Supporting Information

A Basis Set of *de novo* Coiled-coil Peptide Oligomers for Rational Protein Design and Synthetic Biology

Jordan M. Fletcher^{1,†}, Aimee L. Boyle^{1,†}, Marc Bruning^{1,†}, Gail J. Bartlett¹, Thomas L. Vincent^{1,2}, Nathan R. Zaccai^{3,4}, Craig T. Armstrong^{1,3}, Elizabeth H. C. Bromley^{1,5}, Paula J. Booth³, R. Leo Brady³, Andrew R. Thomson^{1,*} and Derek N. Woolfson^{1,3,*}

¹School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K.

²Current address: Department of Genetic Medicine, Weill Cornell Medical College, 1305, York Avenue, New York, NY, 10021, U.S.A.

³School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K.

⁴Current address: Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, U.S.A.

⁵Current address: Department of Physics, Durham University, South Road, Durham DH1 3LE, U.K.

*To whom correspondence should be addressed: <u>Drew.Thomson@bristol.ac.uk;</u> <u>D.N.Woolfson@bristol.ac.uk</u>

[†]These authors contributed equally to this work.

Table of Contents

Bioinformatic Analysis of CC+ Data	S2
Peptide Sequences	S6
Peptide Characterization	S7
Additional Circular Dichroism Spectra	S15
Analysis of B-Factors	S17
Circular Dichroism Spectra in Presence of Guanidine Hydrochloride	S18
Analytical Ultracentrifugation	S19
Dynamic Light Scattering	S23
X-Ray Crystallography	S24
Analysis of Core-packing Angles	S26
SOCKET Analysis of Crystal Structures	S27
TWISTER Analysis of Crystal Structures	S28
ODFs for e and g Positions	S28
ODF Versus Coiled-coil Propensity	S29
Analysis of Salt-bridge Distances	S30
Structural Analysis of Asparagine Residues at a Positions	S31
Thermodynamic Analysis of Circular Dichroism Data	S32
Example <i>Pcomp</i> Datasheet	S34

Amino acid	а	b	с	d	е	f	g	Sum
Α	54	90	78	73	55	78	65	493
С	6	4	0	9	0	4	4	27
D	4	75	64	9	23	67	54	296
Е	7	115	113	21	156	111	146	669
F	29	9	13	25	7	4	3	90
G	4	16	11	1	10	28	16	86
н	8	11	21	8	6	20	6	80
I	162	10	15	67	20	13	16	303
К	37	80	63	23	83	88	93	467
L	235	30	34	366	57	30	48	800
М	13	4	10	28	10	4	11	80
Ν	57	47	40	27	49	48	25	293
Р	1	3	1	0	0	1	0	6
Q	9	72	89	28	98	67	83	446
R	22	55	61	12	63	66	80	359
S	15	56	53	27	46	49	36	282
т	18	34	46	36	27	42	24	227
V	118	20	23	38	29	21	24	273
W	2	0	0	4	4	5	2	17
Y	15	16	9	17	6	7	13	83
Sum	816	747	744	819	749	753	749	5377

Bioinformatic Analysis of CC+ Data

Table S1. Observed numbers of amino acids at each register position in all parallel, homooligomeric coiled coils (<= 50% sequence identity, >21 residues, culled from November 2011 release of the CC+ database (<u>http://coiledcoils.chm.bris.ac.uk</u>)

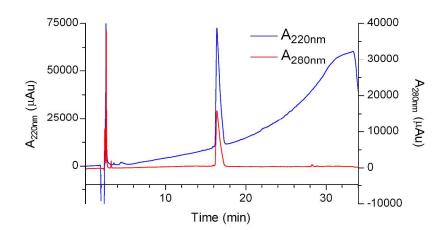
Amino acid	а	b	С	d	е	f	g	Sum
Α	42	57	34	59	36	56	29	313
С	6	4	1	9	1	4	4	29
D	3	49	44	9	16	44	28	193
Е	8	89	88	16	107	84	122	514
F	13	8	10	8	7	5	3	54
G	2	7	8	2	4	14	4	41
н	7	10	14	4	6	15	4	60
I	75	8	13	17	16	10	13	152
к	38	59	49	24	62	53	64	349
L	161	24	20	275	34	25	34	573
М	10	5	11	18	9	4	9	66
Ν	54	21	25	7	25	33	12	177
Р	1	3	2	1	1	1	1	10
Q	3	42	58	13	66	42	64	288
R	21	41	43	12	47	47	48	259
S	11	37	34	22	26	22	19	171
т	12	21	28	21	17	28	17	144
v	66	14	16	15	15	13	18	157
w	3	1	1	5	4	2	3	19
Y	16	10	9	17	5	7	8	72
Total	552	510	508	554	504	509	504	3641

Table S2A. Observed parallel homo-dimers; <= 50% sequence identity; >21 residues long. Full data for calculation of Oligomer-state Discrimination Factors. Data were collected from the November 2011 release of CC+ (<u>http://coiledcoils.chm.bris.ac.uk</u>). A pseudocount of 1 was added to each cell to prevent any errors from division by zero.

Amino acid	а	b	С	d	е	f	g	Sum
Α	12	30	37	16	18	20	32	165
С	2	2	1	2	1	2	2	12
D	2	20	21	2	9	22	18	94
Е	1	28	22	3	47	25	20	146
F	7	3	5	6	2	1	2	26
G	3	11	5	1	8	14	13	55
н	3	3	9	6	2	6	4	33
I.	83	2	4	41	5	5	5	145
к	1	17	13	1	19	27	27	105
L	63	8	15	92	17	7	13	215
М	4	1	1	9	2	2	4	23
Ν	5	24	15	22	20	15	15	116
Р	2	1	1	1	1	2	1	9
Q	7	26	25	15	32	24	19	148
R	3	13	16	2	15	20	31	100
S	6	20	19	6	19	25	19	114
т	7	15	19	14	12	15	8	90
v	51	7	9	23	15	10	8	123
w	1	1	1	1	2	4	1	11
Y	1	8	2	2	3	2	7	25
Total	264	240	240	265	249	248	249	1755

Table S2B. Observed parallel homo-trimers; <= 50% sequence identity; >21 residues long. Full data for calculation of Oligomer-state Discrimination Factors. Data were collected from the November 2011 release of CC+ (<u>http://coiledcoils.chm.bris.ac.uk</u>). A pseudocount of 1 was added to each cell to prevent any errors from division by zero.

Amino acid	а	b	С	d	е	f	g
Α	0.22	-0.05	-0.36	0.25	-0.01	0.13	-0.35
С	0.16	-0.03	-0.33	0.33	-0.31	-0.01	-0.01
D	-0.14	0.06	0.00	0.33	-0.06	-0.01	-0.11
Е	0.58	0.17	0.28	0.41	0.05	0.21	0.48
F	-0.05	0.10	-0.02	-0.20	0.24	0.39	-0.13
G	-0.50	-0.52	-0.12	-0.02	-0.61	-0.31	-0.82
н	0.05	0.20	-0.13	-0.50	0.17	0.09	-0.31
I	-0.36	0.27	0.19	-0.70	0.20	-0.01	0.11
К	1.26	0.21	0.25	1.06	0.21	-0.02	0.07
L	0.09	0.15	-0.20	0.16	-0.01	0.24	0.11
М	0.08	0.37	0.72	-0.02	0.35	-0.01	0.05
Ν	0.71	-0.39	-0.10	-0.82	-0.21	0.03	-0.40
Р	-0.62	0.15	-0.02	-0.32	-0.31	-0.61	-0.31
Q	-0.69	-0.12	0.04	-0.38	0.01	-0.07	0.22
R	0.52	0.17	0.10	0.46	0.19	0.06	-0.12
S	-0.06	-0.06	-0.07	0.24	-0.17	-0.37	-0.31
т	-0.09	-0.18	-0.16	-0.14	-0.15	-0.04	0.02
V	-0.21	-0.03	-0.08	-0.51	-0.31	-0.20	0.05
W	0.16	-0.33	-0.33	0.38	-0.01	-0.61	0.17
Y	0.88	-0.23	0.33	0.61	-0.08	0.23	-0.25


Table S2C. Log_{10} (observed_{dimer} / observed_{trimer}) where the observed number is normalized by the total number of amino acid residues at each heptad position; *i.e.* to account for the different sizes of the two datasets.

