Supporting Information

Selective Synthesis and Crystal Structure of [10]Cycloparaphenylene

Eiichi Kayahara, ^{†,§} Youichi Sakamoto, ^{‡,§} Toshiyasu Suzuki, ^{‡,§} and Shigeru Yamago^{†,§,} *

[†] Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan,

[‡] Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan, and

[§] CREST, Japan Science and Technology Agency (JST), Tokyo 102-3531, Japan.

*To whom correspondence should be addressed. E-mail: yamago@scl.kyoto-u.ac.jp

General. All reaction conditions dealing with air- and moisture sensitive compounds were carried out in a dry reaction vessel under nitrogen atmosphere. ¹H (400 MHz) and ¹³C NMR (100 or 150 MHz) spectra were measured for a CDCl₃ or CD₂Cl₂ solution of a sample and are reported in parts per million (δ) from internal tetramethylsilane or residual solvent peak. IR spectra (absorption) are reported in cm⁻¹. High resolution mass spectra (HRMS) were obtained under electron impact ionization conditions. Electro spray ionization time-of-flight mass (ESI-TOF MS) spectrum was recorded on a spectrometer in the positive mode. Smaple was injected as an isopropanol solution. Matrix-assisted laser-desorption ionization time-of-flight mass (MALDI-TOF MS) spectrum was obtained on a spectrometer in the positive reflection mode and at 20 kV acceleration voltage. Samples were prepared from a tetrahydrofuran (THF) solution by mixing sample (1 mg/mL) and dithranol (1 mg/mL) in a ratio of 1:1.

Materials. Unless otherwise noted, commercially available materials were used without purification. Dichloromethane (CH₂Cl₂) was distilled successively from P_2O_5 and K_2CO_3 and stored over molecular sieves. Water content in solvents was determined by Karl-Fisher water titrator. Pt(cod)Cl₂ (cod refers to 1,5-cyclooctadiene) was synthesized according to a literature.¹

Synthesis of 4-Iodo-4'-(trimethylstanyl)-1,1'-biphenyl (3d). To a solution of 4,4'-diodobiphenyl (4.06 g, 10.0 mmol) in THF (75 mL) was slowly added BuLi (6.62 mL, 1.51 M in hexane, 10.0 mmol) by using a syringe at -78 °C. After stirring for 1 h at this temperature, a solution of trimethylstannyl chloride (1.99 g, 10.0 mmol) in THF (5 mL) was slowly added through a cannula at -78 °C, and the resulting mixture was slowly warmed to room temperature. After stirring for 6 h at this temperature, the reaction mixture was quenched with saturated aqueous NH₄Cl solution, and was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure to give a crude mixture (4.35 g). The

¹ Hill, G. S.; Levy, C. J.; Rendina, L. M.; Puddephatt.; R. D. Inorg. Synth. 1998, 32, 149.

residue was purified by silica gel chromatography (hexane/ethyl acetate = 6/1) to give the title compound (3.72 g, 84%) as a white solid. ¹H NMR (CDCl₃, 400 MHz) 0.32 (s, 9H, $J_{Sn-H} = 54.4$, SnMe₃), 7.32 (d, J = 8.4 Hz, 2H, -ArH), 7.52 (d, J = 7.6 Hz, 2H, -ArH), 7.57 (d, J = 5.2 Hz, 2H, -ArH), 7.76 (d, J = 8.8 Hz, 2H, -ArH); ¹³C NMR (CDCl₃, 150 MHz) -9.5 (Sn Me_3 , $J_{Sn-C} = 342$), 93.0 (4°), 126.4 (CH), 129.0 (CH), 136.4 (CH), 137.8 (CH), 139.9 (4°), 140.7 (4°), 141.9 (4°, $J_{Sn-C} = 440.3$); HRMS (FAB) m/z: Calcd for C₁₅H₁₇Sn (M)⁺, 443.9397; Found 443.9451; IR (KBr) 802, 999, 1379, 1474, 2911, 2980; mp 83.9-85.5 °C.

