Protein	Maximal Binding Capacity (mol/mol)	Microscopic K _d Values (µM)				
WT	6.1 ± 0.04	$0.03 \pm 0.003, 0.04 \pm 0.001, 0.1 \pm 0.42$				
		$2.0 \pm 0.6, 37.3 \pm 13.4, 107.9 \pm 7.5$				
H501A	5.5 ± 0.08	$0.03 \pm 0.02, 0.07 \pm 0.01, 0.9 \pm 0.5,$				
		$2.8 \pm 1.1, 14.2 \pm 7.9, 136.7 \pm 16.7$				
A502P	6.0 ± 0.2	$0.04 \pm 0.02, 0.08 \pm 0.02, 1.4 \pm 0.7,$				
		$6.3 \pm 1.8, 48.3 \pm 24.9, 64.0 \pm 24.7$				
G503A	3.1 ± 0.3	$0.11 \pm 0.01, 0.12 \pm 0.02, 4.6 \pm 1.9,$				
		31.2 ± 1.5				
G503P	3.7 ± 0.1	$0.13 \pm 0.03, 0.62 \pm 0.08, 1.9 \pm 0.7,$				
		3.9 ± 0.9				
I504A	5.8 ± 0.2	$0.03 \pm 0.01, 0.12 \pm 0.01, 0.31 \pm 0.08,$				
		$2.7 \pm 1.0, 13.0 \pm 7.4, 50.9 \pm 11.7$				
I504P	4.0 ± 0.1	$0.24 \pm 0.07, 0.58 \pm 0.14, 1.0 \pm 0.1,$				
		1.6 ± 0.2				
F505A	4.9 ± 0.2	$0.12 \pm 0.02, 0.37 \pm 0.15, 1.9 \pm 0.3,$				
		$72.6 \pm 13.7, 99.7 \pm 11.8$				
F505P	3.7 ± 0.1	$0.14 \pm 0.04, 0.42 \pm 0.14, 0.63 \pm 0.14,$				
		3.18 ± 0.95				
T506A	6.0 ± 0.1	$0.01 \pm 0.003, 0.06 \pm 0.02, 1.4 \pm 0.5,$				
		$3.2 \pm 0.5, 9.8 \pm 2.5, 22.3 \pm 2.6$				
T506P	3.0 ± 0.1	$0.16 \pm 0.06, 0.39 \pm 0.17, 5.2 \pm 2.0$				

Table S1. K_d values of Ca²⁺ binding to CBD12 mutants.

Equilibrium ⁴⁵Ca²⁺ binding was measured as described in "Materials and methods". The Ca²⁺-titration curves were fit to Adair equation for the appropriate number of sites. "Best fit" was obtained according to the χ^2 weighting criteria. Values are presented as mean \pm SEM (n = 3 for all the preparations).

Protein	Number of exponents	Amplitudes (%)				Rate constants (s ⁻¹)				
		A_f		A_s		k_f		k_s		
WT	2	43.7 ± 0.5		56	5.3 ± 0.5	5.3 ± 0.8		0.	$.6 \pm 0.02$	
H501A	2	47.1 ± 3.7		52.9 ± 3.7		4.1 ± 1.0		0.9 ± 0.1		
A502P	2	52.2 ± 0.4		47.8 ± 0.4		6.4 ± 0.4		1.1 ± 0.03		
		A_r	A_f		A_s	k_r	k_f		k_s	
I504A	3	28.2 ± 1.7	44.6 ± 3.9		27.2 ± 3.6	122.9 ± 12.5	1.8 ± 0.3		0.6 ± 0.1	
F505A	3	27.6 ± 3.9	43.3 ± 3.2		29.1 ± 0.8	96.6 ± 14.5	14.9 ± 3.8		1.0 ± 0.1	
T506A	3	17.5 ± 0.6	41.1	± 0.9	41.4 ± 0.8	116.7 ± 8.3	2.0	± 0.1	0.6 ± 0.03	

Traces were fit to double or triple exponential equations, as indicated, and are presented as mean \pm SEM (n = 6).

Supplementary Figure Legend

Figure S1. ⁴⁵Ca²⁺ titration curves of isolated CBD1 and CBD2. Curves were fitted with the following parameters: For CBD1, capacity = 4 ions/protein and the K_ds are 0.1, 0.2, 2, 196 μ M. For CBD2, capacity = 2 ions/protein and the K_ds are 8.5 and 47 μ M.

Figure S1