Peptide Sequences

Peptide						Mass
Name		Se	equence			(Exact/
Name						Molar)
CC-pIL					CVV NII	3571.0/
00-piL	Ac-GE I AA L KQ	E I AA L KK	E I AA l KW	E I AA l KQ	GYY-NH ₂	3573.2
CC-pll	Ac-GE I AA I KO	E I AA I KK			CVC NU	3465.0/
00-pii	AC-GEIAAIKQ	LIAAIKK	E I AA I KW	E I AA I KQ	GYG-NH ₂	3467.1
CC-pLI	Ac-GE l aa i ko	ΓΙΛΛΤΓΓ			CAC NU	3372.9/
00-pEi	AC-GE l aalky	E l aa i kk	E l aa i kw	E l aa i kq	GAG-NH ₂	3375.0
CC-pIL-I17N	A CETANIKO	e i aa l kk	e n aa l kw	E I AA l KQ	CVV NII	3572.0/
	Ac-GE I AA L KQ	LIAALAA	ENAALIW	LIAAINQ	GYY-NH ₂	3574.2
CC-pll-l13N					CVC NU	3465.9/
00-pil-1131	Ac-GE I AA I KQ	E I AA N KK	E I AA I KW	E I AA I KQ	GYG-NH ₂	3468.0
CC-pIL-					CVX NII	3657.0/
W22Φ	Ac-GE I AA L KQ	E I AA L KK	E I AA l K q	E I AA l KQ	GYY-NH ₂	3660.1
CC-pll-					CVC NU	3551.9/
W22Φ	Ac-GE I AA I KQ	E I AA I KK	E I AA I K Φ	E I AA I KQ	GYG-NH ₂	3553.9
CC-plL-					CVX NII	3658.8/
I17N-W22Φ	Ac-GE I AA L KQ	E I AA L KK	E N AA l K þ	E I AA l KQ	GYY-NH ₂	3661.0
				• • • • • • • • • •		4034.3/
GCN4-pIL	Ac-R MKQ l EDK	i ee l lsk	I YH L ENE	i ar l kkl	I GER-H	4036.8

Table S3. Peptides used in this study.

Peptide Characterization

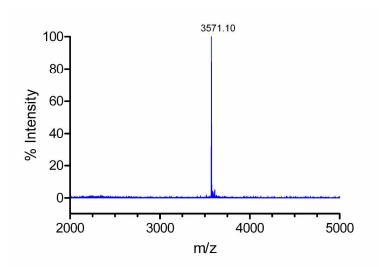


Figure S1A. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pIL.

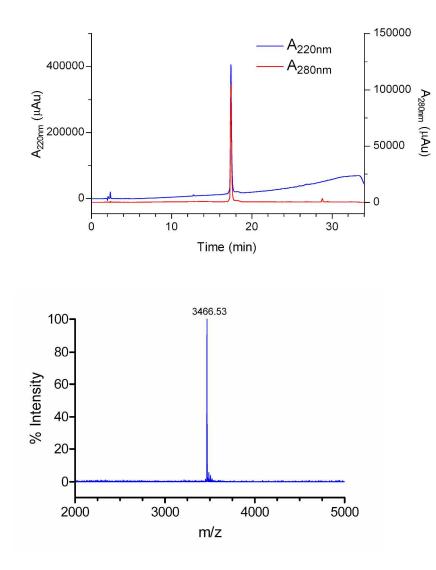


Figure S1B. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pII.

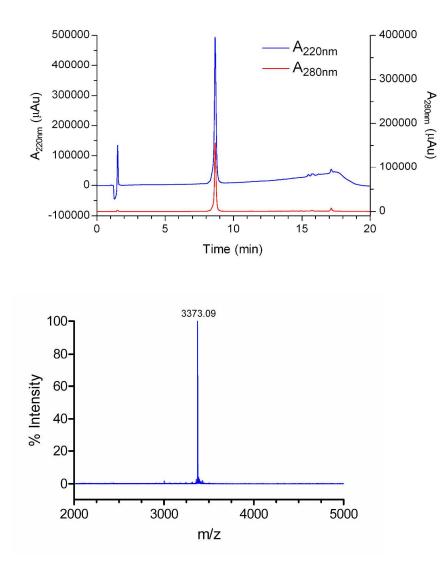


Figure S1C. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pLI.

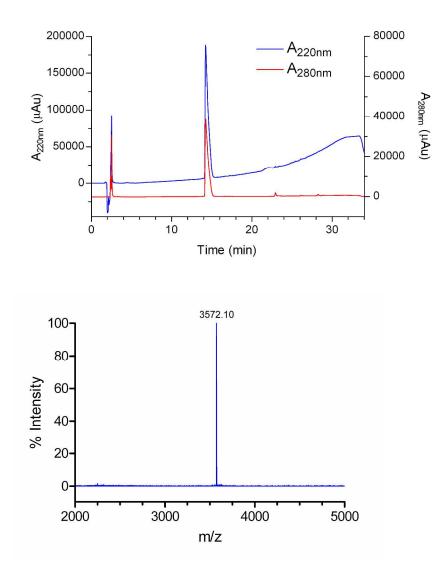


Figure S1D. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pIL-I17N.

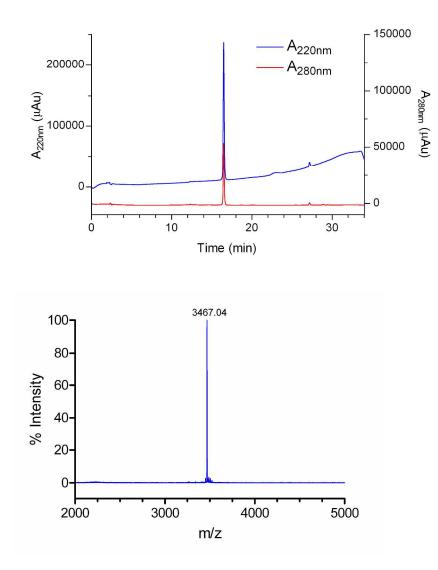


Figure S1E. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pII-I13N.

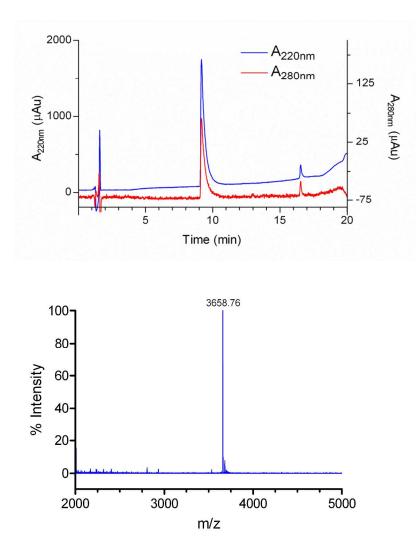


Figure S1F. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pIL-W22Φ.

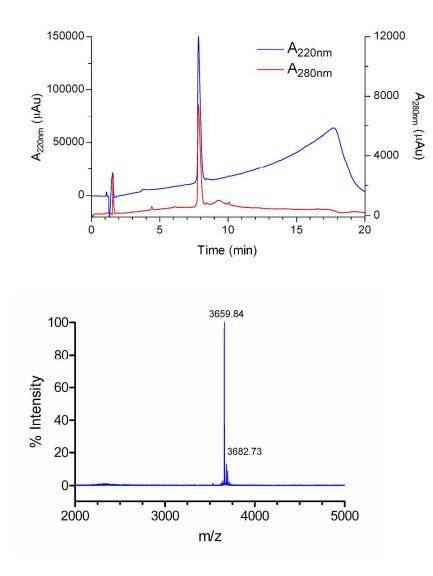
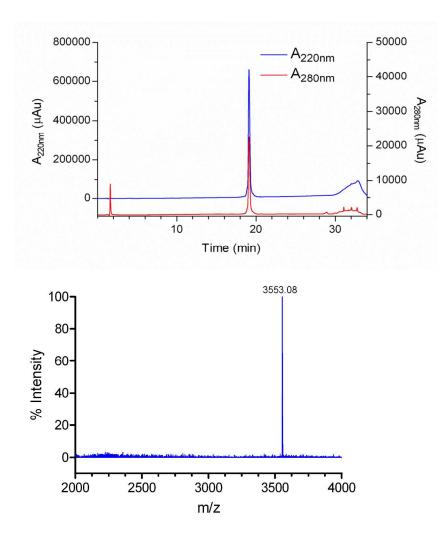
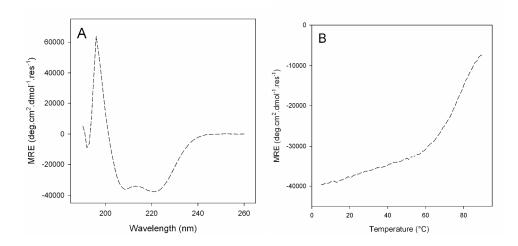
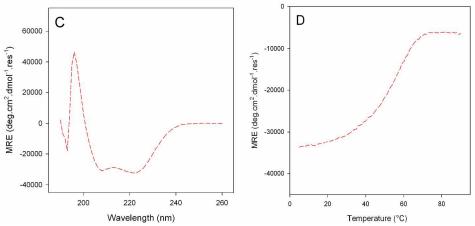
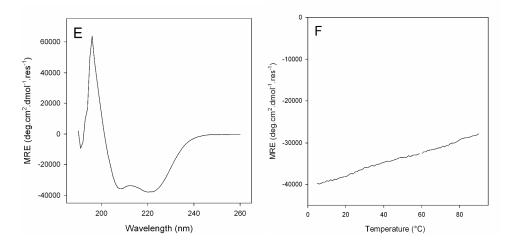
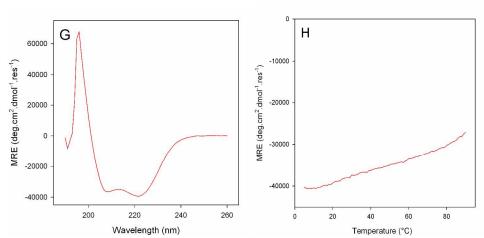
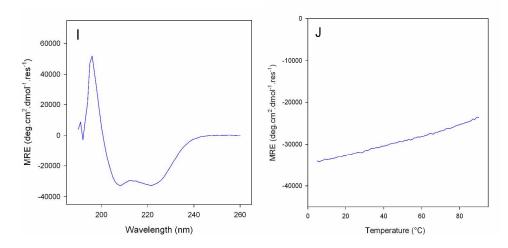


Figure S1G. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pIL-I17N-W22Φ.


