## A Basis Set of de novo Coiled-coil Peptide Oligomers for Rational Protein Design and Synthetic Biology

Jordan M. Fletcher ${ }^{1, \dagger}$, Aimee L. Boyle ${ }^{1, \dagger}$, Marc Bruning ${ }^{1, \dagger}$, Gail J. Bartlett ${ }^{1}$, Thomas L. Vincent ${ }^{1,2}$, Nathan R. Zaccai ${ }^{3,4}$, Craig T. Armstrong ${ }^{1,3}$, Elizabeth H. C. Bromley ${ }^{1,5}$, Paula J. Booth ${ }^{3}$, R. Leo Brady ${ }^{3}$, Andrew R. Thomson ${ }^{1, *}$ and Derek N. Woolfson ${ }^{1,3, *}$
${ }^{1}$ School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.
${ }^{2}$ Current address: Department of Genetic Medicine, Weill Cornell Medical College, 1305, York Avenue, New York, NY, 10021, U.S.A.
${ }^{3}$ School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K.
${ }^{4}$ Current address: Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, U.S.A.
${ }^{5}$ Current address: Department of Physics, Durham University, South Road, Durham DH1 3LE, U.K.
*To whom correspondence should be addressed: Drew.Thomson@bristol.ac.uk; D.N.Woolfson@bristol.ac.uk
${ }^{\dagger}$ These authors contributed equally to this work.

## Table of Contents

Bioinformatic Analysis of CC+ Data ..... S2
Peptide Sequences ..... S6
Peptide Characterization ..... S7
Additional Circular Dichroism Spectra ..... S15
Analysis of B-Factors ..... S17
Circular Dichroism Spectra in Presence of Guanidine Hydrochloride ..... S18
Analytical Ultracentrifugation ..... S19
Dynamic Light Scattering ..... S23
X-Ray Crystallography ..... S24
Analysis of Core-packing Angles ..... S26
SOCKET Analysis of Crystal Structures ..... S27
TWISTER Analysis of Crystal Structures ..... S28
ODFs for $\boldsymbol{e}$ and $\boldsymbol{g}$ Positions ..... S28
ODF Versus Coiled-coil Propensity ..... S29
Analysis of Salt-bridge Distances ..... S30
Structural Analysis of Asparagine Residues at a Positions ..... S31
Thermodynamic Analysis of Circular Dichroism Data ..... S32
Example Pcomp Datasheet ..... S34

## Bioinformatic Analysis of CC+ Data

| Amino acid | $a$ | b | c | d | e | $f$ | $g$ | Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 54 | 90 | 78 | 73 | 55 | 78 | 65 | 493 |
| C | 6 | 4 | 0 | 9 | 0 | 4 | 4 | 27 |
| D | 4 | 75 | 64 | 9 | 23 | 67 | 54 | 296 |
| E | 7 | 115 | 113 | 21 | 156 | 111 | 146 | 669 |
| F | 29 | 9 | 13 | 25 | 7 | 4 | 3 | 90 |
| G | 4 | 16 | 11 | 1 | 10 | 28 | 16 | 86 |
| H | 8 | 11 | 21 | 8 | 6 | 20 | 6 | 80 |
| I | 162 | 10 | 15 | 67 | 20 | 13 | 16 | 303 |
| K | 37 | 80 | 63 | 23 | 83 | 88 | 93 | 467 |
| L | 235 | 30 | 34 | 366 | 57 | 30 | 48 | 800 |
| M | 13 | 4 | 10 | 28 | 10 | 4 | 11 | 80 |
| N | 57 | 47 | 40 | 27 | 49 | 48 | 25 | 293 |
| P | 1 | 3 | 1 | 0 | 0 | 1 | 0 | 6 |
| Q | 9 | 72 | 89 | 28 | 98 | 67 | 83 | 446 |
| R | 22 | 55 | 61 | 12 | 63 | 66 | 80 | 359 |
| S | 15 | 56 | 53 | 27 | 46 | 49 | 36 | 282 |
| T | 18 | 34 | 46 | 36 | 27 | 42 | 24 | 227 |
| V | 118 | 20 | 23 | 38 | 29 | 21 | 24 | 273 |
| W | 2 | 0 | 0 | 4 | 4 | 5 | 2 | 17 |
| Y | 15 | 16 | 9 | 17 | 6 | 7 | 13 | 83 |
| Sum | 816 | 747 | 744 | 819 | 749 | 753 | 749 | 5377 |

Table S1. Observed numbers of amino acids at each register position in all parallel, homooligomeric coiled coils (<=50\% sequence identity, >21 residues, culled from November 2011 release of the CC+ database (http://coiledcoils.chm.bris.ac.uk))

