	6 864000000	10.75000000	17.004200000
0	6 467500000	19.228900000	20 805200000
0	0.407300000 8.241000000	17.294200000	20.803300000
0	6.341900000 4 447100000	17.910800000	19.023000000
0	4.44/100000	18,400700000	16.020400000
0	3.928200000	10.095500000	10.039800000
0	4.049000000	20.393100000	18.403000000
51	8.34000000	18.990300000	17.822000000
0	5.924200000	19.//2400000	20.185200000
51	7.400000000	10.750000000	17.004200000
0	2.029400000	19.228900000	17.241300000
0	1.632100000	17.294200000	20.805300000
0	3.506400000	17.916800000	19.023000000
H	1.420400000	18.880/00000	16.460000000
51	3.510500000	18.996300000	1/.822000000
U O	1.088/00000	19.772400000	20.185200000
S1	2.564500000	16./50600000	19.604200000
0	13.720900000	13.106200000	20.805300000
0	11.700500000	14.272700000	16.620400000

Н	12.667800000	14.424600000	16.241200000
0	11.303000000	16.207000000	18.403000000
0	13.177600000	15.584400000	20.185200000
Н	14.327200000	12.752700000	20.024300000
0	9.282800000	15.040900000	17.241300000
0	8.885400000	13.106200000	20.805300000
0	10.759700000	13.728800000	19.023000000
0	6.865000000	14.272700000	16.620400000
Si	8.346100000	14.505300000	16.039800000
0	6.467500000	16.207000000	18.403000000
Si	10.763800000	14.808300000	17.822000000
0	8.342100000	15.584400000	20.185200000
Si	9.817900000	12.562600000	19.604200000
0	4.447300000	15.040900000	17.241300000
0	4.049900000	13.106200000	20.805300000
0	5.924300000	13.728800000	19.023000000
0	2.029500000	14.272700000	16.620400000
Si	3.510600000	14.505300000	16.039800000
0	1.632000000	16.207000000	18.403000000
Si	5.928300000	14.808300000	17.822000000
0	3.506600000	15.584400000	20.185200000
Si	4.982400000	12.562600000	19.604200000
0	-0.388200000	15.040900000	17.241300000
0	1.088800000	13.728800000	19.023000000
Н	-0.997200000	14.692700000	16.460000000
Si	1.092900000	14.808300000	17.822000000
Н	0.473700000	12.967100000	19.402600000
0	8.885400000	12.019000000	18.403000000
0	10.759900000	11.396400000	20.185200000
0	4.049900000	12.019000000	18.403000000
Н	8.533200000	11.105500000	18.023600000
0	5.924500000	11.396400000	20.185200000
Н	3.697800000	11.105500000	18.023600000
Н	10.144200000	20.534400000	14.459200000
Н	5.308800000	20.534400000	14.459200000
0	11.302800000	17.294600000	15.458700000
0	10.759500000	19.772900000	14.838700000
Н	11.909100000	16.941100000	14.677700000
0	6.467300000	17.294600000	15.458700000
0	8.341600000	17.917200000	13.676500000
Н	8.344300000	18.619100000	12.895600000
0	5.924000000	19.772900000	14.838700000
Si	7.399800000	16.751000000	14.257600000
Н	2.891100000	16.346400000	14.459200000
0	8.885200000	13.106600000	15.458700000
0	6.467300000	16.207400000	13.056500000
0	8.341900000	15.584800000	14.838700000
Н	9.491500000	12.753100000	14.677700000
0	4.049700000	13.106600000	15.458700000
Н	6.115100000	15.293900000	12.677000000