Figure S1H. Analytical HPLC (top) and MALDI-TOF mass spectrum for CC-pII-W22Φ.


Figure S2A & B. Circular dichroism spectrum (A) and temperature dependence of signal at 222 nm (B) for CC-plL-I17N at 50 µM concentration in PBS buffer.


Figure S2C & D. Circular dichroism spectrum (C) and temperature dependence of signal at 222 nm (D) for CC-pII-I13N at 50 μM concentration in PBS buffer.

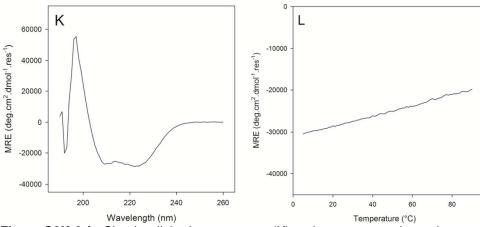

Figure S2E & F. Circular dichroism spectrum (E) and temperature dependence of signal at 222 nm (F) for CC-plL at 50 μ M concentration in PBS buffer.

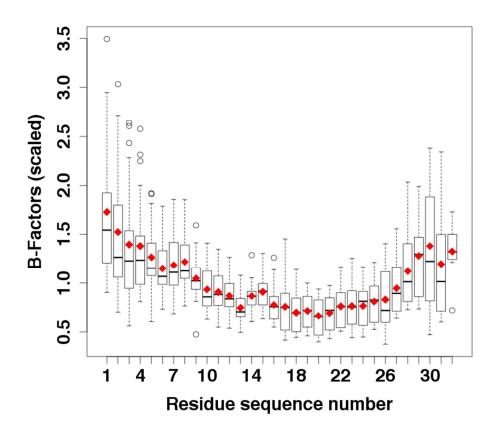
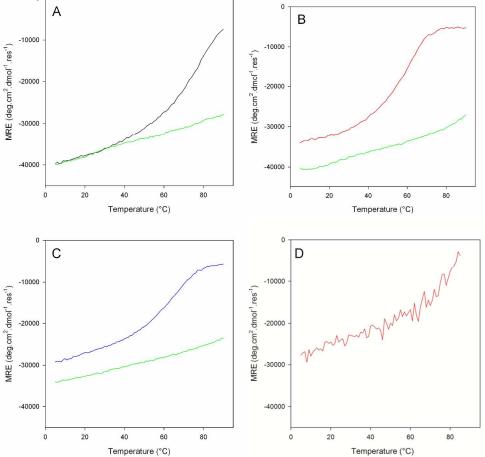
Figure S2G & H. Circular dichroism spectrum (G) and temperature dependence of signal at 222 nm (H) for CC-pII at 50 μ M concentration in PBS buffer.

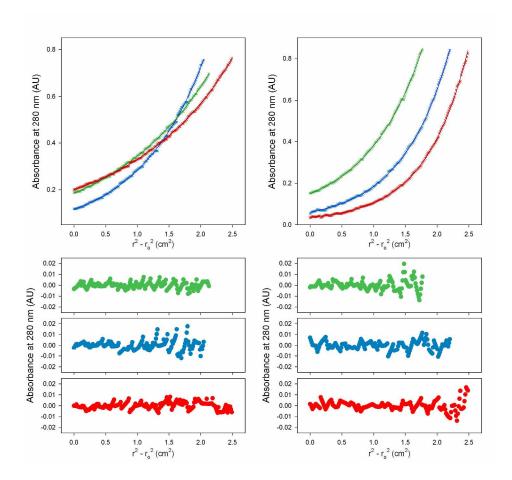
Figure S2I & J. Circular dichroism spectrum (I) and temperature dependence of signal at 222 nm (J) for CC-pLI at 50 μ M concentration in PBS buffer.

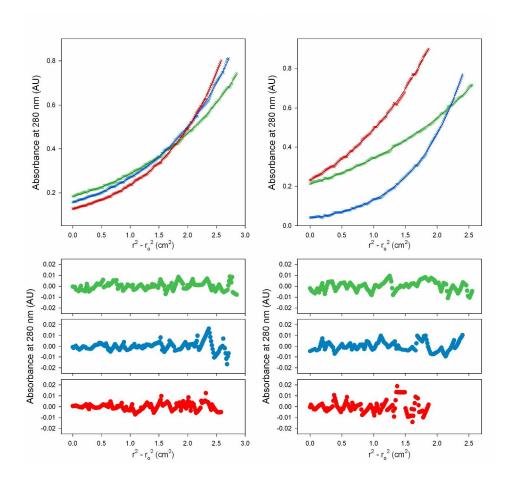
Figure S2K & L. Circular dichroism spectrum (K) and temperature dependence of signal at 222 nm (L) for GCN4-pIL at 50 µM concentration in PBS buffer.

Analysis of B-Factors

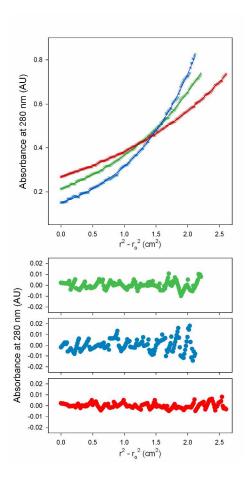
B-Factors were examined as a function of sequence position for the peptides in this study.

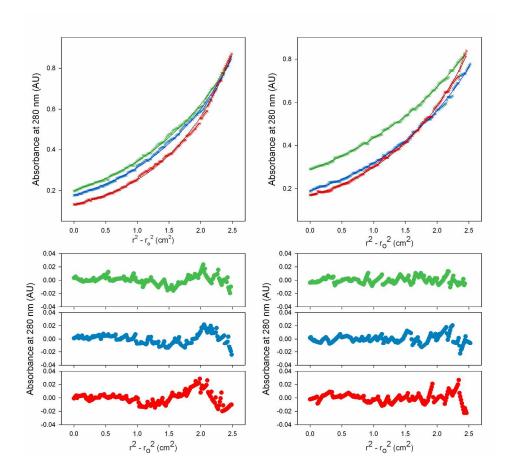




Figure S3. Variation of B-factor relative to sequence position for main chain C-alpha atoms in the Basis-set structures. B-factors were extracted from the main chain C-alpha atoms of the following structures: CC-Tet, PDB I.D.3R4A; CC-Tri-I13N, 4DZK; CC-Tri, 4DZL; CC-Di, 4DZM; CC-pIL, 4DZN. B-factors of individual structures were scaled to the mean B-factor in the respective set and B-factor distributions per residue over all structures are plotted against their sequence number as Box-and-Whisker plots. The box contains the inter-guartile-range (IQR) between 25% (1st quartile) and 75% (3rd quartile) of the data, while the whiskers at the top and bottom show the maximum and minimum values, respectively, excluding outliers (shown as hollow circles). Outliers are defined as less than 1.5 times the 1st or more than 1.5 times the 3rd guartile. The mean and median B-factors per residue are displayed as red diamonds and black bars, respectively. The B-factors per residue show an even distribution over the length of the sequence with a slightly narrower IQR in the two central heptads (residues 8-21) as compared to the C- and N-terminal heptads. In addition, both B-factor mean and median clearly decrease from the two termini towards the center of the coiled-coil chains, where mean B-factors are up to 40% lower than at the termini. Elevated B-factors for the termini as compared to the central regions of the helices indicate a higher mobility in accordance with possible fraying of the chain ends. Data analysis and plotting were carried out using R (R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.)


Circular Dichroism Spectroscopy in Presence of Guanidine Hydrochloride

n


Figure S4A-D. Thermal denaturation of CC-pIL (A), CC-pII (B) and CC-pLI (C) at 50 μ M peptide concentration in PBS buffer in the presence of 3M guanidine hydrochloride as monitored by circular dichroism spectroscopy at 222 nm. In all cases the green line shows the equivalent temperature dependent trace in the absence of any denaturant. Panel D shows the thermal denaturation profile for CC-pII at 1 μ M peptide concentration. The beginning of a sigmoidal curve may be seen, but this is at the limit of the sensitivity for the apparatus available. Similar behaviour is observed for CC-pII and CC-pIL


Figure S5A. AUC data (crosses) and fits (lines), and residuals for CC-pIL-I17N (left) and CC-pIL (right). Rotor speeds for CC-pIL-I17N were 40,000 rpm (green), 43,000 rpm (blue) and 50,000 rpm (red), and for CC-pIL were 43,000 rpm (green), 46,000 rpm (blue) and 50,000 rpm (red). The fits shown for CC-pIL-I17N are for a single ideal species with a mass of 7318 Da ($2.05 \times$ monomer mass), those for CC-pIL are for a single ideal species of mass 10560 ($2.96 \times$ monomer mass).

