Acylphloroglucinols from *Elaphoglossum crassipes*: Antidepressant-like Activity of Crassipin A

Cecilia Socolsky,[†] Stela M. K. Rates,[‡] Ana Cristina Stein,[‡] Yoshinori Asakawa,[§] and Alicia Bardón^{*,†}

[†]INQUINOA - CONICET, Ayacucho 471, Tucumán 4000, Argentina

[‡]Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre/RS 90610-000, Brazil [§]Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan

Supplementary data

- **S1.** ¹H NMR spectrum of crassipin A (1) (acetone- d_6 , 500 MHz)
- **S2.** ¹H NMR spectrum (partial enlarged) of crassipin A (1) (acetone- d_6 , 500 MHz)
- **S3.** ¹³C NMR spectrum of crassipin A (1) (acetone- d_6 , 125 MHz)
- S4. ¹H ¹H COSY spectrum of crassipin A (1) in acetone- d_6
- **S5.** HSQC spectrum of crassipin A (1) in acetone- d_6
- **S6.** HMBC spectrum of crassipin A (1) in acetone- d_6
- **S7.** ¹H NMR spectrum of crassipin B (2) (acetone- d_6 , 500 MHz)
- **S8.** ¹H NMR spectrum (partial enlarged) of crassipin B (2) (acetone- d_6 , 500 MHz)
- **S9.** ¹³C NMR spectrum of crassipin B (2) (acetone- d_6 , 125 MHz)
- **S10.** ¹H NMR spectrum of crassipin C (**3a**) (acetone- d_6 , 500 MHz)
- **S11.** ¹H NMR spectrum (partial enlarged) of crassipin C (**3a**) (acetone-*d*₆, 500 MHz)
- **S12.** ¹³C NMR spectrum of crassipin C (**3a**) (acetone- d_6 , 125 MHz)
- **S13.** ¹H NMR spectrum of crassipin D (**3b**) (acetone- d_6 , 500 MHz)
- **S14.** ¹H NMR spectrum (partial enlarged) of crassipin D (**3b**) (acetone-*d*₆, 500 MHz)
- **S15.** ¹³C NMR spectrum of crassipin D (**3b**) (acetone- d_6 , 125 MHz)
- **S16.** ¹H NMR spectrum of crassipin E (4) (acetone- d_6 , 500 MHz)
- **S17.** ¹H NMR spectrum (partial enlarged) of crassipin E (4) (acetone- d_6 , 500 MHz)
- **S18.** ¹³C NMR spectrum of crassipin E (4) (acetone- d_6 , 125 MHz)
- **S19.** ¹H NMR spectrum of crassipin F (**5a**) (acetone- d_6 , 500 MHz)
- **S20.** ¹H NMR spectrum (partial enlarged) of crassipin F (**5a**) (acetone- d_6 , 500 MHz)
- **S21.** ¹³C NMR spectrum of crassipin F (**5a**) (acetone- d_6 , 125 MHz)
- **S22.** ¹H NMR spectrum of crassipin G (**5b**) (acetone- d_6 , 500 MHz)
- **S23.** ¹H NMR spectrum (partial enlarged) of crassipin G (**5b**) (acetone- d_6 , 500 MHz)
- **S24.** ¹³C NMR spectrum of crassipin G (**5b**) (acetone- d_6 , 125 MHz)
- **S25.** ¹H NMR spectrum of crassipin H (6) (acetone- d_6 , 500 MHz)