0	3.506400000	15.584800000	14.838700000
Н	4.656000000	12.753100000	14.677700000

S2b Belite cluster model

175			
XYZ			
Н	4.563900000	6.990500000	5.953200000
Н	4.563900000	11.601200000	5.953200000
Si	4.011300000	9.295800000	5.658800000
0	4.846200000	7.990600000	6.103500000
0	4.846200000	10.601100000	6.103500000
0	2.512600000	9.295800000	6.353200000
0	3.750900000	9.295800000	4.027900000
Н	2.015800000	10.052800000	6.884900000
Н	3.914800000	10.052700000	3.318900000
Н	3.687800000	3.527100000	8.800700000
Si	4.240500000	5.832400000	9.095000000
0	3.405500000	4.527200000	8.650400000
0	5.739100000	5.832400000	8.400600000
0	4.500900000	5.832400000	10.726000000
0	3.405500000	7.137600000	8.650400000
Н	4.337000000	5.075500000	11.435000000
Н	6.437600000	3.527100000	3.636700000
Si	6.990200000	5.832400000	3.931100000
0	6.155300000	4.527200000	3.486400000
0	8.488900000	5.832400000	3.236700000
0	7.250600000	5.832400000	5.562000000
0	6.155300000	7.137600000	3.486400000
Н	7.086700000	5.075500000	6.271000000
Н	8.985700000	5.075500000	2.704900000
Н	10.063500000	6.990500000	5.567500000
Н	10.063500000	11.601200000	5.567500000
Si	9.510800000	9.295800000	5.273200000
0	10.345800000	7.990600000	5.717800000
0	10.345800000	10.601100000	5.717800000
0	8.012200000	9.295800000	5.967600000
0	9.250400000	9.295800000	3.642200000
Н	9.414300000	8.538900000	2.933200000
Н	9.187400000	3.527100000	8.415100000
Si	9.74000000	5.832400000	8.709400000
0	8.905100000	4.527200000	8.264800000
0	8.905100000	7.137600000	8.264800000
0	10.000400000	5.832400000	10.340300000
0	11.238700000	5.832400000	8.015000000
Н	11.735500000	5.075500000	7.483200000
Н	9.836500000	5.075500000	11.049300000
Н	6.664600000	1.612100000	8.097200000
0	6.500700000	2.369000000	8.806200000

0	5.262400000	2.369000000	11.131500000
Si	6.761100000	2.369000000	10.437100000
0	7.596000000	3.674200000	10.881800000
0	7.596000000	1.063800000	10.881800000
Н	7.058300000	0.199300000	10.624600000
Н	4.765600000	1.612100000	11.663200000
Н	0.938000000	3.527100000	13.964600000
Si	1.490700000	5.832400000	14.258900000
0	0.655800000	4.527200000	13.814300000
0	2.989400000	5.832400000	13.564600000
0	1.751100000	5.832400000	15.889900000
0	0.655800000	7.137600000	13.814300000
Н	1.587200000	5.075500000	16.598900000
Н	4.564000000	6.990500000	15.895400000
Н	4.564000000	11.601200000	15.895400000
Si	4.011300000	9.295800000	15.601100000
0	4.846200000	7.990600000	16.045700000
0	4.846200000	10.601100000	16.045700000
0	2.512600000	9.295800000	16.295400000
0	3.750900000	9.295800000	13.970100000
Н	2.015800000	8.538900000	16.827100000
Н	1.814200000	6.990500000	11.117100000
0	1.001100000	9.295800000	9.191800000
Si	1.261500000	9.295800000	10.822800000
0	2.096500000	10.601100000	11.267400000
0	2.096500000	7.990600000	11.267400000
0	-0.237100000	9.295800000	11.517100000
Н	-0.763200000	10.153100000	11.215500000
Н	0.457500000	10.153200000	8.923700000
Н	1.814200000	11.601200000	11.117100000
Ca	4.014700000	9.295800000	8.974700000
Si	4.240500000	12.759300000	9.095000000
0	3.405500000	11.45400000	8.650400000
Õ	5.739100000	12.759300000	8.400600000
Õ	4,500900000	12,759300000	10.726000000
Ĥ	3.687800000	15.064600000	8.800700000
0	3.405500000	14.064500000	8.650400000
Ĥ	4.337000000	13.516200000	11.435000000
Ca	6.764400000	9.295800000	3.810800000
Ca	9.514200000	9.295800000	8.589100000
Ca	6.875600000	7.564100000	7.184100000
Ca	6.875600000	11.027600000	7.184100000
Si	6,990200000	12,759300000	3.931100000
0	6.155300000	11 454000000	3.486400000
Õ	8.488900000	12,759300000	3.236700000
õ	7.25060000	12.759300000	5.562000000
õ	6.155300000	14.064500000	3.486400000
Ĥ	6.437600000	15.064600000	3.636700000
H	7.086700000	13,516200000	6.271000000
H	8.985700000	13.516200000	2.704900000