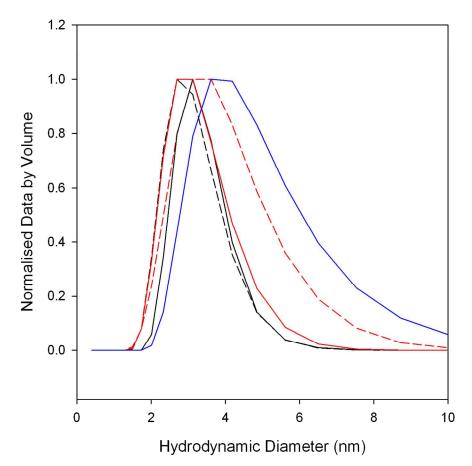
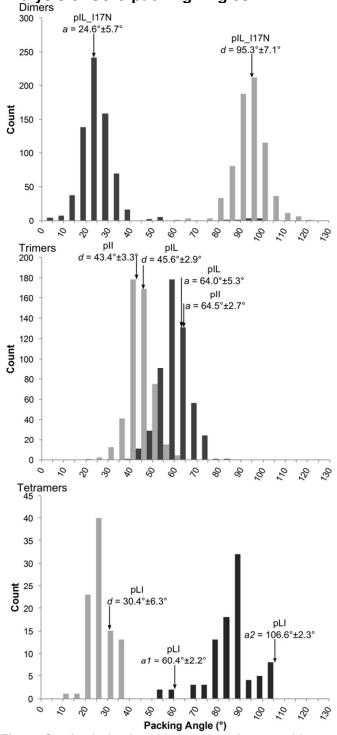

Figure S5B. AUC data (crosses) and fits (lines), and residuals for CC-pII-I13N (left) and CC-pII (right). Rotor speeds for CC-pIL-I17N were 36,000 rpm (green), 40,000 rpm (blue) and 43,000 rpm (red), and for CC-pII were 36,000 rpm (green), 40,000 rpm (blue) and 50,000 rpm (red). The fits shown for CC-pII-I13N are for a single ideal species with a mass of 10850 Da ($3.12 \times$ monomer mass), those for CC-pII are for a single ideal species of mass 10020 ($2.90 \times$ monomer mass).

Figure S5C. AUC data (crosses) and fits (lines), and residuals for CC-pLI. Rotor speeds were 26,000 rpm (green), 30,000 rpm (blue) and 36,000 rpm (red). The fits are for a single ideal species with a mass of 13240 Da (3.92 × monomer mass).

Figure S5D. AUC data (crosses) and fits (lines), and residuals for GCN4-pIL at 250 μ M concentration (left) and at 500 μ M concentration (right). Rotor speeds for 250 μ M were 34,000 rpm (green), 36,000 rpm (blue) and 40,000 rpm (red), and for 500 μ M were 34,000 rpm (green), 36,000 rpm (blue) and 40,000 rpm (red). The fits shown for 250 μ M are for a single ideal species with a mass of 11070 Da (2.74 × monomer mass), those for 500 μ M are for a single ideal species of mass 13600 (3.37 × monomer mass). The systematic deviation exhibited by the residuals indicates that the single ideal species model is likely to be unsuitable, however use of more-complex models did not achieve a better fit.

Figure S6. Dynamic light scattering profiles. Key: CC-pIL, solid black lines; CC-pII, solid red lines; CC-pLI, solid blue lines; CC-pIL-I17N, broken black lines; and CC-pII-I13N, broken red lines. All samples were at a peptide concentration of 50 μ M and were in PBS (pH 7.4).

Peptide	Salt	Buffer	рН	Precipitant
CC-plL-l17N-W22Ф	0.2 M NaCl	0.1 M Bis Tris	5.5	25 % w/v PEG 3350
CC-pIL-W22Ф	0.2 M NH ₄ H ₂ PO ₄	0.1 M Tris	8.5	50% v/v MPD
CC-pll-W22Ф	0.2 M C ₄ H ₄ KNaO ₆	None	N/D	20 % w/v PEG 3350
CC-pll-l13N	2.0 M (NH ₄) ₂ SO ₄	None	N/D	5 % v/v 2-propanol
CC-pLI	None	0.1 M Tris	7.5	3 M HCOONa


Table S4. Crystallisation conditions

	CC-pIL-W22Ф	CC-pIL-I17N-W22Ф
PDB accesion code	4DZN	4DZM
crystal parameters		
space group	P212121	P6 ₂
unit cell a, b, c (Å)	24.7, 40.9, 87.4	23.5, 23.5, 189.6
data collection statistics		
wavelength (Å)	1.7	1.7
resolution(Å)	41.0 - 1.6 (1.7 - 1.6)	
total reflections	72412 (9837)	64111 (7470)
unique reflections	11991 (1691)	8395 (1172)
R _{merge}	9.5 (29.6)	11.5 (43.9)
mean I/σ(I)	11.9 (4.6)	13.1 (3.9)
completeness (%)	96.1 (95.4)	97.1 (87.5)
redundancy	6.0 (5.8)	20.8 (20.9)
Wilson B-factor	16	19.2
refinement statistics		
peptide molecules per A.U.	3	2
residues	96	64
water molecules	78	32
ligand atoms		
total number of atoms	833	544
R _{cryst} /R _{free} (%)	15.5/19.8	19.2/24.4
rmsd of bond lengths (Å)	0.0116	0.0118
rmsd of bond angles (deg)	1.115	1.665

Table S5A. Data collection and refinement statistics

	CC-pII-W22Ф	CC-pll-l13N
PDB accession code	4DZL	4DZK
	402L	402N
crystal parameters		D001
space group	P2 ₁ 2 ₁ 2	P321
unit cell a, b, c (Å)	102.8, 108.4, 41.6	38.2, 38.2, 44.3
data collection statistics		
wavelength (Å)	1.7	0.98
resolution(Å)	20.0 - 2.3 (2.4 - 2.3)	44.3 - 1.8 (1.9 - 1.8)
total reflections	269604 (12038)	36152 (5371)
unique reflections	21306 (1997)	3777 (541)
R _{merge}	18.0 (56.0)	10.4 (27.7)
mean I/σ(I)	27.8 (2.0)	15.5 (7.1)
completeness (%)	99.6 (99.5)	99.7 (100.0)
redundancy	12.7 (6.4)	9.6 (9.9)
Wilson B-factor	35.6	24.4
refinement statistics		
peptide molecules per A.U.	12	1
residues	361	29
water molecules	188	14
ligand atoms		1
total number of atoms	2937	250
R _{cryst} /R _{free} (%)	24.8/28.8	23.2/26.9
rmsd of bond lengths (Å)	0.0083	0.0068
rmsd of bond angles (deg)	1.021	1.033
Table S5B Data collection and re	finament statistics	

Table S5B. Data collection and refinement statistics

Analysis of Core-packing Angles

Figure S7. Analysis of packing angles of core residues at *a* (dark grey) and *d* (light grey) heptad positions in dimers, trimers and tetramers. These angles were generated by SOCKET and were measured as the C_{α} - C_{β} bond vector of the knob residues to the C_{α} - C_{α} vector of the hole residues on the partnering helix. Mean packing angles for basis-set peptides are indicated by arrows, with values and standard deviations given. Note that the packing angles for the *a* positions of the tetramer, CC-pLI, fall into two different distributions; the mean and standard deviation of each is given. This is because of some deviation from C_4 symmetry in the structure.

SOCKET Analyses of Crystal Structures

SOCKET outputs from analysis of the crystal structures for CC-pIL-I17N, CC-pII-I13N, CC-pIL, CC-pII and CC-pLI' The X-ray crystal structures for peptides CC-pIL-I17N, CC-pII-I13N, CC-pIL, CC-pII and CC-pLI were subjected to a SOCKET (Walshaw, J.; Woolfson, D. N. *J Mol Biol* **2001**, *307*, 1427) analysis using a cut-off of 7.0 Å for identifying knobs-into-holes interactions.

Sequence	EIAALKQEIAALKKENAALKXEIAALKQG
Register	abcdefgabcdefgabcdefgabcd
Helix 1	YYYYYYY
Helix 2	XXXXXX

 Table S6A. SOCKET output for CC-pIL-I17N. Heptad assignment for Helix 1-2 from Residue 3-27.

Sequence	EIAAIKQEIAANKKEIAAIKWEIAAIK
Register	abcdefgabcdefgabcdefgabcd
Helix 1	ZYZY
Helix 2	XZXZZ
Helix 3	YXYXYX

Table S6B. SOCKET output for CC-pll-I13N. Heptad assignment for Helix 1-3 from Residue 3-27

Sequence	EIAALKQEIAALKKEIAALKXEIAALKQGY
Register	abcdefgabcdefgabcdefgabcd
Helix 1	ZYZYZY
Helix 2	XZXZXZX
Helix 3	YXYXYXY

Table S6C. SOCKET output for CC-pIL. Heptad assignment for Helix 1-3 from Residue 3-27.