- **S26.** ¹H NMR spectrum (partial enlarged) of crassipin H (6) (acetone- d_6 , 500 MHz)
- **S27.** ¹³C NMR spectrum of crassipin H (6) (acetone- d_6 , 125 MHz)
- **S28.** ¹H NMR spectrum of crassipin I (7) (acetone- d_6 , 500 MHz)
- **S29.** ¹H NMR spectrum (partial enlarged) of crassipin I (7) (acetone- d_6 , 500 MHz)
- **S30.** ¹³C NMR spectrum of crassipin I (7) (acetone- d_6 , 125 MHz)
- **S31.** ¹H NMR spectrum of compound **8** (acetone- d_6 , 600 MHz)
- **S32.** ¹³C NMR spectrum of compound **8** (acetone- d_6 , 150 MHz)
- **S33.** ¹H ¹H COSY spectrum of compound **8** in acetone- d_6
- **S34.** HSQC spectrum of compound **8** in acetone- d_6
- **S35.** HMBC spectrum of compound **8** in acetone- d_6
- **S36.** NOESY spectrum of compound **8** in acetone- d_6
- S37. Experimental ECD spectra of compounds 3a and 3b.
- S38. Experimental VCD spectra of compounds 3a and 3b.
- **S39.** Computational details
- S40. Photograph of the scaly rhizomes of Elaphoglossum crassipes

S1. ¹H NMR spectrum of crassipin A (1) (acetone- d_6 , 500 MHz)

S2. ¹H NMR spectrum (partial enlarged) of crassipin A (1) (acetone- d_6 , 500 MHz)

ppm

S3. ¹³C NMR spectrum of crassipin A (1) (acetone- d_6 , 125 MHz)

S4. ¹H ¹H COSY spectrum of crassipin A (1) in acetone- d_6

S5. HSQC spectrum of crassipin A (1) in acetone- d_6

and the second of the Still Still

S6. HMBC spectrum of crassipin A (1) in acetone- d_6

S7. ¹H NMR spectrum of crassipin B (2) (acetone- d_6 , 500 MHz)

S8. ¹H NMR spectrum (partial enlarged) of crassipin B (2) (acetone- d_6 , 500 MHz)

S9. ¹³C NMR spectrum of crassipin B (2) (acetone- d_6 , 125 MHz)

ppm

S10. ¹H NMR spectrum of crassipin C (**3a**) (acetone- d_6 , 500 MHz)

S11. ¹H NMR spectrum (partial enlarged) of crassipin C (**3a**) (acetone- d_6 , 500 MHz)

S12. ¹³C NMR spectrum of crassipin C (**3a**) (acetone- d_6 , 125 MHz)

S13. ¹H NMR spectrum of crassipin D (**3b**) (acetone- d_6 , 500 MHz)

S14. ¹H NMR spectrum (partial enlarged) of crassipin D (**3b**) (acetone-*d*₆, 500 MHz)

S16. ¹H NMR spectrum of crassipin E (4) (acetone- d_6 , 500 MHz)

alika at istaali

S17. ¹H NMR spectrum (partial enlarged) of crassipin E (4) (acetone- d_6 , 500 MHz)

S18. ¹³C NMR spectrum of crassipin E (4) (acetone- d_6 , 125 MHz)

S19. ¹H NMR spectrum of crassipin F (**5a**) (acetone- d_6 , 500 MHz)

S20. ¹H NMR spectrum (partial enlarged) of crassipin F (**5a**) (acetone-*d*₆, 500 MHz)

S21. ¹³C NMR spectrum of crassipin F (**5a**) (acetone- d_6 , 125 MHz)

S22. ¹H NMR spectrum of crassipin G (**5b**) (acetone- d_6 , 500 MHz)

S23. ¹H NMR spectrum (partial enlarged) of crassipin G (**5b**) (acetone- d_6 , 500 MHz)

S24. ¹³C NMR spectrum of crassipin G (**5b**) (acetone- d_6 , 125 MHz)

S25. ¹H NMR spectrum of crassipin H (6) (acetone- d_6 , 500 MHz)

S26. ¹H NMR spectrum (partial enlarged) of crassipin H (6) (acetone- d_6 , 500 MHz)

n an an station of the periods

S28. ¹H NMR spectrum of crassipin I (7) (acetone- d_6 , 500 MHz)

S29. ¹H NMR spectrum (partial enlarged) of crassipin I (7) (acetone- d_6 , 500 MHz)

S30. ¹³C NMR spectrum of crassipin I (7) (acetone- d_6 , 125 MHz)

S31. ¹H NMR spectrum of compound **8** (acetone- d_6 , 600 MHz)

S32. ¹³C NMR spectrum of compound **8** (acetone- d_6 , 150 MHz)

S33. ¹H ¹H COSY spectrum of compound **8** in acetone- d_6

S34. HSQC spectrum of compound **8** in acetone- d_6

S35. HMBC spectrum of compound **8** in acetone- d_6

S36. NOESY spectrum of compound **8** in acetone- d_6

S37. Experimental ECD spectra of compounds **3a** and **3b**.