Si	9.74000000	12.759300000	8.709400000
0	8.905100000	11.454000000	8.264800000
0	10.000400000	12.759300000	10.340300000
0	8.905100000	14.064500000	8.264800000
0	11.238700000	12.759300000	8.015000000
Н	9.187400000	15.064600000	8.415100000
Н	11.735500000	13.516200000	7.483200000
Н	9.836500000	13.516200000	11.049300000
0	6.500700000	9.295800000	8.806200000
0	5.262400000	9.295800000	11.131500000
Si	6.761100000	9.295800000	10.437100000
0	7.596000000	10.601100000	10.881800000
0	7.596000000	7.990600000	10.881800000
Ca	1.264900000	9.295800000	14.138700000
Ca	4.125900000	7.564100000	12.348000000
Ca	4.125900000	11.027600000	12.348000000
Si	1.490700000	12.759300000	14.258900000
0	0.655800000	11.454000000	13.814300000
0	2.989400000	12.759300000	13.564600000
0	1.751100000	12.759300000	15.889900000
Н	0.938000000	15.064600000	13.964600000
0	0.655800000	14.064500000	13.814300000
Н	1.587200000	13.516200000	16.598900000
Н	4.765600000	16.979600000	11.663200000
0	5.262400000	16.222700000	11.131500000
0	6.500700000	16.222700000	8.806200000
Н	7.313700000	18.528000000	10.731500000
Si	6.761100000	16.222700000	10.437100000
0	7.596000000	17.527900000	10.881800000
0	7.596000000	14.917500000	10.881800000
Н	6.664600000	16.979600000	8.097200000
Н	6.437600000	3.527100000	13.579000000
Н	7.086700000	5.075500000	16.213300000
Si	6.990200000	5.832400000	13.873300000
0	6.155300000	4.527200000	13.428700000
0	8.488900000	5.832400000	13.179000000
0	7.250600000	5.832400000	15.504300000
0	6.155300000	7.137600000	13.428700000
Н	10.063500000	6.990500000	15.509800000
Н	10.063500000	11.601200000	15.509800000
Н	7.515400000	10.052700000	16.441500000
Si	9.510800000	9.295800000	15.215500000
0	10.345800000	7.990600000	15.660100000
0	10.345800000	10.601100000	15.660100000
0	8.012200000	9.295800000	15.909800000
0	9.250400000	9.295800000	13.584500000
Ca	6.986900000	5.832400000	10.557400000
Ca	6.764400000	9.295800000	13.753000000
Ca	6.986900000	12.759300000	10.557400000
Ca	9.625400000	7.564100000	11.962400000