Sequence	EIAAIKQEIAAIKKEIAAIKXEIAAIK
Register	defgabcdefgabcdefgabcd
Helix 1	ZYZYZY
Helix 2	ZXZXZ
Helix 3	YXYXX

Table S6D. SOCKET output for CC-pll. Heptad assignment for Helix 1-3 from Residue 6-27

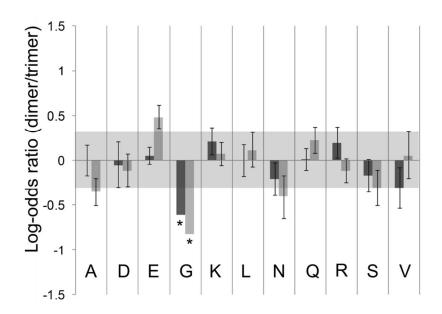

Sequence	ELAAIKQELAAIKKELAAIKWELAAIK
Register	bcdefgabcdefgabcdefgabcde
Helix 1	ZZZZZZ
Helix 2	YYWYYWYY
Helix 3	XXZXXXX
Helix 4	WWYWWYW

Table S6E. SOCKET output for CC-pLI. Heptad assignment for Helix 1-2 from Residue 3-28

	CC-pIL-Ф	CC-pIL-I17N-Ф	CC-pll-Ф	CC-pll-l13N	CC-Tet-Ф
CC pitch (Å)	182.7±11.5	174.3±17.6	162.7±7.2	172.7±14.6	201.4±15.8
CC radius (Å)	6.41±0.06	4.85±0.03	6.5±0.04	6.25±0.17	7.09±0.05

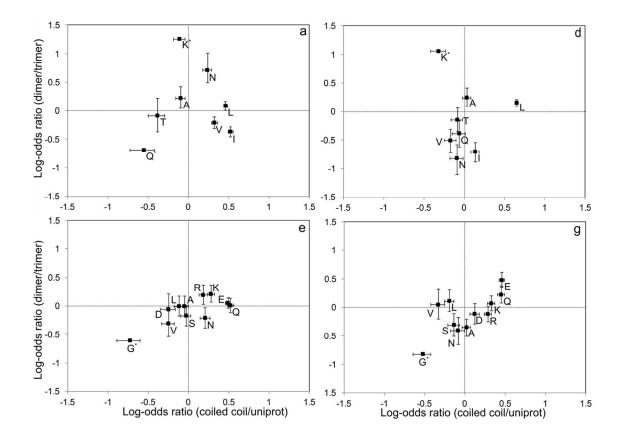

TWISTER Analysis of Crystal Structures

Table S7. Coiled-coil parameters as determined by TWISTER analysis of crystal structures. Calculations were carried out for the two central heptads (residues 10-23). Standard deviations as given by TWISTER describe variations of coiled-coil parameters between heptad register positions along the helix.

ODF Values for e and g Positions

Figure S8. Oligomer-state discrimination factors (ODFs) for individual amino acids in parallel, homomeric coiled-coil dimers and trimers. ODFs were calculated as the log_{10} of the ratio of the normalized percentages of occurrence of each amino acid at the specified positions: *e* (dark gray bars) and *g* (light gray bars), in the dimer and trimer data sets. The shaded region highlights ODFs in the range +0.3 and -0.3; *i.e.*, preferences for dimer and trimer, respectively, of no more than twice the alternative oligomer state. Errors on the count data for the dimers and trimers were estimated using the normal distribution and propagated through the ODF calculation, with the error bars shown indicating 1 standard deviation. Starred data shown with no error bars failed to meet the criteria for the normal approximation to the binomial distribution due to one or more of the contributing count data elements being less than 5.

ODF Versus Coiled-coil Propensity

Figure S9. Comparison of oligomer-state discrimination factor (ODF) and amino acid coiled-coil propensity. ODFs were calculated as the log10 of the ratio of normalized percentages of occurrence of each amino acid at the **a** (top left), **d** (top right), **e** (bottom left) and **g** (bottom left) positions in the dimer and trimer data sets. Only amino acids that formed \geq 5% of residues at any of the **a/d** or **e/g** positions were included. Coiled-coil propensity was calculated as the log10 of the ratio of normalized percentages of occurrence of each amino acid in a non-redundant (\leq 50% sequence identity), parallel subset of the coiled-coil database (CC+, http://opiledeoile.d

http://coiledcoils.chm.bris.ac.uk/ccplus/search) and the proportion of that amino acid in the Uniprot sequence database. Errors in both datasets were estimated using the normal distribution and propagated through both calculations, with the error bars shown indicating 1 standard deviation. Data points marked * have no error bars on the dimer/trimer log-odds ratio value and failed to meet the criteria for the normal approximation to the binomial distribution, due to one or more of the contributing count data elements being less than 5.

Analysis of Salt-bridge Distances

		Distances (Å))		
	CC-pIL**			CC-pIL-I17N*	
Potential Salt-bridge	Chain A	В	С	Mol 1	2
Glu 2 - Lys 7	3.7	3.48	3.6	5.68	8.57
Glu 9 - Lys 14	3.42	3.66	3.87	4.19	6.48
Glu 16 - Lys 21	3.38	3.61	3.59	4.5	5.68
Glu 23 - Lys 28	3.61	3.42	3.75	5.62	7.63

* Chains are symmetry related within dimers with two dimers in the ASU

** Chains are not symmetry related with one trimer in the ASU

Table S8. Measurements of putative salt-bridging interactions for CC-pIL and CC-pIL-I17N. Distances are measured between N_{ϵ} of Lys and C_{δ} of Glu. Values in bold are below the distance cutoff of 4 Å and are classified as salt bridges.

Structural Analysis of Asparagine Residues at *a* Positions

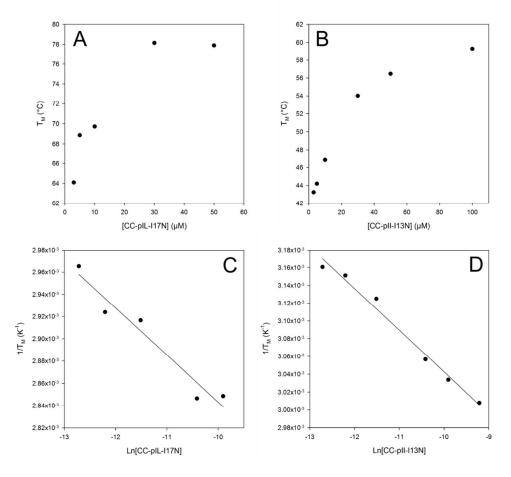
A set of parallel coiled coils with sequence identity <= 50% was identified from the CC+ database (<u>http://coiledcoils.chm.bris.ac.uk</u>). From these sequences, a set of 44 homodimeric coiled coils containing just one asparagine at an *a* position was identified. The local structure around the knob-into-hole examined. The distance of closest approach between the two asparagine residues was identified, and the structures were overlaid on one of the asparagine residues so that the spatial distribution of the opposing partner asparagine could be examined.

Figure S10. Superposition of asparagine at *a* in homodimeric coiled-coil structures. Structures were overlaid on the C_{γ} , $O_{\delta 1}$ and $N_{\delta 2}$ atoms of one of the asparagine residues (magenta). The asparagine residue on the opposing helix is coloured green. (A) Asparagine pairs where the closest O...N distance is ≤ 3.5 Å (B) Asparagine pairs where the closest O...N distance is > 3.5 Å. Structures were identified from CC+ and asparagine atom assignment was corrected using MolProbity. Structures were overlaid using the McLachlan algorithm (Mclachlan, A. D. *Acta Crystallogr A* **1982**, *38*, 871) as implemented in the program ProFit (http://www.bioinf.org.uk/software/profit/) over asparagine side-chain atoms only. Images were made with PyMOL.

Thermodynamic Analysis of Circular Dichroism Data

Through an in-depth analysis of CD data, a variety of thermodynamic parameters for the folding of coiled coil peptides can be determined (Marky, L. A.; Breslauer, K. J. *Biopolymers* **1987**, *26*, 1601). In the case of peptides containing a polar core residue (i.e. CC-pIL-I17N and CC-pII-I13N) a series of thermal denaturation experiments was performed across a range of peptide concentrations (100 μ M, 50 μ M, 10 μ M, 5 μ M, 1 μ M). From each individual thermal denaturation, a twostate transition between monomer and the oligomer state determined by AUC was assumed. Dissociation constants were calculated from the following analysis. From each thermal denaturation, T_M values were determined (in Kelvin) and plotted as their reciprocal versus the natural logarithm of peptide concentration to give a linear relationship. Using these data, one can extrapolate to determine the peptide concentration that would give a T_M of the temperature of interest (defined here as $K^{T}_{V_2}$). This parameter may be determined as follows for the dissociation of a coiled coil (*A_n*) of oligomer state *n*.

 $A_n \leftrightarrow nA$


$$K_{d} = \frac{[A]^{n}}{[A_{n}]} = \frac{[(1-\alpha)C_{T}]^{n}}{\alpha(C_{T}/n)} = \frac{nC_{T}^{n-1}(1-\alpha)^{n}}{\alpha}$$

Where C_T = total peptide concentration, *n* is the oligomeric state of the folded coiled coil, A_n , and α is the fraction of coiled coil in the folded state, such that α = 0 when fully unfolded, and α = 1 in the fully folded state. Since at the melting temperature, T_m , $\alpha = \frac{1}{2}$, it follows:

$$K_{1/2}^{T} = \frac{nC_{T}^{n-1}(1/2)^{n}}{1/2} = n(C_{T}/2)^{n-1}$$

Peptide	T _M (50 μM)	MRE [†] (deg cm ² .dmol ⁻¹ res ⁻¹)		
CC-pIL-I17N	78.15 ℃	-37,844	6.67 × 10 ⁻⁵ μΜ	5.54 × 10 ⁻³ μM
CC-pll-l13N	56.47 ℃	-32,232	1.74 × 10 ⁻² μM	9.42 × 10 ⁻² μM

Table S9. Summary of CD data and dissociation constants. † Mean Residue Elipticity (MRE) at 222 nm and peptide concentration of 50 μM.