S38. Experimental VCD spectra of compounds **3a** and **3b**.

S39. Computational details

Transition	Excitation	Rotatory	Oscillator	Contributions	Weight
	Energy (nm)	Strength ^{<i>a</i>} ($R \times 10^{40} \text{ cgs}$)	Strength f		C
1	315.66	25.9040	0.0919	$163 \rightarrow 168$	-0.25336
				$164 \rightarrow 168$	0.18402
				$165 \rightarrow 168$	0.61370
2	298.74	20.4789	0.0601	$160 \rightarrow 169$	-0.13314
				$161 \rightarrow 168$	-0.10149
				$163 \rightarrow 168$	-0.10437
				$163 \rightarrow 169$	0.11738
				$164 \rightarrow 168$	-0.10001
				$164 \rightarrow 169$	0.18226
				$166 \rightarrow 169$	0.59418
3	291.33	16.1132	0.0363	$160 \rightarrow 168$	-0.12954
				$160 \rightarrow 169$	0.54241
				$161 \rightarrow 169$	-0.11951
				$162 \rightarrow 169$	0.11735
				$163 \rightarrow 168$	0.12132
				$164 \rightarrow 168$	-0.12141
				$164 \rightarrow 169$	-0.15658
				$165 \rightarrow 168$	0.10399
				$166 \rightarrow 169$	0.20008
				$167 \rightarrow 171$	-0.11668
4	289.17	43.4292	0.0173	$159 \rightarrow 170$	-0.11612
				$160 \rightarrow 169$	0.11794
				$161 \rightarrow 168$	0.43403
				$161 \rightarrow 170$	0.19935
				$162 \rightarrow 168$	0.21753
				$162 \rightarrow 170$	0.10638
				$163 \rightarrow 168$	-0.33308
				$165 \rightarrow 168$	-0.16631
				$166 \rightarrow 170$	-0.13771
5	287.25	-34.4044	0.0347	$159 \rightarrow 168$	0.16062
				$161 \rightarrow 170$	-0.14064
				$163 \rightarrow 168$	-0.22261
				$164 \rightarrow 168$	0.35564
				$165 \rightarrow 168$	-0.12048
				$166 \rightarrow 170$	0.41797
				$167 \rightarrow 171$	-0.22704

