Supporting information for: Tuning of the surface exposing and photocatalytic activity for AgX(X=Cl and Br): a theoretical study

Xiangchao Ma,[†] Ying Dai,*,[†],[‡] Jibao Lu,[†] Meng Guo,[†] and Baibiao Huang[‡]

School of Physics, Shandong University, Jinan 250100, People's Republic of China, and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

E-mail: daiy60@sina.com

^{*}To whom correspondence should be addressed

[†]School of Physics, Shandong University, Jinan 250100, People's Republic of China

[‡]State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

Table 1: The list of Monkhorst-Pack k-point grids used for final energy calculations of different supercell models of (100), (110), and (111) surfaces for AgCl.

Slab model	k-point set
$S(100)-1 \times 2$	$12 \times 8 \times 1$
$S(100)-1 \times 3$	$12 \times 6 \times 1$
$S(100)-1 \times 4$	$12 \times 4 \times 1$
$S(110)-1 \times 2$	$10 \times 6 \times 1$
$S(110)-1 \times 3$	$10 \times 4 \times 1$
$S(110)-1 \times 4$	$10 \times 2 \times 1$
$S(111)-1 \times 2$	$12 \times 8 \times 1$
$S(111)-1 \times 3$	$12 \times 6 \times 1$
$S(111)-1 \times 4$	$12\times 4\times 1$

Table 2: The list of Monkhorst-Pack k-point grids used for final energy calculations of different supercell models of (100), (110), and (111) surfaces for AgBr.

Slab model	k-point set
$S(100)-1 \times 1$	$10 \times 10 \times 1$
$S(100)-1 \times 2$	$10 \times 6 \times 1$
$S(110)-1 \times 1$	$10 \times 10 \times 1$
$S(110)-1 \times 2$	$10 \times 6 \times 1$
$S(111)-1 \times 1$	$10 \times 10 \times 1$
$S(111)-1 \times 2$	$10 \times 6 \times 1$

Table 3: Calculated surface energy using 18, 10 and 8 layers of slabs for (100) and (110) surfaces; 24, 16 and 14 layers for (111) surfaces for AgCl.

Layers	(100) surface (J/m^2)	(110) surface (J/m^2)	Layers	(111) surface (J/m^2)
8	0.312	0.513	14	1.042
10	0.308	0.511	16	1.046
18	0.300	0.500	24	1.025

Table 4: Calculated surface energy of pure surfaces using different supercells for AgCl

Supercell	(100) surface (J/m^2)	(110) surface (J/m^2)	(111) surface (J/m^2)
(1×1)	0.312	0.513	1.042
(1×2)	0.312	0.513	1.042
(1×3)	0.309	0.513	1.042
(1×4)	0.312	0.512	1.041