Figure S11A-D. Panels A and B: T_M from thermal denaturation plots versus peptide concentration for peptides CC-pIL-I17N (A) and CC-pII-I13N (B). Panels C and D: plots depicting $1/T_M$ versus the natural log of peptide concentration for peptide CC-pIL-I17N (C) and CC-pII-I13N (D). Straight lines of best fit are also depicted, and can be used to extrapolate a peptide concentration from a desired T_M or vice versa.

Example PComp Datasheet

at 280 nm (µ ⁻¹ cm ⁻¹) pH 7.0 We G EIAALKQ EIAALKK ENAALKW EIAALKQ GYY gabcdef gabcdef gabcdef gabcdef 8250 +1 3574 Method of preparation Recombinant Expression Chemical synthesis Other Level of characterization (e.g. HPLC) Proof of identity (e.g. MS) 3D structure (NMR or XRD) Biologic Characteriz Characteriz Complete? Image: Complete in the page 2 2 6 Analysis experiments: CD Image: Complete in the page AUC FT-IR NMR XRD					comp Elem	ent ID: BS2
29/2/2012 CC-pIL-117N Basis Set ART,GB d.n.woolfson@bristol. Reference Fletcher et. al., JACS (submitted); PDB: 4DZM Summary 1. Source / design rationale Designed coiled-coil dimer for basis set project: follows Harbury rules I@a, L@d, plus N@a further specify dimer 2. Preparation Chemical synthesis. Standard HBTU coupling on CEM liberty system. ChemMatrix rink amic resin, acetic anhydride/pyridine capping 3. Biophysical characterization CD, AUC, crystallographic studies, DLS 4. Biological characterization Sequence Absorbance at 280 nm (µ ¹ cm ¹) G EIAALKQ EIAALKK ENAALKW EIAALKQ GYY gabcdef gabcdef gabcdef gabcdef 8250 +1 3574 Method of preparation (e.g. HPLC) Chemical synthesis Other Develop (characterization Level of characterization Chemical synthesis Other Elaologic (characterization Method of preparation (e.g. HPLC) Proof of identity 3D structure (NMR or XRD) Biologic Characteriz Complete?	General	Pcomp	Element Datash	eet		
Reference Fletcher et. al., JACS (submitted); PDB: 4DZM Summary 1. Source / design rationale Designed coiled-coil dimer for basis set project: follows Harbury rules I@a, L@d, plus N@a further specify dimer 2. Preparation Chemical synthesis. Standard HBTU coupling on CEM liberty system. ChemMatrix rink amic resin, acetic anhydride/pyridine capping 3. Biophysical characterization CD, AUC, crystallographic studies, DLS 4. Biological characterization Sequence Sequence details Absorbance at 280 nm (µ ¹ cm ¹) G EIIAALKQ EIIAALKK ENAALKW EIAALKQ GYY gabcdef gabcdef gabcdef gabcdef gabcdef 8250 +1 Method of preparation Chemical synthesis Other Recombinant Expression Chemical synthesis Other Evel of characterization 2 2 6 Proof of purity Proof of identity 3D structure Biologic Complete? X X Characteriz Refer to page 2 2 6	Date Deposited		Project Name			
Summary 1. Source / design rationale Designed coiled-coil dimer for basis set project: follows Harbury rules I@a, L@d, plus N@a further specify dimer 2. Preparation Chemical synthesis. Standard HBTU coupling on CEM liberty system. ChemMatrix rink amic resin, acetic anhydride/pyridine capping 3. Biophysical characterization CD, AUC, crystallographic studies, DLS 4. Biological characterization Sequence Absorbance at 280 nm (µ ¹ cm ¹) G EIIALKQ EIIAALKK ENAALKW EIIAALKQ GYY gabcdef gabcdef gabcdef 8250 +1 Method of preparation Recombinant Expression Chemical synthesis Other Level of characterization Proof of purity Proof of identity 3D structure Biologic Complete? X X X X	29/2/2012			Et al a ser a s	d.n.woolfso	n@bristol.ac.
1. Source / design rationale Designed coiled-coil dimer for basis set project: follows Harbury rules I@a, L@d, plus N@a further specify dimer 2. Preparation Chemical synthesis. Standard HBTU coupling on CEM liberty system. ChemMatrix rink amic resin, acetic anhydride/pyridine capping 3. Biophysical characterization CD, AUC, crystallographic studies, DLS 4. Biological characterization Sequence details Sequence Absorbance at 280 nm (µ ¹ cm ²) F1 3574 Wethod of preparation Recombinant Expression Chemical synthesis Method of preparation Recombinant Expression Chemical synthesis Proof of purity Proof of identity Yeef to page 2 Complete? X Z 6	Reference	Fletcher et. al., J	ACS (submitted);	PDB: 4DZM		
1. Source / design rationale Designed coiled-coil dimer for basis set project: follows Harbury rules I@a, L@d, plus N@a further specify dimer 2. Preparation Chemical synthesis. Standard HBTU coupling on CEM liberty system. ChemMatrix rink amic resin, acetic anhydride/pyridine capping 3. Biophysical characterization CD, AUC, crystallographic studies, DLS 4. Biological characterization Sequence details G EIAALKQ EIAALKK ENAALKW EIAALKQ GYY gabcdef gabcdef gabcdef gabcdef Method of preparation Recombinant Expression Chemical synthesis Other Level of characterization Proof of purity (e.g. HPLC) Proof of identity 3D structure (NMR or XRD) Characterization Complete? X X X Refer to page 2 Analysis experiments; AUC CD DLS	Summary					
Sequence Absorbance at 280 nm (µ ⁻¹ cm ⁻¹) Charge at pH 7.0 Mole We G EIAALKQ EIAALKK ENAALKW EIAALKQ GYY gabcdef gabcdef gabcdef 8250 +1 3574 Method of preparation 8250 +1 3574 Method of preparation Chemical synthesis Other Level of characterization Proof of purity (e.g. HPLC) Proof of identity (e.g. MS) 3D structure (NMR or XRD) Biologic Characteriz Complete? Image: Characteriz Image: Characteriz Image: Characteriz Image: Characteriz Refer to page 2 2 6 Image: Characteriz Image: Characteriz CD DLS AUC FT-IR NMR XRD	2. Preparation Chemical synthesi resin, acetic anhyo 3. Biophysical cha CD, AUC, crystallo	is. Standard HBTU dride/pyridine capp aracterization ographic studies, [bing	/ liberty system	n. ChemMatri	ix rink amide
G EIAALKQ EIAALKK ENAALKW EIAALKQ GYY gabcdef gabcdef gabcdef gabcdef 8250 +1 3574 Method of preparation Recombinant Expression Chemical synthesis Other Level of characterization Proof of purity (e.g. HPLC) Proof of identity (e.g. MS) 3D structure (NMR or XRD) Biologic Characteriz Characteriz Complete? Image Image Image Image Image Refer to page 2 2 6 Image Image Image Image CD Image	Sequence details			at 280 nm	1 A. S.	
Recombinant Expression Chemical synthesis Other Level of characterization Proof of purity (e.g. MS) 3D structure (NMR or XRD) Biologic Characteriz Complete? Image: Complete in the page Image: Complete in the					+1	3574
Level of characterization Proof of purity Proof of identity 3D structure Biologic (e.g. HPLC) (e.g. MS) (NMR or XRD) Characteriz Complete? Image: Complete in the image: Co	Method of prepar	ration				
Proof of purity (e.g. HPLC) Proof of identity (e.g. MS) 3D structure (NMR or XRD) Biologic Characteriz Complete? Image	Recombinant Exp	ression	Chemical syn	thesis 🛛	Other	<u></u>
Proof of purity (e.g. HPLC) Proof of identity (e.g. MS) 3D structure (NMR or XRD) Biologic Characteriz Complete? Image: Complete in the image: Complete in	Lovel of abaracta	vitation				
(e.g. HPLC) (e.g. MS) (NMR or XRD) Characteriz Complete? Image Image <td< td=""><td>Level of characte</td><td></td><td>Proof of iden</td><td>tity 3D str</td><td>ucture</td><td>Biological</td></td<>	Level of characte		Proof of iden	tity 3D str	ucture	Biological
Refer to page 2 2 6 Analysis experiments: CD DLS AUC FT-IR NMR XRD			7 (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2			Characterization
Analysis experiments: CD	Complete?			2		
CD 🛛 DLS 🖾 AUC 🖾 FT-IR 🗌 NMR 🗌 XRD	Refer to page	2	2		6	1004
Page:3 Page:4 Page:5 Page: Page: Page:6 Activity:	Refer to page Analysis experim CD D Page:3 P	(e.g. HPLC)	(e.g. MS)		MR	Character

Figure S12A. Example Pcomp datasheet page 1.