Table S1. TD-DFT results for crassipin A (1) (4R)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{rcl} 159 & \rightarrow & 1\\ 161 & \rightarrow & 1\\ 162 & \rightarrow & 1\\ 162 & \rightarrow & 1\end{array}$	70 -0.13792 70 -0.21474 68 -0.12746 70 0.10650
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	70 -0.21474 68 -0.12746 70 0.10650
$162 \rightarrow 1$	68 -0.12746 70 0.10650
1(0 1	70 0 10650
$162 \rightarrow 1$	/0 -0.10030
$163 \rightarrow 1$	68 -0.12447
$165 \rightarrow 1$	70 0.12257
$166 \rightarrow 1$	70 -0.24883
$167 \rightarrow 171$	0.34155
7 283.69 -38.2813 0.1059 $159 \rightarrow 168$	-0.19344
$160 \rightarrow 169$	0.12792
$163 \rightarrow 169$	0.16868
$164 \rightarrow 169$	0.15770
$165 \rightarrow 169$	-0.28368
$166 \rightarrow 170$	0.28724
$167 \rightarrow 171$	0.42977
8 277.28 14.6301 0.0861 $163 \rightarrow 169$	-0.14265
$164 \rightarrow 169$	-0.24886
$164 \rightarrow 170$	0.24558
$165 \rightarrow 169$	0.14161
$165 \rightarrow 170$	0.50433
$166 \rightarrow 169$	0.14839
$166 \rightarrow 170$	0.10410
$167 \rightarrow 171$	0.10459
9 276.73 63.0566 0.2241 $160 \rightarrow 169$	0.15825
$163 \rightarrow 169$	0.28257
$164 \rightarrow 169$	0.39423
$164 \rightarrow 170$	0.12709
$165 \rightarrow 170$	0.33115
$166 \rightarrow 169$	-0.17287
$167 \rightarrow 171$	-0.20689
10268.4811.6922 0.0656 $161 \rightarrow 168$	-0.16463
$162 \rightarrow 168$	0.18085
$163 \rightarrow 170$	0.34428
$164 \rightarrow 170$	0.48656
$165 \rightarrow 170$	-0.20442
11259.7311.7161 0.1580 $163 \rightarrow 170$	0.12086
$164 \rightarrow 170$	-0.13357
$165 \rightarrow 171$	-0.15519
$166 \rightarrow 171$	0.60894
$167 \rightarrow 173$	-0.15542
12 258.07 10.1531 0.0175 $159 \rightarrow 168$	0.11835
$163 \rightarrow 170$	0.53259
$164 \rightarrow 170$	-0.31145
$165 \rightarrow 170$	0.20321
$166 \rightarrow 171$	-0.16467

Table S1. (Continued)

13	243.24	-17.6412	0.3785	$159 \rightarrow 170$	-0.20947
				$161 \rightarrow 168$	-0.31301
				$161 \rightarrow 170$	0.12085
				$162 \rightarrow 168$	0.45739
				$162 \rightarrow 170$	-0.20301
				$163 \rightarrow 170$	-0.11070
				$164 \rightarrow 170$	-0.18335
14	241.66	-18.8395	0.0420	$160 \rightarrow 168$	0.65488
				$160 \rightarrow 169$	0.14987
				$162 \rightarrow 170$	0.13362
15	236.63	-16.3229	0.0106	$158 \rightarrow 169$	-0.17006
				$163 \rightarrow 171$	0.26404
				$164 \rightarrow 171$	0.47130
				$165 \rightarrow 171$	0.32387
				$166 \rightarrow 171$	0.20661
				$167 \rightarrow 173$	0.10608
16	230.65	-25.9109	0.0633	$158 \rightarrow 168$	0.29449
				$158 \rightarrow 169$	0.46787
				$158 \rightarrow 170$	0.11524
				$161 \rightarrow 170$	0.15340
				$162 \rightarrow 168$	-0.14313
				$162 \rightarrow 170$	-0.27890
				$164 \rightarrow 171$	0.12894
17	227.56	27.2456	0.1648	$158 \rightarrow 168$	0.38269
				$158 \rightarrow 169$	0.18692
				$161 \rightarrow 170$	-0.25362
				$162 \rightarrow 168$	0.11767
				$162 \rightarrow 170$	0.40491
18	211.54	31.0910	0.0835	$155 \rightarrow 169$	0.13596
				$157 \rightarrow 168$	-0.17819
				$157 \rightarrow 169$	0.43064
				$160 \rightarrow 171$	0.40299
				$161 \rightarrow 171$	-0.12654
				$167 \rightarrow 173$	-0.19856
19	201.82	62.7233	0.4022	$158 \rightarrow 171$	0.14024
				$162 \rightarrow 171$	0.20687
				$165 \rightarrow 172$	0.29308
				$165 \rightarrow 173$	-0.11026
				$166 \rightarrow 172$	0.41482
				$166 \rightarrow 173$	0.34874
20	200.63	-37.9565	0.0344	$158 \rightarrow 171$	-0.11613
				$162 \rightarrow 171$	-0.11562
				$164 \rightarrow 172$	-0.15675
				$165 \rightarrow 172$	0.58331
				$166 \rightarrow 172$	-0.11595
				$166 \rightarrow 173$	-0.23445

Table S1. (Continued)

^{*a*} Excited states with -10 < R < 10 were not presented.