Synthesis of Bis(4-iodo-1,1'-biphenyl)(1,5-cyclooctadiene)platinum (1a). Pt(cod)Cl₂ (0.37 mg, 1.0 mmol) and 3d (0.89 g, 2.0 mmol) were dissolved in THF (100 mL), and the mixture was heated at 60 °C for 6 h under a nitrogen atmosphere. To the resulting mixture was added water, and was extracted with CH₂Cl₂. The combined organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure to give a crude mixture (4.35 g). The residue was purified by passing silica gel (hexane/CH₂Cl₂ = 1/1 to 0/1) to give the title compound (0.83 g, 96%) as a yellow white solid. ¹H NMR (400 MHz, CD₂Cl₂) 2.54 (bs, 8H, cod-H), 5.10 (bs, 4H, cod-H), 7.24 (d, J = 8.4 Hz, 4H, Ar-H), 7.28 (d, J = 8.4 Hz, 4H, Ar-H), 7.38 (d, J = 8.4 Hz, 4H, Ar-H), 7.68 (d, J = 8.4 Hz, 4H, Ar-H); ¹³C NMR (150 MHz, CD₂Cl₂) 30.3 (CH₂), 91.9 (4°), 105.7 (CH), 126.1 (CH), 128.8 (CH), 134.5 (4°), 135.4 (CH), 138.0 (CH), 141.6 (4°), 156.5 (4°); HRMS (ESI-TOF) *m/z*: Calcd for C₃₂H₂₈I₂Pt (M + NH₄)⁺, 879.0269; Found 879.0221; IR (KBr) 799, 997, 1070, 1470, 1580, 2359, 2884, 2999.

Synthesis of [10]CPP. 1a (86.1 mg, 0.1 mmol), Pd(dba)₂ (115.0 mg, 0.2 mmol), and 2,2'-bipyridyl (31.2 mg, 0.2 mmol) were dissolved in THF (20 mL), and the mixture was heated at 50 °C for 8 h under a nitrogen atmosphere. The solvent was removed under reduced pressure, and the residue was washed with ether to give a crude mixture (109.5 mg). The crude mixture was added to a suspension of AgBF₄ (33.1 mg, 0.17 mmol) in CH₂Cl₂/acetone (17 ml) at room temperature under a nitrogen atmosphere, and the resulting mixture was stirred at room temperature for 12 h. The mixture was filtered through a pad of celite, and the filtrate was concentrated under reduced pressure to give a crude mixture. The residue was purified by silica gel chromatography (hexane/CH₂Cl₂ = 4/1) to give the [10]CPP (4.1 mg, 16%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) 7.56 (s, 40 H); ¹³C NMR (100 MHz, CDCl₃) 127.5 (Ar-H), 138.3 (Ar-H); HRMS (MALDI-TOF) *m/z* calcd for C₆₀H₄₀ [M]⁺: 760.3125, found 760.3136.

X-ray Crystallography. Details of the crystal data and a summary of the intensity data collection parameters for [10]CPP·Hexane are listed in Table S1. In each case, a suitable crystal was transferred to the goniometer of a Rigaku Mercury CCD area detector with graphite monochromated Mo-Ka radiation ($\lambda = 0.7107$ Å). The structures were solved by direct methods with SIR-2002² and refined against all F² data by full-matrix least-squares techniques. The intensities were corrected for Lorentz and polarization effects. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions.

Identification code	[10]CPP·Hexane.	
Empirical formula	С66 Н54	
Formula weight	847.09	
Temperature	153(2) K	
Wavelength	0.71070 Å	
Crystal system	monoclinic	
Space group	$P2_1/c$ (#14)	
Unit cell dimensions	a = 15.8912(16) Å	<i>α</i> = 90°.
	b = 8.1477(6) Å	β= 108.855(2)°.
	c = 21.033(2) Å	$\gamma = 90^{\circ}$.
Volume	2577.2(4) Å ³	
Ζ	2	
Density (calculated)	1.092 Mg/m ³	
Absorption coefficient	0.062 mm ⁻¹	
F(000)	900	
Crystal size	$0.30 \ge 0.20 \ge 0.10 \text{ mm}^3$	
Theta range for data collection	3.17 to 25.50°.	
Index ranges	-19<=h<=19, -9<=k<=8, -25<=l<=25	
Reflections collected	22194	
Independent reflections	4774 [R(int) = 0.0457]	
Completeness to theta = 25.50°	99.5 %	
Max. and min. transmission	0.9939 and 0.9818	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4774 / 258 / 460	
Goodness-of-fit on F ²	1.131	
Final R indices [I>2sigma(I)]	R1 = 0.0772, $wR2 = 0.2008$	
R indices (all data)	R1 = 0.0973, $wR2 = 0.2207$	
Largest diff. peak and hole	0.441 and -0.258 e.Å ⁻³	

Table S1. Crystal data and structure refinement for [10]CPP·Hexane.