| Amino acid | $a$ | b | c | d | e | $f$ | $g$ | Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 42 | 57 | 34 | 59 | 36 | 56 | 29 | 313 |
| C | 6 | 4 | 1 | 9 | 1 | 4 | 4 | 29 |
| D | 3 | 49 | 44 | 9 | 16 | 44 | 28 | 193 |
| E | 8 | 89 | 88 | 16 | 107 | 84 | 122 | 514 |
| F | 13 | 8 | 10 | 8 | 7 | 5 | 3 | 54 |
| G | 2 | 7 | 8 | 2 | 4 | 14 | 4 | 41 |
| H | 7 | 10 | 14 | 4 | 6 | 15 | 4 | 60 |
| I | 75 | 8 | 13 | 17 | 16 | 10 | 13 | 152 |
| K | 38 | 59 | 49 | 24 | 62 | 53 | 64 | 349 |
| L | 161 | 24 | 20 | 275 | 34 | 25 | 34 | 573 |
| M | 10 | 5 | 11 | 18 | 9 | 4 | 9 | 66 |
| N | 54 | 21 | 25 | 7 | 25 | 33 | 12 | 177 |
| P | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 10 |
| Q | 3 | 42 | 58 | 13 | 66 | 42 | 64 | 288 |
| R | 21 | 41 | 43 | 12 | 47 | 47 | 48 | 259 |
| S | 11 | 37 | 34 | 22 | 26 | 22 | 19 | 171 |
| T | 12 | 21 | 28 | 21 | 17 | 28 | 17 | 144 |
| V | 66 | 14 | 16 | 15 | 15 | 13 | 18 | 157 |
| W | 3 | 1 | 1 | 5 | 4 | 2 | 3 | 19 |
| Y | 16 | 10 | 9 | 17 | 5 | 7 | 8 | 72 |
| Total | 552 | 510 | 508 | 554 | 504 | 509 | 504 | 3641 |

Table S2A. Observed parallel homo-dimers; <= 50\% sequence identity; >21 residues long.
Full data for calculation of Oligomer-state Discrimination Factors. Data were collected from the November 2011 release of CC+ (http://coiledcoils.chm.bris.ac.uk). A pseudocount of 1 was added to each cell to prevent any errors from division by zero.

| Amino acid | $a$ | $b$ | c | d | e | $f$ | $g$ | Sum |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 12 | 30 | 37 | 16 | 18 | 20 | 32 | 165 |
| C | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 12 |
| D | 2 | 20 | 21 | 2 | 9 | 22 | 18 | 94 |
| E | 1 | 28 | 22 | 3 | 47 | 25 | 20 | 146 |
| F | 7 | 3 | 5 | 6 | 2 | 1 | 2 | 26 |
| G | 3 | 11 | 5 | 1 | 8 | 14 | 13 | 55 |
| H | 3 | 3 | 9 | 6 | 2 | 6 | 4 | 33 |
| I | 83 | 2 | 4 | 41 | 5 | 5 | 5 | 145 |
| K | 1 | 17 | 13 | 1 | 19 | 27 | 27 | 105 |
| L | 63 | 8 | 15 | 92 | 17 | 7 | 13 | 215 |
| M | 4 | 1 | 1 | 9 | 2 | 2 | 4 | 23 |
| N | 5 | 24 | 15 | 22 | 20 | 15 | 15 | 116 |
| P | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 9 |
| Q | 7 | 26 | 25 | 15 | 32 | 24 | 19 | 148 |
| R | 3 | 13 | 16 | 2 | 15 | 20 | 31 | 100 |
| S | 6 | 20 | 19 | 6 | 19 | 25 | 19 | 114 |
| T | 7 | 15 | 19 | 14 | 12 | 15 | 8 | 90 |
| V | 51 | 7 | 9 | 23 | 15 | 10 | 8 | 123 |
| W | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 11 |
| Y | 1 | 8 | 2 | 2 | 3 | 2 | 7 | 25 |
| Total | 264 | 240 | 240 | 265 | 249 | 248 | 249 | 1755 |

Table S2B. Observed parallel homo-trimers; <= 50\% sequence identity; >21 residues long.
Full data for calculation of Oligomer-state Discrimination Factors. Data were collected from the November 2011 release of CC+ (http://coiledcoils.chm.bris.ac.uk). A pseudocount of 1 was added to each cell to prevent any errors from division by zero.

| Amino <br> acid | $\boldsymbol{a}$ | $\boldsymbol{b}$ | $\boldsymbol{c}$ | $\boldsymbol{d}$ | $\boldsymbol{l}$ | $\boldsymbol{e}$ | $\boldsymbol{f}$ |
| :---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| A | 0.22 | -0.05 | -0.36 | 0.25 | -0.01 | 0.13 | -0.35 |
| C | 0.16 | -0.03 | -0.33 | 0.33 | -0.31 | -0.01 | -0.01 |
| D | -0.14 | 0.06 | 0.00 | 0.33 | -0.06 | -0.01 | -0.11 |
| E | 0.58 | 0.17 | 0.28 | 0.41 | 0.05 | 0.21 | 0.48 |
| F | -0.05 | 0.10 | -0.02 | -0.20 | 0.24 | 0.39 | -0.13 |
| G | -0.50 | -0.52 | -0.12 | -0.02 | -0.61 | -0.31 | -0.82 |
| H | 0.05 | 0.20 | -0.13 | -0.50 | 0.17 | 0.09 | -0.31 |
| I | -0.36 | 0.27 | 0.19 | -0.70 | 0.20 | -0.01 | 0.11 |
| K | 1.26 | 0.21 | 0.25 | 1.06 | 0.21 | -0.02 | 0.07 |
| L | 0.09 | 0.15 | -0.20 | 0.16 | -0.01 | 0.24 | 0.11 |
| M | 0.08 | 0.37 | 0.72 | -0.02 | 0.35 | -0.01 | 0.05 |
| N | 0.71 | -0.39 | -0.10 | -0.82 | -0.21 | 0.03 | -0.40 |
| P | -0.62 | 0.15 | -0.02 | -0.32 | -0.31 | -0.61 | -0.31 |
| Q | -0.69 | -0.12 | 0.04 | -0.38 | 0.01 | -0.07 | 0.22 |
| R | 0.52 | 0.17 | 0.10 | 0.46 | 0.19 | 0.06 | -0.12 |
| S | -0.06 | -0.06 | -0.07 | 0.24 | -0.17 | -0.37 | -0.31 |
| T | -0.09 | -0.18 | -0.16 | -0.14 | -0.15 | -0.04 | 0.02 |
| V | -0.21 | -0.03 | -0.08 | -0.51 | -0.31 | -0.20 | 0.05 |
| W | 0.16 | -0.33 | -0.33 | 0.38 | -0.01 | -0.61 | 0.17 |
| Y | 0.88 | -0.23 | 0.33 | 0.61 | -0.08 | 0.23 | -0.25 |