Ca	9.625400000	11.027600000	11.962400000
Si	6.990200000	12.759300000	13.873300000
0	6.155300000	11.454000000	13.428700000
0	8.488900000	12.759300000	13.179000000
0	7.250600000	12.759300000	15.504300000
Η	6.437600000	15.064600000	13.579000000
Η	7.086700000	13.516200000	16.213300000
0	6.155300000	14.064500000	13.428700000
0	10.761900000	9.295800000	10.745900000
0	12.000200000	9.295800000	8.420600000
Si	12.260600000	9.295800000	10.051500000
0	13.095500000	10.601100000	10.496200000
0	13.095500000	7.990600000	10.496200000
Η	12.813200000	11.601200000	10.345900000
Η	12.813200000	6.990500000	10.345900000
Η	12.164100000	8.538900000	7.711600000
Η	11.937100000	3.527100000	13.193400000
Η	12.586300000	5.075500000	15.827700000
Si	12.489800000	5.832400000	13.487700000
0	11.654800000	4.527200000	13.043100000
0	13.988400000	5.832400000	12.793300000
0	12.750200000	5.832400000	15.118700000
0	11.654800000	7.137600000	13.043100000
Η	14.485200000	5.075500000	12.261600000
Ca	12.264000000	9.295800000	13.367400000
Si	12.489800000	12.759300000	13.487700000
0	11.654800000	11.454000000	13.043100000
0	13.988400000	12.759300000	12.793300000
0	12.750200000	12.759300000	15.118700000
Н	12.586300000	13.516200000	15.827700000
0	11.654800000	14.064500000	13.043100000
Н	11.937100000	15.064600000	13.193400000
Н	14.485200000	13.516200000	12.261600000

S3. GULP parametrization used in this work. The optimizations at constant pressure were performed with the options *molq* and *fix*. The covalent radius of Ca and Si were set to 0.0 Å, and the intramolecular Coulomb potential applied to water molecules has a substraction of 50%. The Hessian update switched to the Rational Function Optimizer when the gradient norm dropped to $0.001 \text{ eV}/\text{\AA}^{-1}$.

		Species		
	Core charge	Shell charge	Spring (eV/Å ⁻²)	
Ca	2.00000			
Si				
H1	0.40000			Hydroxyl group
H2	0.40000			Water molecule
O1	0.90000	-2.30000	74.9200	Hydroxyl group
O2	1.2500	-2.0500	209.4496	Water molecule
O3	0.86902	-2.86902	74.9200	
	Buckingham poten	tial, intermolecula	[
	A (eV)	ρ (Å ⁻¹)	$C (eV/Å^6)$	R _{cutoff} (Å)
Ca - O3	1090.400	0.34370	0.00000	10.0
Ca – O1, O2	777.270	0.34370	0.00000	10.0
Si - O3	1283.907	0.32052	10.66158	10.0
Si – O1, O2	983.557	0.32052	10.66158	10.0
H - O	311.970	0.25000	0.00000	10.0
03 - 03	22764.000	0.14900	27.87900	12.0
O3 - O2	22764.000	0.14900	28.92000	12.0
O3 - O1	22764.000	0.14900	13.94000	12.0
O2 - O1	22764.000	0.14900	17.14000	12.0
O1 - O1	22764.000	0.14900	6.97000	12.0
	Lennard -	– Jones potential, ii	ntermolecular	
	$A (eV/Å^{12})$		$B(eV/Å^6)$	R _{cutoff} (Å)
O2 - O2	39344.98		42.15	12.0
	Mor	se potential, intram	olecular	
	D (eV)	α (Å ⁻¹)	R ₀ (Å)	R _{cutoff} (Å)
H1 - O1	7.05250	3.17490	0.94285	1.4
H2 - O2	6.203713	2.22030	0.92376	1.4

	Three b	ody harmonic potential	
	k (eV/rad^{-2})	Θ_0 (rad)	R _{cutoff} 1-2, 2-3 (Å) R _{cutoff} 1-3 (Å)
03,01 - Si - O3	2.09724	109.470000	1.9 3.5
H2 - O2 -H2 intramolecular	4.19978	108.693195	1.4 2.0

S4. Complete ref 19

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti,
G. L.; Cococcioni, M.; Dabo, I.; Corso, A. D.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.;
Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.;
Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.;
Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. *J. Phys.: Cond. Matter.* 2009, *21*, 395502.

S5. The convergence of GIPAW isotropic magnetic shieldings (σ) with k-point sampling, energy cutoffs and SCF threshold. Mean values of of isotropic magnetic shieldings (σ) are used for computing the chemical shifts (δ), according to formula (1) (see Main text). The convergence threshold for the self-consistent-field procedure was 10⁻⁹ Ry.