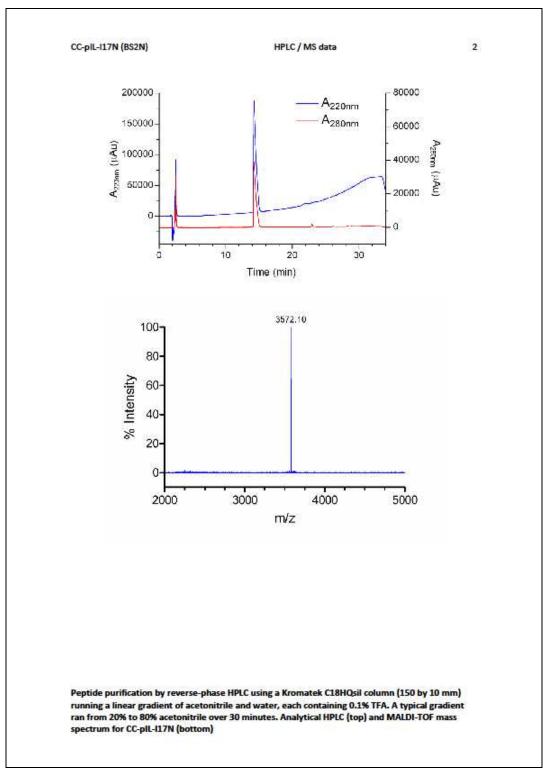


Figure S12B. Example Pcomp datasheet page 2.

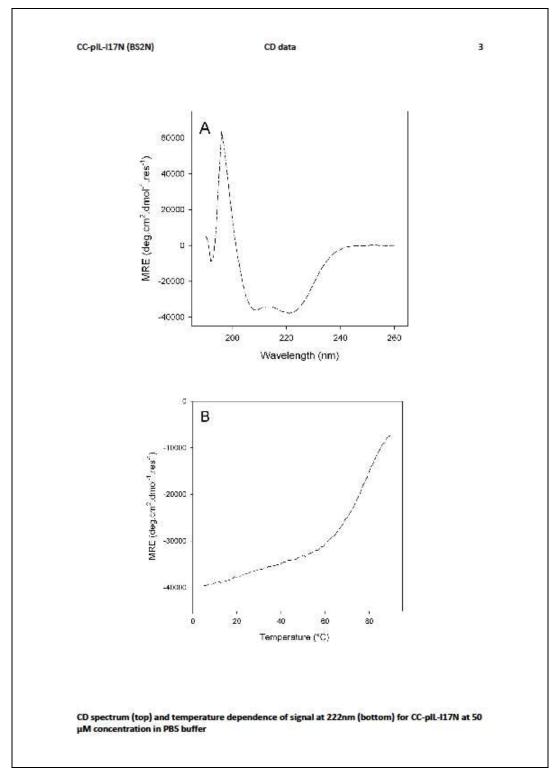


Figure S12C. Example Pcomp datasheet page 3.

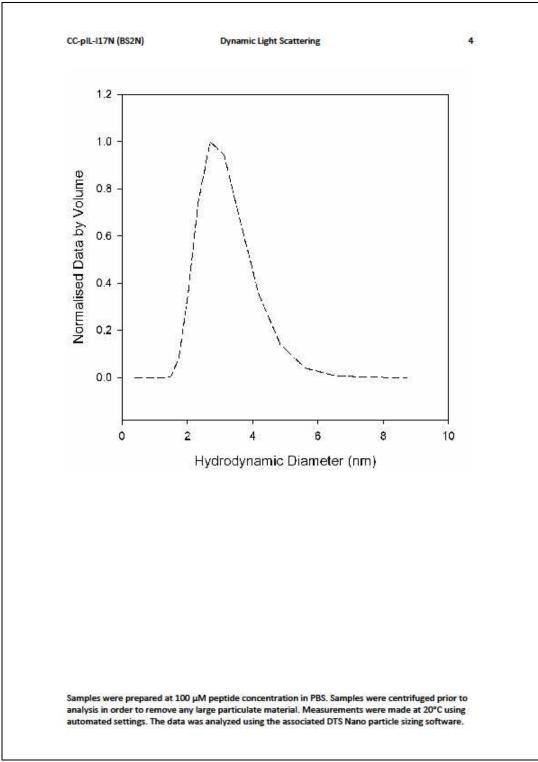


Figure S12D. Example Pcomp datasheet page 4.

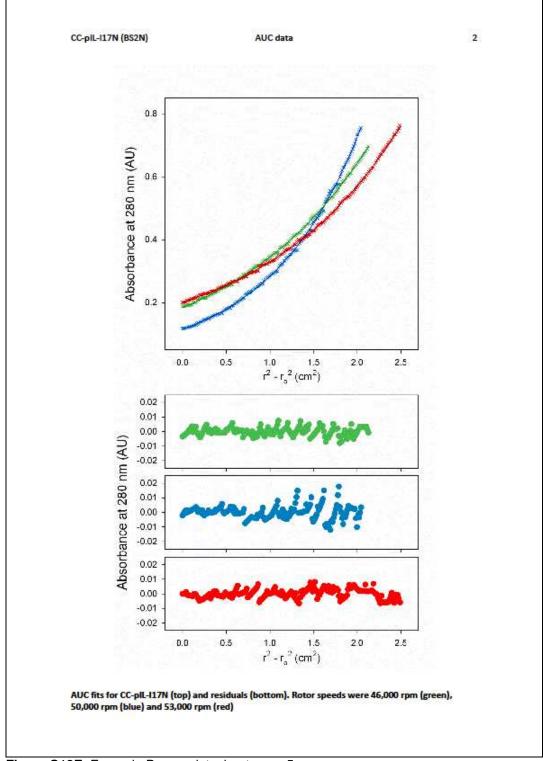


Figure S12E. Example Pcomp datasheet page 5.