Table S2C. $\log _{10}$ (observed $_{\text {dimer }} /$ observed $_{\text {trimer }}$ ) where the observed number is normalized by the total number of amino acid residues at each heptad position; i.e. to account for the different sizes of the two datasets.

## Peptide Sequences

| Peptide <br> Name | Sequence |  |  |  |  | Mass <br> (Exact/ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CC-pIL | Ac-GEIAALKQ | EIAALKK | EIAALKW | EIAALKQ | $\mathrm{GYY}-\mathrm{NH}_{2}$ | $\begin{aligned} & \hline 3571.0 / \\ & 3573.2 \end{aligned}$ |
| CC-pll | Ac-GEIAAIKQ | EIAAIKK | EIAAIKW | EIAAIKQ | GYG-NH2 | $\begin{aligned} & 3465.0 / \\ & 3467.1 \end{aligned}$ |
| CC-pLI | Ac-GELAAIKQ | ELAAIKK | ELAAIKW | ELAAIKQ | GAG-NH2 | $\begin{aligned} & 3372.9 / \\ & 3375.0 \end{aligned}$ |
| CC-plL-I17N | Ac-GEIAALKQ | EIAALKK | ENAALKW | EIAALKQ | $\mathrm{GYY}-\mathrm{NH}_{2}$ | $\begin{aligned} & 3572.0 / \\ & 3574.2 \end{aligned}$ |
| CC-pll-I13N | Ac-GEIAAIKQ | EIAANKK | EIAAIKW | EIAAIKQ | GYG-NH2 | $\begin{aligned} & 3465.9 / \\ & 3468.0 \end{aligned}$ |
| CC-plL- <br> W22Ф | Ac-GEIAALKQ | EIAALKK | EIAALK¢ | EIAALKQ | $\mathrm{GYY}-\mathrm{NH}_{2}$ | $\begin{gathered} 3657.0 / \\ 3660.1 \end{gathered}$ |
| CC-pII- <br> W22. $\Phi$ | Ac-GEIAAIKQ | EIAAIKK | EIAAIK ${ }^{\text {¢ }}$ | EIAAIKQ | GYG-NH2 | $\begin{gathered} 3551.9 / \\ 3553.9 \end{gathered}$ |
| CC-pIL-I17N-W22Ф | Ac-GEIAALKQ | EIAALKK | ENAALK¢ | EIAALKQ | $\mathrm{GYY}-\mathrm{NH}_{2}$ | $\begin{gathered} 3658.8 / \\ 3661.0 \end{gathered}$ |
| GCN4-pIL | Ac-R MKQLEDK | IEELLSK | IYHLENE | IARLKKL | IGER-H | $\begin{gathered} 4034.3 / \\ 4036.8 \end{gathered}$ |

Table S3. Peptides used in this study.

## Peptide Characterization



Figure S1A. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pIL.


Figure S1B. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-plI.


Figure S1C. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pLI.


Figure S1D. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pIL-I17N.


Figure S1E. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pll-I13N.


Figure S1F. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pIL-W22Ф.


Figure S1G. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pIL-I17N-W22Ф.


Figure S1H. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pII-W22Ф.


Figure S2A \& B. Circular dichroism spectrum (A) and temperature dependence of signal at 222 nm (B) for CC-pIL-I17N at $50 \mu \mathrm{M}$ concentration in PBS buffer.


Figure S2C \& D. Circular dichroism spectrum (C) and temperature dependence of signal at 222 nm (D) for CC-pll-I13N at $50 \mu \mathrm{M}$ concentration in PBS buffer.


Figure S2E \& F. Circular dichroism spectrum (E) and temperature dependence of signal at 222 nm ( F ) for CC-pIL at $50 \mu \mathrm{M}$ concentration in PBS buffer.


Figure S2G \& H. Circular dichroism spectrum (G) and temperature dependence of signal at 222 $\mathrm{nm}(\mathrm{H})$ for CC-pll at $50 \mu \mathrm{M}$ concentration in PBS buffer.


Figure S2I \& J. Circular dichroism spectrum (I) and temperature dependence of signal at 222 nm (J) for CC-pLI at $50 \mu \mathrm{M}$ concentration in PBS buffer.


Figure S2K \& L. Circular dichroism spectrum (K) and temperature dependence of signal at 222 $\mathrm{nm}(\mathrm{L})$ for GCN4-pIL at $50 \mu \mathrm{M}$ concentration in PBS buffer.