² Burla M, C.; Camalli, M.; Carrozzini, B.; Cascarano, GL.; Giacovazzo C.; Polidori, G.; Spagna, R. Sir2002: The program. *J. Appl. Cryst.* **2003**, *36*, 1103.

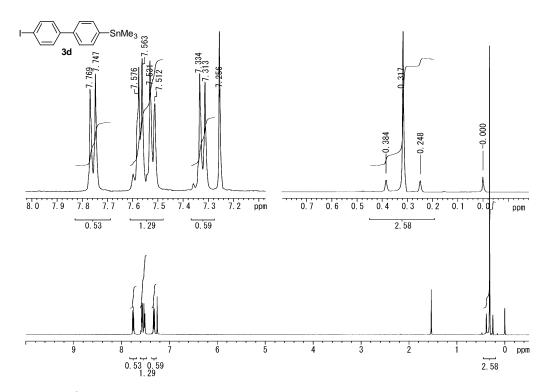


Figure S1. ¹H NMR spectra of **3d**.

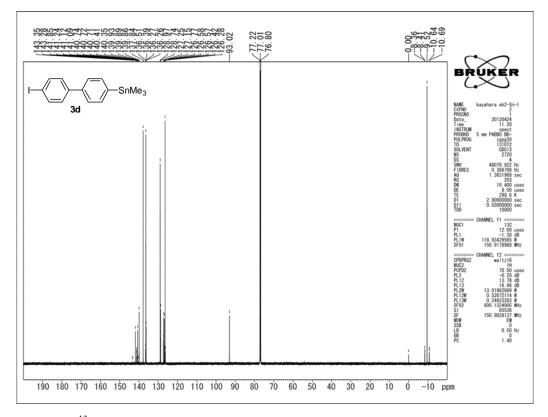


Figure S2. ¹³C NMR spectra of **3d**.

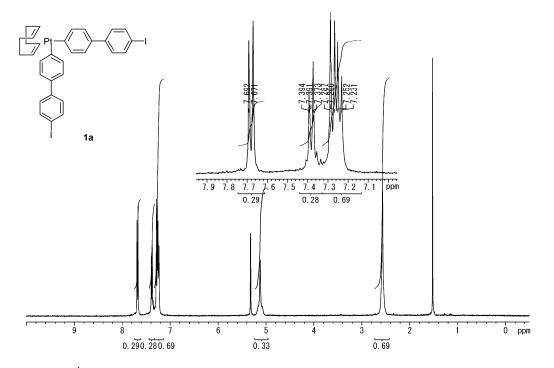


Figure S3. ¹H NMR spectra of **1a**.

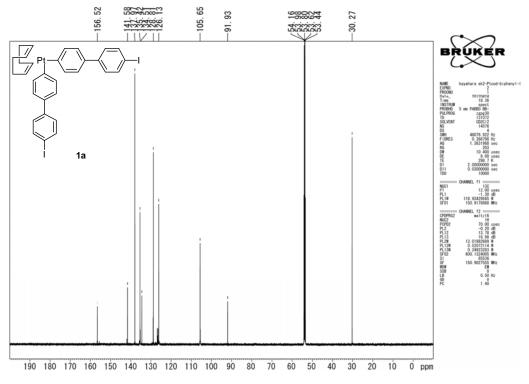


Figure S4. ¹³C NMR spectra of **1a**.

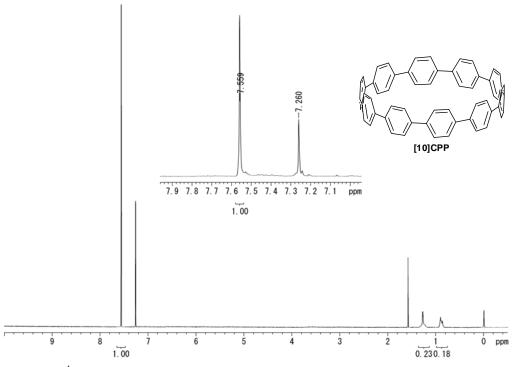


Figure S5. ¹H NMR spectra of [10]CPP.



Figure S6. ¹³C NMR spectra of [10]CPP.