	(2
k-points/E cutoff/SCF convergence	α-quartz	β-belite
Γ point/80 Ry/10 ⁻⁶	444.9	432.8
2×2×2/80 Ry/10 ⁻⁶	434.2	411.3
2×2×2/80 Ry/10 ⁻⁹	435.3	409.4
4×4×4/80 Ry/10 ⁻⁹	434.7	408.9
4×4×4/120 Ry/10 ⁻¹⁰	434.6	408.9

J5-2 model								
		Γ point			$(2\times2\times2)$ points			
	σ	<q></q>	<δ>	σ	<q></q>	<δ>		
Q ¹	409.4	410.4	-72.7	408.7	410.2	-72.4		
	409.3			409.5				
	410.3			410.3				
	412.5			412.2				
Q ²	418.2	417.8	-83.0	417.6	417.4	-82.5		
	416.9			416.1				
	416.5			417.0				
	419.5			418.7				
Q ² b	413.9	412.5	-75.6	413.8	412.5			
	411.1			411.1		-75.6		

T5-Ca1 model							
	($(2 \times 1 \times 1)$ points	5		$(4 \times 2 \times 1)$ points		
	σ	«۵>	<i>«</i> δ»	σ	< Q >	«δ»	
	412.6			412.6	415.3		
	413.6	415.3		413.7			
	413.8			414.0			
O^1	414.3		-80.3	414.3		80.3	
Q	416.5			416.4		-80.5	
	416.8			416.8			
	417.1			417.1			
	417.3			417.3			
	415.7	417.6	-83.5	416.0			
	415.9			416.3			
	417.4			417.3			
Ω^2	417.6			417.4	1177	92.5	
Q	417.9			418.0	41/./	-85.5	
	417.9			418.3			
	418.3			418.3			
	419.7			419.6			
	410.8			410.8			
$O^{2}h$	415.5	A1 A 7	70.4	415.5	<i>111</i> 0	70.6	
Ųΰ	415.8	414./	-/9.4	416.0	414.0	-/9.0 —	
	416.8			417.0			

	b^{1} (Å) c		α β (°) γ		$\frac{V_{cell}^{1}(\text{\AA}^{3})}{\rho(\text{g/cm}^{3})}$		$\begin{array}{c} K^2 \\ G^2 (GPa) \\ Y^3 \end{array}$	
	GULP	Exp.	GULP	Exp.	GULP	Exp.	GULP	Exp.
β-Belite	5.51 6.93 9.94	5.50 6.76 9.94	90.0 94.0 90.0	90.0 94.2 90.0	378.7 3.02	346.3 3.30	114.0 53.1 137.9	- 130-140
Tobermorite 14Å (T∞ model)	6.77 14.65 28.48	6.74 14.86 27.99	90.0 94.8 123.2	90.0 90.0 123.3	2350.0 2.22	2340.8 2.23	38.6 22.5 56.5	- -
Jennite (J∞ model)	10.66 14.70 10.71	10.58 14.53 10.93	104.1 95.3 110.0	101.3 97.0 109.7	1501.2 2.35	1518.9 2.33	32.0 19.9 49.5	- - -
α-Quartz	4.84 4.84 5.35	4.92 4.92 5.41	90.0 90.0 120.0	90.0 90.0 120.0	108.3 2.76	113.1 2.65	46.5 41.8 96.5	38.0 - -

S6. The comparison between GULP results and experimental data for selected silicate minerals: lattice constants (*a*, *b*, *c*), lattice angles (α , β , γ), cell volume (V_{cell}), density (ρ), and elastic properties (K - bulk modulus, G - shear modulus, Y - Young's modulus).

¹ Values given for supercell doubled along the b direction. ² Hill definition. ³ Calculated from the

formula Y = (9G)/(3+(G/K)).

S7 The simulated spectra of (a) tobermorite 14Å (T ∞ model) and (b) jennite (J ∞ model). The spectra show the chemical shifts of individual Si atoms (dotted line) and the average on the site types of Table 2 (solid line). The peaks are broaden with gaussians with a half-maximum width of 2.0 ppm.