## Analysis of B-Factors

## B-Factors were examined as a function of sequence position for the peptides in

 this study.

Figure S3. Variation of B-factor relative to sequence position for main chain C-alpha atoms in the Basis-set structures. B-factors were extracted from the main chain C -alpha atoms of the following structures: CC-Tet, PDB I.D.3R4A; CC-Tri-113N, 4DZK; CC-Tri, 4DZL; CC-Di, 4DZM; CC-pIL, 4DZN. B-factors of individual structures were scaled to the mean B-factor in the respective set and $B$-factor distributions per residue over all structures are plotted against their sequence number as Box-and-Whisker plots. The box contains the inter-quartile-range (IQR) between $25 \%$ (1st quartile) and $75 \%$ (3rd quartile) of the data, while the whiskers at the top and bottom show the maximum and minimum values, respectively, excluding outliers (shown as hollow circles). Outliers are defined as less than 1.5 times the 1st or more than 1.5 times the 3rd quartile. The mean and median B -factors per residue are displayed as red diamonds and black bars, respectively. The B -factors per residue show an even distribution over the length of the sequence with a slightly narrower IQR in the two central heptads (residues 8-21) as compared to the C - and N -terminal heptads. In addition, both B-factor mean and median clearly decrease from the two termini towards the center of the coiled-coil chains, where mean B-factors are up to $40 \%$ lower than at the termini. Elevated B -factors for the termini as compared to the central regions of the helices indicate a higher mobility in accordance with possible fraying of the chain ends. Data analysis and plotting were carried out using R (R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.)

## Circular Dichroism Spectroscopy in Presence of Guanidine Hydrochloride



Figure S4A-D. Thermal denaturation of CC-pIL (A), CC-pII (B) and CC-pLI (C) at $50 \mu \mathrm{M}$ peptide concentration in PBS buffer in the presence of 3M guanidine hydrochloride as monitored by circular dichroism spectroscopy at 222 nm . In all cases the green line shows the equivalent temperature dependent trace in the absence of any denaturant. Panel $D$ shows the thermal denaturation profile for CC-pll at $1 \mu \mathrm{M}$ peptide concentration. The beginning of a sigmoidal curve may be seen, but this is at the limit of the sensitivity for the apparatus available. Similar behaviour is observed for CC-pLI and CC-pIL


Figure S5A. AUC data (crosses) and fits (lines), and residuals for CC-pIL-I17N (left) and CC-pIL (right). Rotor speeds for CC-plL-I17N were 40,000 rpm (green), 43,000 rpm (blue) and 50,000 rpm (red), and for CC-plL were 43,000 rpm (green), 46,000 rpm (blue) and 50,000 rpm (red). The fits shown for CC-plL-I17N are for a single ideal species with a mass of 7318 Da ( $2.05 \times$ monomer mass), those for CC-pIL are for a single ideal species of mass 10560 ( $2.96 \times$ monomer mass).


Figure S5B. AUC data (crosses) and fits (lines), and residuals for CC-pll-I13N (left) and CC-pII (right). Rotor speeds for CC-plL-I17N were 36,000 rpm (green), 40,000 rpm (blue) and 43,000 rpm (red), and for CC-pll were $36,000 \mathrm{rpm}$ (green), 40,000 rpm (blue) and 50,000 rpm (red). The fits shown for CC-pll-I13N are for a single ideal species with a mass of 10850 Da ( $3.12 \times$ monomer mass), those for CC-pll are for a single ideal species of mass 10020 ( $2.90 \times$ monomer mass).


Figure S5C. AUC data (crosses) and fits (lines), and residuals for CC-pLI . Rotor speeds were $26,000 \mathrm{rpm}$ (green), $30,000 \mathrm{rpm}$ (blue) and 36,000 rpm (red). The fits are for a single ideal species with a mass of $13240 \mathrm{Da}(3.92 \times$ monomer mass $)$.


Figure S5D. AUC data (crosses) and fits (lines), and residuals for GCN4-pIL at $250 \mu \mathrm{M}$ concentration (left) and at $500 \mu \mathrm{M}$ concentration (right). Rotor speeds for $250 \mu \mathrm{M}$ were 34,000 rpm (green), $36,000 \mathrm{rpm}$ (blue) and $40,000 \mathrm{rpm}$ (red), and for $500 \mu \mathrm{M}$ were $34,000 \mathrm{rpm}$ (green), $36,000 \mathrm{rpm}$ (blue) and 40,000 rpm (red). The fits shown for $250 \mu \mathrm{M}$ are for a single ideal species with a mass of 11070 Da ( $2.74 \times$ monomer mass), those for $500 \mu \mathrm{M}$ are for a single ideal species of mass 13600 ( $3.37 \times$ monomer mass). The systematic deviation exhibited by the residuals indicates that the single ideal species model is likely to be unsuitable, however use of morecomplex models did not achieve a better fit.