Transition	Excitation Energy (nm)	Rotatory Strength ^{<i>a</i>} (R x 10^{40} cgs)	Oscillator Strength <i>f</i>	Contributions	Weight
1	315.88	-29.1310	0.0998	$163 \rightarrow 168$	-0.25862
				$164 \rightarrow 168$	0.15048
				$165 \rightarrow 168$	0.61482
2	299.07	-13.3365	0.0599	$160 \rightarrow 169$	-0.13246
				$163 \rightarrow 168$	-0.11163
				$163 \rightarrow 169$	0.10240
				$164 \rightarrow 169$	0.18939
				$165 \rightarrow 169$	-0.11156
				$166 \rightarrow 169$	0.58812
3	291.39	-14.6999	0.0326	$160 \rightarrow 168$	-0.13570
				$160 \rightarrow 169$	0.54218
				$161 \rightarrow 169$	-0.13886
				$162 \rightarrow 169$	0.10433
				$163 \rightarrow 168$	0.11196
				$164 \rightarrow 168$	-0.12557
				$164 \rightarrow 169$	-0.16005
				$166 \rightarrow 169$	0.18447
				$167 \rightarrow 171$	-0.11124
4	289.38	-39.3065	0.0119	159 →170	-0.14562
				$160 \rightarrow 169$	0.13844
				161 →168	0.43424
				$161 \rightarrow 170$	0.17411
				$162 \rightarrow 168$	0.27825
				$162 \rightarrow 170$	0.12324
				163 →168	-0.30256
				$165 \rightarrow 168$	-0.15147
5	287.34	39.2129	0.0346	159 →168	0.14531
				$161 \rightarrow 170$	-0.13835
				$163 \rightarrow 168$	-0.18112
				164 →168	0.34836
				$166 \rightarrow 170$	0.44297
				167 →171	-0.24272
6	285.54	23.5535	0.0356	$159 \rightarrow 168$	0.38742
				$159 \rightarrow 170$	-0.14615
				$161 \rightarrow 170$	-0.21002
				$162 \rightarrow 168$	-0.12965
				$162 \rightarrow 170$	-0.12909
				$163 \rightarrow 168$	-0.14507
				$164 \rightarrow 168$	0.11081
				$165 \rightarrow 169$	-0.11723
				$165 \rightarrow 170$	0.14975
				$166 \rightarrow 170$	-0.24091
				167 →171	0.28985

Table S2. TD-DFT results for crassipin A (1) (4S)

7	283.43	41.7794	0.1266	159 →168	-0.17732
				$160 \rightarrow 169$	0.12323
				$163 \rightarrow 169$	0.16437
				$164 \rightarrow 169$	0.16020
				165 →169	-0.27848
				166 →170	0.26413
				167 →171	0.46122
8	276.77	-77.3726	0.2821	160 →169	0.17501
				163 →169	0.32644
				164 →169	0.45504
				165 →170	0.12681
				166 →169	-0.21080
				167 →171	-0.23202
9	267.85	-15.7552	0.0845	161 →168	-0.17781
				162 →168	0.16953
				163 →170	0.36788
				164 →170	0.47704
				165 →170	-0.17584
				166 →170	-0.10373
10	258.64	-10.7996	0.0138	159 →168	0.11389
				163 →169	0.10343
				163 →170	0.52864
				164 →170	-0.32277
				165 →170	0.18944
				166 →171	-0.16661
11	246.00	-10.1225	0.0247	159 →168	0.31955
				159 →169	-0.11063
				159 →170	0.53046
				162 →168	0.23377
12	243.07	14.1975	0.3735	$159 \rightarrow 170$	-0.22394
				161 →168	-0.35548
				$161 \rightarrow 170$	0.13752
				162 →168	0.41984
				162 →170	-0.18863
				164 →170	-0.19323
13	241.56	17.4098	0.0425	160 →168	0.65465
				160 →169	0.14955
				161 →170	-0.10165
				$162 \rightarrow 170$	0.12303
14	237.36	11.1254	0.0071	$158 \rightarrow 169$	-0.13677
				163 →171	0.20946
				164 →171	0.42154
				165 →171	0.39784
				166 →171	0.27251
				$166 \rightarrow 171$	0.27251

