Cation Size Effect on the Framework Structures in a Series of New Alkali Metal Indium Selenites, AIn(SeO₃)₂ (A = Na, K, Rb, and Cs)

Dong Woo Lee, Saet Byeol Kim, and Kang Min Ok*

Department of Chemistry, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Republic

of Korea

- S1. Experimental and calculated powder X-ray diffraction patterns for NaIn(SeO₃)₂
- S2. Experimental and calculated powder X-ray diffraction patterns for KIn(SeO₃)₂
- S3. Experimental and calculated powder X-ray diffraction patterns for RbIn(SeO₃)₂
- S4. Experimental and calculated powder X-ray diffraction patterns for CsIn(SeO₃)₂
- S5. Thermogravimetric analysis diagram for NaIn(SeO₃)₂
- S6. Thermogravimetric analysis diagram for KIn(SeO₃)₂
- S7. Thermogravimetric analysis diagram for RbIn(SeO₃)₂
- S8. Thermogravimetric analysis diagram for CsIn(SeO₃)₂
- S9. IR spectrum for NaIn(SeO₃)₂
- S10. IR spectrum for KIn(SeO₃)₂
- S11. IR spectrum for RbIn(SeO₃)₂
- S12. IR spectrum for CsIn(SeO₃)₂

S13. ORTEP (50% probability ellipsoids) representations in $KIn(SeO_3)_2$ showing (a) the distorted InO_6 octahedron, (b) the asymmetric SeO₃ polyhedra, and (c) the KO₈ polyhedron.

S14. ORTEP (50% probability ellipsoids) representations in $RbIn(SeO_3)_2$ showing (a) the distorted InO_6 octahedron, (b) the asymmetric SeO₃ polyhedra, and (c) the RbO₈ polyhedron.

S15. ORTEP (50% probability ellipsoids) representations in $CsIn(SeO_3)_2$ exhibiting (a) the InO₆ octahedron, (b) the asymmetric SeO₃ polyhedra, and (c) the CsO_{12} hexagonal prism.

S1. Experimental and calculated powder X-ray diffraction patterns for NaIn(SeO₃)₂

S2. Experimental and calculated powder X-ray diffraction patterns for KIn(SeO₃)₂

S3. Experimental and calculated powder X-ray diffraction patterns for RbIn(SeO₃)₂

S4. Experimental and calculated powder X-ray diffraction patterns for CsIn(SeO₃)₂

S6. Thermogravimetric analysis diagram for KIn(SeO₃)₂

S8. Thermogravimetric analysis diagram for CsIn(SeO₃)₂

S10. IR spectrum for KIn(SeO₃)₂

S12. IR spectrum for CsIn(SeO₃)₂

S13. ORTEP (50% probability ellipsoids) representations in $KIn(SeO_3)_2$ showing (a) the distorted InO_6 octahedron, (b) the asymmetric SeO₃ polyhedra, and (c) the KO₈ polyhedron.

S14. ORTEP (50% probability ellipsoids) representations in $RbIn(SeO_3)_2$ showing (a) the distorted InO_6 octahedron, (b) the asymmetric SeO₃ polyhedra, and (c) the RbO₈ polyhedron.

9

S15. ORTEP (50% probability ellipsoids) representations in $CsIn(SeO_3)_2$ exhibiting (a) the InO₆ octahedron, (b) the asymmetric SeO₃ polyhedra, and (c) the CsO_{12} hexagonal prism.