Figure S6. Dynamic light scattering profiles. Key: CC-pIL, solid black lines; CC-plI, solid red lines; CC-pLI, solid blue lines; CC-pIL-I17N, broken black lines; and CC-pll-I13N, broken red lines. All samples were at a peptide concentration of $50 \mu \mathrm{M}$ and were in PBS ( pH 7.4 ).

| Peptide | Salt | Buffer | pH | Precipitant |
| :---: | :---: | :---: | :---: | :---: |
| CC-pIL-117N-W22Ф | 0.2 M NaCl | 0.1 M Bis Tris | 5.5 | 25 \% w/v PEG 3350 |
| CC-pIL-W22Ф | $0.2 \mathrm{M} \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ | 0.1 M Tris | 8.5 | $50 \% \mathrm{v} / \mathrm{v}$ MPD |
| CC-pll-W22Ф | $0.2 \mathrm{M} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{KNaO}_{6}$ | None | N/D | 20 \% w/v PEG 3350 |
| CC-pll-I13N | $2.0 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ | None | N/D | $5 \%$ v/v 2-propanol |
| CC-pLI | None | 0.1 M Tris | 7.5 | 3 M HCOONa |

Table S4. Crystallisation conditions

|  | CC-pIL-W22 $\Phi$ | CC-pIL-I17N-W22Ф |
| :--- | :---: | :---: |
| PDB accesion code | 4DZN | 4DZM |
| crystal parameters |  |  |
| space group | $\mathrm{P} 2_{1} 2_{1} 2_{1}$ | $\mathrm{P} 6_{2}$ |
| unit cell a, b, c (Å) | $24.7,40.9,87.4$ | $23.5,23.5,189.6$ |
| data collection statistics |  |  |
| wavelength (Å) | 1.7 | 1.7 |
| resolution(A) | $41.0-1.6(1.7-1.6)$ | $19.6-1.9(2.0-1.9)$ |
| total reflections | $72412(9837)$ | $64111(7470)$ |
| unique reflections | $11991(1691)$ | $8395(1172)$ |
| $R_{\text {merge }}$ | $9.5(29.6)$ | $11.5(43.9)$ |
| mean I/ $\sigma(\mathrm{I})$ | $11.9(4.6)$ | $13.1(3.9)$ |
| completeness (\%) | $96.1(95.4)$ | $97.1(87.5)$ |
| redundancy | $6.0(5.8)$ | $20.8(20.9)$ |
| Wilson B-factor | 16 | 19.2 |
| refinement statistics |  |  |
| peptide molecules per A.U. | 3 | 2 |
| residues | 96 | 64 |
| water molecules | 78 | 32 |
| ligand atoms | --- | --- |
| total number of atoms | 833 | 544 |
| $R_{\text {cryst }} / R_{\text {free }}$ (\%) | $15.5 / 19.8$ | $19.2 / 24.4$ |
| rmsd of bond lengths (Å) | 0.0116 | 0.0118 |
| rmsd of bond angles (deg) | 1.115 | 1.665 |

Table S5A. Data collection and refinement statistics

|  | CC-pll-W22Ф | CC-pll-I13N |
| :--- | :---: | :---: |
| PDB accession code | 4DZL | 4 DZK |
| crystal parameters |  |  |
| space group | $\mathrm{P} 2_{1} 2_{1} 2$ | P 321 |
| unit cell a, b, c (Å) | $102.8,108.4,41.6$ | $38.2,38.2,44.3$ |
| data collection statistics |  |  |
| wavelength (Å) | 1.7 | 0.98 |
| resolution(A)) | $20.0-2.3(2.4-2.3)$ | $44.3-1.8(1.9-1.8)$ |
| total reflections | $269604(12038)$ | $36152(5371)$ |
| unique reflections | $21306(1997)$ | $3777(541)$ |
| $R_{\text {merge }}$ | $18.0(56.0)$ | $10.4(27.7)$ |
| mean I/ $\sigma(\mathrm{I})$ | $27.8(2.0)$ | $15.5(7.1)$ |
| completeness (\%) | $99.6(99.5)$ | $99.7(100.0)$ |
| redundancy | $12.7(6.4)$ | $9.6(9.9)$ |
| Wilson B-factor | 35.6 | 24.4 |
| refinement statistics |  |  |
| peptide molecules per A.U. | 12 | 1 |
| residues | 361 | 29 |
| water molecules | 188 | 14 |
| ligand atoms | --- | 1 |
| total number of atoms | 2937 | 250 |
| $R_{\text {cryst }} / R_{\text {free }}$ (\%) | $24.8 / 28.8$ | $23.2 / 26.9$ |
| rmsd of bond lengths (Å) | 0.0083 | 0.0068 |
| rmsd of bond angles (deg) | 1.021 | 1.033 |

Table S5B. Data collection and refinement statistics


Figure S7. Analysis of packing angles of core residues at $\boldsymbol{a}$ (dark grey) and $\boldsymbol{d}$ (light grey) heptad positions in dimers, trimers and tetramers. These angles were generated by SOCKET and were measured as the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond vector of the knob residues to the $\mathrm{C}_{\alpha}-\mathrm{C}_{\alpha}$ vector of the hole residues on the partnering helix. Mean packing angles for basis-set peptides are indicated by arrows, with values and standard deviations given. Note that the packing angles for the a positions of the tetramer, CC-pLI, fall into two different distributions; the mean and standard deviation of each is given. This is because of some deviation from $\mathrm{C}_{4}$ symmetry in the structure.