Table S1. (Continued)

15	234 26	13 4038	0.0137	$158 \rightarrow 168$	-0.13725
10	23 1.20	15.1050	0.0127	$158 \rightarrow 169$	0.24838
				$163 \rightarrow 171$	-0.27249
				$164 \rightarrow 171$	-0.27308
				165 →171	0.48931
				166 →171	0.11245
16	230.57	29.8348	0.0656	158 →168	0.30217
				$158 \rightarrow 169$	0.45332
				$158 \rightarrow 170$	0.11340
				161 →170	0.18344
				$162 \rightarrow 168$	-0.14222
				$162 \rightarrow 170$	-0.27331
				163 →171	0.10081
				164 →171	0.12805
17	227.50	-30.0375	0.1654	$158 \rightarrow 168$	0.39027
				$158 \rightarrow 169$	0.18963
				$161 \rightarrow 170$	-0.28609
				162 →168	0.10752
				162 →170	0.37603
				$164 \rightarrow 170$	-0.10082
18	211.59	-31.4846	0.0983	$155 \rightarrow 169$	0.13717
				157 →168	-0.17853
				157 →169	0.42210
				$160 \rightarrow 171$	0.40260
				161 →171	-0.13370
				167 →172	-0.10367
				167 →173	-0.21944
19	204.08	14.5373	0.0171	$158 \rightarrow 171$	0.12078
				$160 \rightarrow 171$	0.21745
				161 →171	0.46051
				162 →171	-0.39206
				$166 \rightarrow 172$	-0.13587
				$166 \rightarrow 173$	0.16634
20	202.20	-50.2057	0.3788	$156 \rightarrow 168$	-0.11012
				$158 \rightarrow 171$	-0.11715
				$161 \rightarrow 171$	0.10581
				$162 \rightarrow 171$	-0.20547
				$165 \rightarrow 172$	0.22162
				$165 \rightarrow 173$	0.14836
				$166 \rightarrow 172$	0.48607
0.1	200.00	17 2712	0.0107	$166 \rightarrow 173$	-0.26108
21	200.66	17.3713	0.0196	$154 \rightarrow 168$	-0.17/53
				$156 \rightarrow 168$	0.42192
				$158 \rightarrow 1/1$	-0.11377
				$102 \rightarrow 1/1$	-0.109/8
				$165 \rightarrow 1/2$	-0.38274
				$100 \rightarrow 1/3$	-0.24307

Table S1. (Continued)

^{*a*} Excited states with -10 < R < 10 were not presented.

Figure 1. Optimized geometries of the four calculated lowest-energy (4R, 2'R) conformers of crassipin C (**3a**)

Conformer a, $\Delta E = 0$ Kcal/mol

Conformer b, $\Delta E = 0.46$ Kcal/mol

Conformer d, $\Delta E = 0.86$ Kcal/mol

Conformer c, $\Delta E = 0.68$ Kcal/mol

Figure 2. Geometries and relative energies of the calculated lowest-energy (4R, 2'S) conformers of crassipin C (3a)

Conformer b, $\Delta E = 0.21$ Kcal/mol

Conformer a, $\Delta E = 0$ Kcal/mol

Conformer d, $\Delta E = 0.74$ Kcal/mol

Conformer c, $\Delta E = 0.24$ Kcal/mol

Wavenumbers (cm⁻¹)

Conformer a, $\Delta E = 0$ Kcal/mol

Conformer c, $\Delta E = 0.45$ Kcal/mol

Conformer b, $\Delta E = 0.29$ Kcal/mol

Conformer d, $\Delta E = 0.68$ Kcal/mol

S40. Photograph of the scaly rhizomes of *Elaphoglossum crassipes*

