Supporting information for: Tuning of the surface exposing and photocatalytic activity for AgX(X=Cl and Br): a theoretical study Xiangchao Ma,[†] Ying Dai,*,[†],[‡] Jibao Lu,[†] Meng Guo,[†] and Baibiao Huang[‡] School of Physics, Shandong University, Jinan 250100, People's Republic of China, and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China E-mail: daiy60@sina.com ^{*}To whom correspondence should be addressed [†]School of Physics, Shandong University, Jinan 250100, People's Republic of China [‡]State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China Table 1: The list of Monkhorst-Pack k-point grids used for final energy calculations of different supercell models of (100), (110), and (111) surfaces for AgCl. | Slab model | k-point set | |---------------------|------------------------| | $S(100)-1 \times 2$ | $12 \times 8 \times 1$ | | $S(100)-1 \times 3$ | $12 \times 6 \times 1$ | | $S(100)-1 \times 4$ | $12 \times 4 \times 1$ | | $S(110)-1 \times 2$ | $10 \times 6 \times 1$ | | $S(110)-1 \times 3$ | $10 \times 4 \times 1$ | | $S(110)-1 \times 4$ | $10 \times 2 \times 1$ | | $S(111)-1 \times 2$ | $12 \times 8 \times 1$ | | $S(111)-1 \times 3$ | $12 \times 6 \times 1$ | | $S(111)-1 \times 4$ | $12\times 4\times 1$ | Table 2: The list of Monkhorst-Pack k-point grids used for final energy calculations of different supercell models of (100), (110), and (111) surfaces for AgBr. | Slab model | k-point set | |---------------------|-------------------------| | $S(100)-1 \times 1$ | $10 \times 10 \times 1$ | | $S(100)-1 \times 2$ | $10 \times 6 \times 1$ | | $S(110)-1 \times 1$ | $10 \times 10 \times 1$ | | $S(110)-1 \times 2$ | $10 \times 6 \times 1$ | | $S(111)-1 \times 1$ | $10 \times 10 \times 1$ | | $S(111)-1 \times 2$ | $10 \times 6 \times 1$ | Table 3: Calculated surface energy using 18, 10 and 8 layers of slabs for (100) and (110) surfaces; 24, 16 and 14 layers for (111) surfaces for AgCl. | Layers | (100) surface (J/m^2) | (110) surface (J/m^2) | Layers | (111) surface (J/m^2) | |--------|---------------------------|---------------------------|--------|---------------------------| | 8 | 0.312 | 0.513 | 14 | 1.042 | | 10 | 0.308 | 0.511 | 16 | 1.046 | | 18 | 0.300 | 0.500 | 24 | 1.025 | Table 4: Calculated surface energy of pure surfaces using different supercells for AgCl | Supercell | (100) surface (J/m^2) | (110) surface (J/m^2) | (111) surface (J/m^2) | |----------------|---------------------------|---------------------------|---------------------------| | (1×1) | 0.312 | 0.513 | 1.042 | | (1×2) | 0.312 | 0.513 | 1.042 | | (1×3) | 0.309 | 0.513 | 1.042 | | (1×4) | 0.312 | 0.512 | 1.041 |