## SOCKET Analyses of Crystal Structures

SOCKET outputs from analysis of the crystal structures for CC-pIL-I17N, CC-pllI13N, CC-pIL, CC-pll and CC-pLl' The X-ray crystal structures for peptides CC-pIL-I17N, CC-pII-I13N, CC-pIL, CC-pll and CC-pLI were subjected to a SOCKET (Walshaw, J.; Woolfson, D. N. J Mol Biol 2001, 307, 1427) analysis using a cutoff of $7.0 \AA$ for identifying knobs-into-holes interactions.

| Sequence | EIAALKQEIAALKKENAALKXEIAALKQG |
| :---: | :---: |
| Register | abcdefgabcdefgabcdefgabcd |
| Helix 1 | -Y---Y--Y---Y--Y---Y |
| Helix 2 | --X---X--X---X--X---X |
| Table S6A. SOCKET output for CC-pIL-I17N. Heptad assignment for Helix 27. |  |
| Sequence | EIAAIKQEIAANKKEIAAIKWEIAAIK |
| Register | abcdefgabcdefgabcdefgabcd |
| Helix 1 | --Z---Y--Z---Y--Z---Y---- |
| Helix 2 | ---X---Z--X---Z--X---Z---- |
| Helix 3 | ----Y---X--Y---X--Y---X--- |

Table S6B. SOCKET output for CC-pll-I13N. Heptad assignment for Helix 1-3 from Residue 3-27

| Sequence | EIAALKQEIAALKKEIAALKXEIAALKQGY |
| :---: | :---: |
| Register | abcdefgabcdefgabcdefgabcd |
| Helix 1 | ----Z---Y--Z---Y--Z---Y------- |
| Helix 2 | ---X---Z--X---Z--X---Z--X---- |
| Helix 3 | -X-- |

Table S6C. SOCKET output for CC-pIL. Heptad assignment for Helix 1-3 from Residue 3-27.

| Sequence | EIAAIKQEIAAIKKEIAAIKXEIAAIK |
| :---: | :---: |
| Register | defgabcdefgabcdefgabcd |
| Helix 1 | $----\mathrm{Z}---\mathrm{Y}--\mathrm{Z}---\mathrm{Y}--\mathrm{Z}---\mathrm{Y}----$ |
| Helix 2 | $--------\mathrm{Z}--\mathrm{X}---\mathrm{Z}--\mathrm{X}---\mathrm{Z}----$ |
| Helix 3 | $----\mathrm{Y}---\mathrm{X}--\mathrm{Y}---\mathrm{X}--\mathrm{Y}---\mathrm{X}----$ |

Table S6D. SOCKET output for CC-pll. Heptad assignment for Helix 1-3 from Residue 6-27

| Sequence | ELAAIKQELAAIKKELAAIKWELAAIK |
| :---: | :---: |
| Register | bcdefgabcdefgabcdefgabcde |
| Helix 1 | ------Z--XZ--Z---Z--Z---- |
| Helix 2 | ---Y--YW--Y--YW--Y--Y----- |
| Helix 3 | -----X--X--ZX--X---X--X---- |
| Helix 4 | -----W--WY--W--WY--W--------- |

Table S6E. SOCKET output for CC-pLI. Heptad assignment for Helix 1-2 from Residue 3-28

TWISTER Analysis of Crystal Structures

|  | CC-pIL- $\Phi$ | CC-pIL-117N- $\Phi$ | CC-pII- $\Phi$ | CC-pII-113N | CC-Tet- $\Phi$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| CC pitch $(\AA \AA)$ | $182.7 \pm 11.5$ | $174.3 \pm 17.6$ | $162.7 \pm 7.2$ | $172.7 \pm 14.6$ | $201.4 \pm 15.8$ |
| CC radius (Å) | $6.41 \pm 0.06$ | $4.85 \pm 0.03$ | $6.5 \pm 0.04$ | $6.25 \pm 0.17$ | $7.09 \pm 0.05$ |

Table S7. Coiled-coil parameters as determined by TWISTER analysis of crystal structures. Calculations were carried out for the two central heptads (residues 10-23). Standard deviations as given by TWISTER describe variations of coiled-coil parameters between heptad register positions along the helix.

## ODF Values for $e$ and $g$ Positions



Figure S8. Oligomer-state discrimination factors (ODFs) for individual amino acids in parallel, homomeric coiled-coil dimers and trimers. ODFs were calculated as the $\log _{10}$ of the ratio of the normalized percentages of occurrence of each amino acid at the specified positions: $\boldsymbol{e}$ (dark gray bars) and $\boldsymbol{g}$ (light gray bars), in the dimer and trimer data sets. The shaded region highlights ODFs in the range +0.3 and -0.3 ; i.e., preferences for dimer and trimer, respectively, of no more than twice the alternative oligomer state. Errors on the count data for the dimers and trimers were estimated using the normal distribution and propagated through the ODF calculation, with the error bars shown indicating 1 standard deviation. Starred data shown with no error bars failed to meet the criteria for the normal approximation to the binomial distribution due to one or more of the contributing count data elements being less than 5 .

