Table S1. K_{d} values of Ca^{2+} binding to CBD12 mutants.

Protein	Maximal Binding Capacity ($\mathrm{mol} / \mathrm{mol}$)	Microscopic K_{d} Values ($\mu \mathrm{M}$)
WT	6.1 ± 0.04	$\begin{gathered} 0.03 \pm 0.003,0.04 \pm 0.001,0.1 \pm 0.42, \\ 2.0 \pm 0.6,37.3 \pm 13.4,107.9 \pm 7.5 \\ \hline \end{gathered}$
H501A	5.5 ± 0.08	$\begin{aligned} & 0.03 \pm 0.02,0.07 \pm 0.01,0.9 \pm 0.5, \\ & 2.8 \pm 1.1,14.2 \pm 7.9,136.7 \pm 16.7 \end{aligned}$
A502P	6.0 ± 0.2	$\begin{aligned} & 0.04 \pm 0.02,0.08 \pm 0.02,1.4 \pm 0.7, \\ & 6.3 \pm 1.8,48.3 \pm 24.9,64.0 \pm 24.7 \end{aligned}$
G503A	3.1 ± 0.3	$\begin{gathered} 0.11 \pm 0.01,0.12 \pm 0.02,4.6 \pm 1.9, \\ 31.2 \pm 1.5 \end{gathered}$
G503P	3.7 ± 0.1	$\begin{gathered} 0.13 \pm 0.03,0.62 \pm 0.08,1.9 \pm 0.7, \\ 3.9 \pm 0.9 \\ \hline \end{gathered}$
I504A	5.8 ± 0.2	$\begin{gathered} 0.03 \pm 0.01,0.12 \pm 0.01,0.31 \pm 0.08 \\ 2.7 \pm 1.0,13.0 \pm 7.4,50.9 \pm 11.7 \end{gathered}$
I504P	4.0 ± 0.1	$\begin{gathered} 0.24 \pm 0.07, \\ , 0.58 \pm 0.14,1.0 \pm 0.1, \\ 1.6 \pm 0.2 \end{gathered}$
F505A	4.9 ± 0.2	$\begin{gathered} 0.12 \pm 0.02,0.37 \pm 0.15,1.9 \pm 0.3, \\ 72.6 \pm 13.7,99.7 \pm 11.8 \end{gathered}$
F505P	3.7 ± 0.1	$\begin{gathered} 0.14 \pm 0.04,0.42 \pm 0.14,0.63 \pm 0.14, \\ 3.18 \pm 0.95 \end{gathered}$
T506A	6.0 ± 0.1	$\begin{gathered} 0.01 \pm 0.003,0.06 \pm 0.02,1.4 \pm 0.5, \\ 3.2 \pm 0.5,9.8 \pm 2.5,22.3 \pm 2.6 \end{gathered}$
T506P	3.0 ± 0.1	$0.16 \pm 0.06,0.39 \pm 0.17,5.2 \pm 2.0$

Equilibrium ${ }^{45} \mathrm{Ca}^{2+}$ binding was measured as described in "Materials and methods". The Ca^{2+}-titration curves were fit to Adair equation for the appropriate number of sites. "Best fit" was obtained according to the χ^{2} weighting criteria. Values are presented as mean $\pm \operatorname{SEM}$ ($\mathrm{n}=3$ for all the preparations).

Table S2. Ca^{2+} off-rates and amplitudes values of CBD12 mutants.

Protein	Number of exponents	Amplitudes (\%)		Rate constants (s s^{-1})		
		A_{f}	A_{s}	k_{f}	k_{s}	
WT	2	43.7 ± 0.5	56.3 ± 0.5	5.3 ± 0.8	0.6 ± 0.02	
H501A	2	47.1 ± 3.7	52.9 ± 3.7	4.1 ± 1.0	0.9 ± 0.1	
A502P	2	52.2 ± 0.4	47.8 ± 0.4	6.4 ± 0.4	1.1 ± 0.03	
		A_{r}	A_{f}	A_{s}	k_{r}	k_{f}
I504A	3	28.2 ± 1.7	44.6 ± 3.9	27.2 ± 3.6	122.9 ± 12.5	1.8 ± 0.3
F505A	3	27.6 ± 3.9	43.3 ± 3.2	29.1 ± 0.8	96.6 ± 14.5	14.9 ± 3.8
T506A	3	17.5 ± 0.6	41.1 ± 0.9	41.4 ± 0.8	116.7 ± 8.3	2.0 ± 0.1

Traces were fit to double or triple exponential equations, as indicated, and are presented as mean $\pm \operatorname{SEM}(\mathrm{n}=6)$.

Supplementary Figure Legend

Figure S1. ${ }^{45} \mathbf{C a}^{2+}$ titration curves of isolated CBD1 and CBD2. Curves were fitted with the following parameters: For CBD1, capacity $=4$ ions/protein and the $K_{d} S$ are $0.1,0.2,2,196 \mu \mathrm{M}$. For CBD2, capacity $=2$ ions $/$ protein and the $\mathrm{K}_{\mathrm{d}} \mathrm{S}$ are 8.5 and 47 $\mu \mathrm{M}$.

Figure S1