Peptide used for crystallization: Ac-GEIAALKQ EIAALKK EIAALK♥ EIAALKQ GYY-NH2 where $①$ is iodo-phenylalanine	Peptide used for crystallization: $Ac-GEIAALKQ EIAALKK EIAALKQ GYY-NH_2 where \Phi is iodo-phenylalanineData collection and refinement statistics\frac{CC-pIL-117N+\Phi}{PDB accession code} 4DZM crystal parametersspace group P62unit cell a, b, c (Å) 23.5, 23.5, 189.6data collection statisticswavelength (Å) 1.7resolution(Å) 19.6 - 1.9 (2.0 - 1.9)total reflections 64111 (7470)unique reflections 64111 (7470)unique reflections 13.5 (172)Rmerge 11.5 (43.9)mean I/o(1) 13.1 (3.9)completeness (%) 97.1 (87.5)redundancy 20.8 (20.9)Wilson B-factor 19.2refinement statisticspeptide molecules 22ligand atoms -total number of atoms 544Rcryst/Rfree (%) 19.2/224.4msd of bond lengths (Å) 0.0118$	Peptide	Salt Buffer	pH Precipitant
$A_{c}-GETAALKQ ETAALKY ETAALKQ GYY-NH, where 0 is iodo-phenylalanine details is collection and refinement statistics \frac{CC-pIL-I17N-0}{PDB \ accession \ code} \frac{4DZM}{4DZM} crystal parameters space group P62 unit cell a, b, c (Å) 23.5, 23.5, 189.6 data collection statistics wavelength (Å) 1.7 resolution(Å) 19.6 - 1.9 (2.0 - 1.9) total reflections 64111 (7470) unique reflections 8395 (1172) R_merge 11.5 (43.9) mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. 2 residues 64 water molecules per A.U. 2 residues 64 water molecules per A.U. 2 residues 64 water molecules 544 Royst/Rree (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118$	Ac-GETAALKQ ETAALKK ETAALKQ ETAALKQ GYT-NH; where 0 is iodo-phenylalanine	CC-pIL-I17N	0.2 M NaCl 0.1 M Bi	s Tris 5.5 25 % w/v PEG 3350
where 0 is iodo-phenylalanineData collection and refinement statisticsCC-pIL-I17N-0PDB accesion code4DZMcrystal parameters space groupP62unit cell a, b, c (Å)23.5, 23.5, 189.6data collection statistics wavelength (Å)1.7resolution(Å)19.6 - 1.9 (2.0 - 1.9)total reflections64111 (7470)unique reflections8395 (1172)Rmerge11.5 (43.9)mean I/O(I)13.1 (3.9)completeness (%)97.1 (87.5)redundancy20.8 (20.9)Wilson B-factor19.2refinement statistics peptide molecules per A.U.2residues64water molecules32ligand atoms-total number of atoms544Royst/Rree (%)19.2/24.4rmsd of bond lengths (Å)0.0118	where 0 is iodo-phenylalanine . Data collection and refinement statistics $\frac{CC-p L-117N-\Phi}{PDB accession code} 4DZM$ crystal parameters space group P62 unit cell a, b, c (Å) 23.5, 23.5, 189.6 data collection statistics wavelength (Å) 1.7 resolution(Å) 19.6 - 1.9 (2.0 - 1.9) total reflections 64111 (7470) unique reflections 8395 (1172) R _{merge} 11.5 (43.9) mean I/O(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. 2 residues 64 water molecules 322 ligand atoms 544 R _{oryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	2. Peptide used fo	or crystallization:	
Data collection and refinement statisticsCC-pIL-I17N-ΦPDB accesion code4DZMcrystal parameters space groupP62 unit cell a, b, c (Å)23.5, 23.5, 189.6 data collection statistics wavelength (Å)unit cell a, b, c (Å)19.6 - 1.9 (2.0 - 1.9) total reflections19.6 - 1.9 (2.0 - 1.9) total reflectionstotal reflections64111 (7470) unique reflections8395 (1172) RmergeRmerge11.5 (43.9) mean I/o(I)13.1 (3.9) completeness (%)completeness (%)97.1 (87.5) redundancy20.8 (20.9) Wilson B-factorWilson B-factor19.2 refinement statistics peptide molecules per A.U.2 residuesresidues64 water molecules32 ligand atoms32 ligand atomstotal number of atoms544 Royst/Rree (%)19.2/24.4 mmsd of bond lengths (Å)0.0118	Data collection and refinement statisticsCC-piL-I17N- Φ PDB accesion code4DZMcrystal parametersspace groupP62unit cell a, b, c (Å)23.5, 23.5, 189.6data collection statisticswavelength (Å)1.7resolution(Å)19.6 - 1.9 (2.0 - 1.9)total reflections64111 (7470)unique reflections64111 (7470)unique reflections8395 (1172)R _{merge} 11.5 (43.9)mean I/o(I)13.1 (3.9)completeness (%)97.1 (87.5)redundancy20.8 (20.9)Wilson B-factor19.2refinement statisticspeptide molecules per A.U.2residues64water molecules32ligand atoms—total number of atoms544R _{orgs} /R _{free} (%)19.2/24.4msd of bond lengths (Å)0.0118		Ac-GEIAALKQ EIAALKK EIAA	ALR EIAALRQ GYY-NH2
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		where Φ is iodo-pl	henylalanine
PDB accesion code4DZMcrystal parametersspace groupP62unit cell a, b, c (Å)23.5, 23.5, 189.6data collection statisticswavelength (Å)1.7resolution(Å)19.6 - 1.9 (2.0 - 1.9)total reflections64111 (7470)unique reflections8395 (1172) R_{merge} 11.5 (43.9)mean I/ σ (I)13.1 (3.9)completeness (%)97.1 (87.5)redundancy20.8 (20.9)Wilson B-factor19.2refinement statisticspeptide molecules per A.U.peptide molecules per A.U.2residues64water molecules32ligand atomstotal number of atoms544Rorget/Rfree (%)19.2/24.4rmsd of bond lengths (Å)0.0118	PDB accesion code4DZMcrystal parametersspace groupP62unit cell a, b, c (Å)23.5, 23.5, 189.6data collection statisticswavelength (Å)1.7resolution(Å)19.6 - 1.9 (2.0 - 1.9)total reflections64111 (7470)unique reflections8395 (1172) R_{merge} 11.5 (43.9)mean I/o(1)13.1 (3.9)completeness (%)97.1 (87.5)redundancy20.8 (20.9)Wilson B-factor19.2refinement statisticspeptide molecules per A.U.peptide molecules per A.U.2residues64water molecules32ligand atomstotal number of atoms544Royst/Rfree (%)19.2/24.4rmsd of bond lengths (Å)0.0118	8. Data collection	and refinement statistics	
crystal parameters space group $P6_2$ unit cell a, b, c (Å) $23.5, 23.5, 189.6$ data collection statisticswavelength (Å)1.7 resolution(Å) $19.6 - 1.9 (2.0 - 1.9)$ total reflections $64111 (7470)$ unique reflectionsunique reflections $64111 (7470)$ unique reflections $8395 (1172)$ RmergeRmerge $11.5 (43.9)$ mean $I/\sigma(I)$ $13.1 (3.9)$ completeness (%)completeness (%) $97.1 (87.5)$ redundancyredundancy $20.8 (20.9)$ Wilson B-factorWilson B-factor 19.2 refinement statistics peptide molecules per A.U.peptide molecules 32 ligand atomsligand atoms $$ total number of atomstotal number of atoms 544 Royst/Rfree (%)Royst/Rfree (%) $19.2/24.4$ mmsd of bond lengths (Å)	crystal parameters space group $P6_2$ unit cell a, b, c (Å) $23.5, 23.5, 189.6$ data collection statisticswavelength (Å)1.7 resolution(Å) $19.6 - 1.9 (2.0 - 1.9)$ total reflectionstotal reflections $64111 (7470)$ unique reflections $8395 (1172)$ Rmerge R_{merge} $11.5 (43.9)$ mean $I/o(1)$ $13.1 (3.9)$ completeness (%)completeness (%) $97.1 (87.5)$ redundancy $20.8 (20.9)$ Wilson B-factorWilson B-factor 19.2 residues 64 			CC-pIL-I17N-Ф
space group $P6_2$ unit cell a, b, c (Å) $23.5, 23.5, 189.6$ data collection statisticswavelength (Å) 1.7 resolution(Å) $19.6 - 1.9 (2.0 - 1.9)$ total reflections $64111 (7470)$ unique reflections $8395 (1172)$ R_{merge} $11.5 (43.9)$ mean $I/\sigma(I)$ $13.1 (3.9)$ completeness (%) $97.1 (87.5)$ redundancy $20.8 (20.9)$ Wilson B-factor 19.2 refinement statisticspeptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms $$ total number of atoms 544 R_{orget}/R_{free} (%) $19.2/24.4$ rmsd of bond lengths (Å) 0.0118	space group $P6_2$ unit cell a, b, c (Å) $23.5, 23.5, 189.6$ data collection statisticswavelength (Å) 1.7 resolution(Å) $19.6 - 1.9 (2.0 - 1.9)$ total reflections $64111 (7470)$ unique reflections $64111 (7470)$ unique reflections $8395 (1172)$ R_{merge} $11.5 (43.9)$ mean $I/\sigma(I)$ $13.1 (3.9)$ completeness (%) $97.1 (87.5)$ redundancy $20.8 (20.9)$ Wilson B-factor 19.2 refinement statisticspeptide molecules per A.U.peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms $$ total number of atoms 544 R_{oryst}/R_{tree} (%) $19.2/24.4$ rmsd of bond lengths (Å) 0.0118			
unit cell a, b, c (Å) 23.5, 23.5, 189.6 data collection statistics wavelength (Å) 1.7 resolution(Å) 19.6 - 1.9 (2.0 - 1.9) total reflections 64111 (7470) unique reflections 8395 (1172) R_{merge} 11.5 (43.9) mean $I/\sigma(I)$ 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. 2 residues 64 water molecules 322 ligand atoms	unit cell a, b, c (Å) $23.5, 23.5, 189.6$ data collection statistics		A second se Second second s Second second s Second second se	P62
wavelength (Å) 1.7 resolution(Å) 19.6 - 1.9 (2.0 - 1.9) total reflections 64111 (7470) unique reflections 8395 (1172) R_{merge} 11.5 (43.9) mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. peptide molecules 32 ligand atoms — total number of atoms 544 R _{oryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	wavelength (Å) 1.7 resolution(Å) 19.6 - 1.9 (2.0 - 1.9) total reflections 64111 (7470) unique reflections 8395 (1172) R_{merge} 11.5 (43.9) mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. peptide molecules 32 ligand atoms — total number of atoms 544 R _{oryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118		unit cell a, b, c (Å)	
resolution(Å) 19.6 - 1.9 (2.0 - 1.9) total reflections 64111 (7470) unique reflections 8395 (1172) R_{merge} 11.5 (43.9) mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. peptide molecules 32 ligand atoms — total number of atoms 544 R _{oryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			47
total reflections 64111 (7470) unique reflections 8395 (1172) Rmerge 11.5 (43.9) mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms — total number of atoms 544 Royst/Rfree (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	total reflections 64111 (7470) unique reflections 8395 (1172) R _{merge} 11.5 (43.9) mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms — total number of atoms 544 R _{oryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118			
Rmerge 11.5 (43.9) mean I/σ(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. pesidues 64 water molecules 32 ligand atoms — total number of atoms 544 Royst/Rfree (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	Rmerge 11.5 (43.9) mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics 9 peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms total number of atoms 544 Royst/Rmee (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118			
mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics	mean I/o(I) 13.1 (3.9) completeness (%) 97.1 (87.5) redundancy 20.8 (20.9) Wilson B-factor 19.2 refinement statistics 9eptide molecules per A.U. peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms total number of atoms 544 Reryst/Rree (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118		and the second se	
completeness (%)97.1 (87.5)redundancy20.8 (20.9)Wilson B-factor19.2refinement statisticspeptide molecules per A.U.2residues64water molecules32ligand atomstotal number of atoms544Royst/Rfree (%)19.2/24.4rmsd of bond lengths (Å)0.0118	completeness (%)97.1 (87.5)redundancy20.8 (20.9)Wilson B-factor19.2refinement statistics9peptide molecules per A.U.2residues64water molecules32ligand atomstotal number of atoms544Reryst/Rree (%)19.2/24.4rmsd of bond lengths (Å)0.0118			
Wilson B-factor 19.2 refinement statistics 2 peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms total number of atoms 544 R _{oryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	Wilson B-factor 19.2 refinement statistics peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms total number of atoms 544 R _{cryst} /R _{tree} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118		completeness (%)	
refinement statistics peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms	refinement statistics peptide molecules per A.U. 2 residues 64 water molecules 32 ligand atoms			
residues 64 water molecules 32 ligand atoms — total number of atoms 544 R _{oryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	residues 64 water molecules 32 ligand atoms — total number of atoms 544 R _{cryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118			19.2
water molecules 32 ligand atoms — total number of atoms 544 Royst/Rfree (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	water molecules 32 ligand atoms — total number of atoms 544 R _{cryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118			
ligand atoms	ligand atoms — total number of atoms 544 R _{cryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118			
Royst/Rree (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118	R _{cryst} /R _{free} (%) 19.2/24.4 rmsd of bond lengths (Å) 0.0118			
rmsd of bond lengths (Å) 0.0118	rmsd of bond lengths (Å) 0.0118			
			msd of bond lengths (Å)	