## ODF Versus Coiled-coil Propensity



Figure S9. Comparison of oligomer-state discrimination factor (ODF) and amino acid coiled-coil propensity. ODFs were calculated as the log10 of the ratio of normalized percentages of occurrence of each amino acid at the $\boldsymbol{a}$ (top left), $\boldsymbol{d}$ (top right), $\boldsymbol{e}$ (bottom left) and $\boldsymbol{g}$ (bottom left) positions in the dimer and trimer data sets. Only amino acids that formed $\geq 5 \%$ of residues at any of the $\mathbf{a} / \boldsymbol{d}$ or $\mathbf{e} / \boldsymbol{g}$ positions were included. Coiled-coil propensity was calculated as the $\log 10$ of the ratio of normalized percentages of occurrence of each amino acid in a non-redundant ( $\leq 50 \%$ sequence identity), parallel subset of the coiled-coil database (CC+, http://coiledcoils.chm.bris.ac.uk/ccplus/search) and the proportion of that amino acid in the Uniprot sequence database. Errors in both datasets were estimated using the normal distribution and propagated through both calculations, with the error bars shown indicating 1 standard deviation. Data points marked * have no error bars on the dimer/trimer log-odds ratio value and failed to meet the criteria for the normal approximation to the binomial distribution, due to one or more of the contributing count data elements being less than 5 .

## Analysis of Salt-bridge Distances

| Distances (Å) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CC-plL** |  |  | -pIL-I1 |  |
| Potential Salt-bridge | Chain A | B | C | Mol 1 | 2 |
| Glu 2 - Lys 7 | 3.7 | 3.48 | 3.6 | 5.68 | 8.57 |
| Glu 9 - Lys 14 | 3.42 | 3.66 | 3.87 | 4.19 | 6.48 |
| Glu 16 - Lys 21 | 3.38 | 3.61 | 3.59 | 4.5 | 5.68 |
| Glu 23 - Lys 28 | 3.61 | 3.42 | 3.75 | 5.62 | 7.63 |
| * Chains are symmetry related within dimers with two dimers in the ASU |  |  |  |  |  |
| ** Chains are not symmetry related with one trimer in the ASU |  |  |  |  |  |

Table S8. Measurements of putative salt-bridging interactions for CC-pIL and CC-pIL-I17N. Distances are measured between $\mathrm{N}_{\varepsilon}$ of Lys and $\mathrm{C}_{\bar{\delta}}$ of Glu. Values in bold are below the distance cutoff of $4 \AA$ and are classified as salt bridges.

## Structural Analysis of Asparagine Residues at a Positions

A set of parallel coiled coils with sequence identity $<=50 \%$ was identified from the CC+ database (http://coiledcoils.chm.bris.ac.uk). From these sequences, a set of 44 homodimeric coiled coils containing just one asparagine at an a position was identified. The local structure around the knob-into-hole examined. The distance of closest approach between the two asparagine residues was identified, and the structures were overlaid on one of the asparagine residues so that the spatial distribution of the opposing partner asparagine could be examined.


Figure S10. Superposition of asparagine at $\boldsymbol{a}$ in homodimeric coiled-coil structures. Structures were overlaid on the $\mathrm{C}_{\gamma}, \mathrm{O}_{\delta 1}$ and $\mathrm{N}_{\delta 2}$ atoms of one of the asparagine residues (magenta). The asparagine residue on the opposing helix is coloured green. (A) Asparagine pairs where the closest O...N distance is $\leq 3.5 \AA$ (B) Asparagine pairs where the closest $O$...N distance is $>3.5 \AA$. Structures were identified from CC+ and asparagine atom assignment was corrected using MolProbity. Structures were overlaid using the McLachlan algorithm (Mclachlan, A. D. Acta Crystallogr A 1982, 38, 871) as implemented in the program ProFit (http://www.bioinf.org.uk/software/profit/) over asparagine side-chain atoms only. Images were made with PyMOL.

## Thermodynamic Analysis of Circular Dichroism Data

Through an in-depth analysis of CD data, a variety of thermodynamic parameters for the folding of coiled coil peptides can be determined (Marky, L. A.; Breslauer, K. J. Biopolymers 1987, 26, 1601). In the case of peptides containing a polar core residue (i.e. CC-pIL-I17N and CC-pll-I13N) a series of thermal denaturation experiments was performed across a range of peptide concentrations ( $100 \mu \mathrm{M}$, $50 \mu \mathrm{M}, 10 \mu \mathrm{M}, 5 \mu \mathrm{M}, 1 \mu \mathrm{M})$. From each individual thermal denaturation, a twostate transition between monomer and the oligomer state determined by AUC was assumed. Dissociation constants were calculated from the following analysis. From each thermal denaturation, $\mathrm{T}_{\mathrm{M}}$ values were determined (in Kelvin) and plotted as their reciprocal versus the natural logarithm of peptide concentration to give a linear relationship. Using these data, one can extrapolate to determine the peptide concentration that would give a $T_{M}$ of the temperature of interest (defined here as $K_{1 / 2}^{\top}$ ). This parameter may be determined as follows for the dissociation of a coiled coil $\left(A_{n}\right)$ of oligomer state $n$.

$$
\begin{gathered}
A_{n} \leftrightarrow n A \\
K_{d}=\frac{[A]^{n}}{\left[A_{n}\right]}=\frac{\left[(1-\alpha) C_{T}\right]^{n}}{\alpha\left(C_{T} / n\right)}=\frac{n C_{T}^{n-1}(1-\alpha)^{n}}{\alpha}
\end{gathered}
$$

Where $C_{T}=$ total peptide concentration, $n$ is the oligomeric state of the folded coiled coil, $A_{n}$, and $\alpha$ is the fraction of coiled coil in the folded state, such that $\alpha=$ 0 when fully unfolded, and $\alpha=1$ in the fully folded state. Since at the melting temperature, $\mathrm{T}_{\mathrm{m}}, \alpha=1 / 2$, it follows:

$$
K_{1 / 2}^{T}=\frac{n C_{T}^{n-1}(1 / 2)^{n}}{1 / 2}=n\left(C_{T} / 2\right)^{n-1}
$$

| Peptide | $\mathrm{T}_{\mathrm{M}}(50 \mu \mathrm{M})$ | $\mathrm{MRE}^{\dagger}\left(\mathrm{deg}^{2}\right.$ <br> $\left.\mathrm{cm}^{2} . \mathrm{dmol}^{-1} \mathrm{res}^{-1}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CC-pIL-I17N | $78.15{ }^{\circ} \mathrm{C}$ | $-37,844$ | $6.67 \times 10^{-5} \mu \mathrm{M}$ | $5.54 \times 10^{-3} \mu \mathrm{M}$ |
| CC-pII-I13N | $56.47{ }^{\circ} \mathrm{C}$ | $-32,232$ | $1.74 \times 10^{-2} \mu \mathrm{M}$ | $9.42 \times 10^{-2} \mu \mathrm{M}$ |

Table S9. Summary of CD data and dissociation constants. $\dagger$ Mean Residue Elipticity (MRE) at 222 nm and peptide concentration of $50 \mu \mathrm{M}$.


Figure S11A-D. Panels $A$ and $B: T_{M}$ from thermal denaturation plots versus peptide concentration for peptides CC-pIL-I17N (A) and CC-pll-I13N (B). Panels C and D: plots depicting $1 / T_{M}$ versus the natural log of peptide concentration for peptide CC-pIL-I17N (C) and CC-pII-I13N (D). Straight lines of best fit are also depicted, and can be used to extrapolate a peptide concentration from a desired $\mathrm{T}_{\mathrm{M}}$ or vice versa.

## Example PComp Datasheet



Figure S12A. Example Pcomp datasheet page 1.

```
CC-plL-I17N (BS2N) HPLC/MS data
```




Peptide purification by reverse-phase HPLC using a Kromatek C18HQsil column ( $\mathbf{1 5 0}$ by $\mathbf{1 0 ~ m m}$ ) running a linear gradient of acetonitrile and water, each containing $0.1 \%$ TFA. A typical gradient ran from 20\% to 80\% acetonitrile over $\mathbf{3 0}$ minutes. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pll-II7N (bottom)

Figure S12B. Example Pcomp datasheet page 2.

```
CC-plL-117N (BS2N) CD data 3
```




CD spectrum (top) and temperature dependence of signal at 222nm (bottom) for CC-pll-117N at 50 $\mu \mathrm{M}$ concentration in PBS buffer

Figure S12C. Example Pcomp datasheet page 3.


Samples were prepared at $100 \mu \mathrm{M}$ peptide concentration in PBS. Samples were centrifuged prior to analysis in order to remove any large particulate material. Measurements were made at $20^{\circ} \mathrm{C}$ using automated settings. The data was analyzed using the associated DTS Nano particle sizing software.

Figure S12D. Example Pcomp datasheet page 4.

```
CC-plL-I17N (BS2N) AUC data
```



AUC fits for CC-pll-I17N (top) and residuals (bottom). Rotor speeds were $\mathbf{4 6 , 0 0 0} \mathbf{~ r p m}$ (green), $50,000 \mathrm{rpm}$ (blue) and $\mathbf{5 3 , 0 0 0} \mathrm{rpm}$ (red)

Figure S12E. Example Pcomp datasheet page 5.

```
CC-pIL-I17N (BS2N) Crystallography data
```

1. Crystallization conditions:

| Peptide | Salt | Buffer | pH | Precipitant |
| :--- | :--- | :--- | :--- | :--- |
| CC-plL-I17N | 0.2 M NaCl | 0.1 M Bis Tris | 5.5 | $25 \%$ w/v PEG 3350 |

2. Peptide used for crystallization:

## Ac-GEIAALKQ EIAALKK EIAALK ETAALRQ GYY- $\mathrm{NH}_{2}$ <br> where $\Phi$ is iodo-phenylalanine

3. Data collection and refinement statistics

|  | CC-pll-I17N-( |
| :---: | :---: |
| PDB accesion code | 4DZM |
| crystal parameters |  |
| space group | P6 ${ }_{2}$ |
| unit cell a, b, c ( $\AA$ ) | 23.5, 23.5, 189.6 |
| data collection statistics |  |
| wavelength ( $\AA$ ) | 1.7 |
| resolution( $\AA$ ) | 19.6-1.9 (2.0-1.9) |
| total reflections | 64111 (7470) |
| unique reflections | 8395 (1172) |
| $\mathrm{R}_{\text {merge }}$ | 11.5 (43.9) |
| mean I/\%(l) | 13.1 (3.9) |
| completeness (\%) | 97.1 (87.5) |
| redundancy | 20.8 (20.9) |
| Wilson B-factor | 19.2 |
| refinement statistics |  |
| peptide molecules per A.U. | 2 |
| residues | 64 |
| water molecules | 32 |
| ligand atoms | - |
| total number of atoms | 544 |
| $\mathrm{R}_{\text {cryst }} / \mathrm{R}_{\text {tree }}$ (\%) | $19.2 / 24.4$ |
| rmsd of bond lengths ( $\AA$ ) | 0.0118 |
| rmsd of bond angles (deg) | 1.665 |

Figure S12F. Example Pcomp datasheet page 6.

