Polyaminoquinoline Iron Chelators for Vectorization of Antiproliferative Agents: Design, Synthesis and Validation

Vincent Corcé,^{†,‡} Emmanuelle Morin,[†] Solène Guihéneuf,[†] Eric Renault,[†] Stéphanie Renaud, [‡] Isabelle Cannie,[‡] Raphaël Tripier, ^{‡‡} Luís M. P. Lima, ^{‡‡} Karine Julienne,[†] Sébastien G. Gouin,[†] Olivier Loréal[‡], David Deniaud,^{*,†} and François Gaboriau^{*,‡}

Figure S1. Influence of the PTS on the antiproliferative effect of **HQ1-44** in CHO cell line, determined by measuring DNA content after Hoescht staining. PTS was activated by polyamine depletion induced by DFMO (2mM) pre-treatment or competively inhibited by 50μ M exogenous Spermidine.

Species ^a	$\log \beta^{b}$	log K ^b
FeL	25.62	25.62
FeHL	32.13	6.51
FeH ₂ L	34.94	2.81
FeL(OH)	18.35	7.27
FeL ₂	(33.0)	(7.4)
FeHL ₂	(42.2)	(9.2)
FeH_2L_2	(51.0)	(8.8)
FeH ₃ L ₂	59.1	(8.1)
FeL ₂ (OH)	(23.4)	(9.6)
FeL ₂ (OH) ₂	(13.5)	(9.9)
FeL ₂ (OH) ₃	(2.9)	(10.6)
FeL ₂ (OH) ₄	(-8.0)	(10.9)

Table S1 – Overall and stepwise stability constants for the iron(III) complexes of HQ1-44 (25.0 °C, I = 0.10 M in KNO₃)

^aHL = **HQ1-44**, and charges are omitted for the sake of clarity. ^bValues in brackets are approximate

Table S2 – Overall and stepwise stability constants of the complexes of HQ1-44 with selected divalent cations (25.0 °C, I = 0.1 M in KNO₃).

Species ^{<i>a</i>}	$\log \beta^{b}$	$\log K (\mathrm{pK})^{b}$
CuL	16.87	16.87
CuHL	26.23	9.36
CuH ₂ L	33.33	7.10
CuH ₃ L	35.99	2.66

6.53	10.34	
-5.96	12.49	
23.17	6.30	
33.13	9.96	
43.06	9.93	
52.18	9.12	
61.00	8.82	
67.70	6.7	
(11.3)	(11.9)	
(1.4)	(9.9)	
11.73	11.73	
20.01	8.28	
28.49	8.48	
19.11	7.38	
38.48	_	
56.59	_	
-2.52	_	
4.1	4.1	
13.8	9.7	
23.1	9.3	
(-6.8)	(10.9)	
(-17.5)	(10.7)	
	6.53 -5.96 23.17 33.13 43.06 52.18 61.00 67.70 (11.3) (1.4) 11.73 20.01 28.49 19.11 38.48 56.59 -2.52 4.1 13.8 23.1 (-6.8) (-17.5)	6.53 10.34 -5.96 12.49 23.17 6.30 33.13 9.96 43.06 9.93 52.18 9.12 61.00 8.82 67.70 6.7 (11.3) (11.9) (1.4) (9.9) 11.73 11.73 20.01 8.28 28.49 8.48 19.11 7.38 38.48 $ 56.59$ $ -2.52$ $ 4.1$ 4.1 13.8 9.7 23.1 9.3 (-6.8) (10.9) (-17.5) (10.7)

(10.7) a HL = HQ1-44, and charges are omitted for the sake of clarity. b Values in brackets are approximate

Figure. S2 – Speciation diagram for the iron(III) complexes of **HQ1-44** at 0.5 eq. of metal and $c_{\rm L} = 2 \times 10^{-3}$ M.

Figure. S3 – Speciation diagram for the copper(II) complexes of **HQ1-44** at 0.5 eq. of metal and $c_{\rm L} = 2 \times 10^{-3}$ M.

Figure. S4 – Speciation diagram for the zinc(II) complexes of **HQ1-44** at 0.5 eq. of metal and $c_{\rm L} = 2 \times 10^{-3}$ M.

Figure. S5 – Speciation diagram for the magnesium(II) complexes of **HQ1-44** at 0.5 eq. of metal and $c_{\rm L} = 2 \times 10^{-3}$ M.

Figure. S6 – Speciation diagram for an equimolar mixture of **HQ1-44**, iron(III) and zinc(II) at 2×10^{-3} M.

Cartesian coordinates of optimized structures

Coordinates are in unit of Å

[Fe(H ₂	$(0)_{6}]^{3+}$		
0	0.0000000	0.0000000	-2.1016910
Fe	0.0000000	0.0000000	0.0000000
0	0.0000000	2.1016910	0.0000000
0	0.0000000	-2.1016910	0.0000000
0	-2.1016910	0.0000000	0.0000000
0	2.1016910	0.0000000	0.0000000
0	0.0000000	0.0000000	2.1016910
Н	0.7814900	0.0000000	-2.6858790
Н	-0.7814900	0.0000000	-2.6858790
Н	-2.6858790	-0.7814900	0.0000000
Н	-2.6858790	0.7814900	0.0000000
Н	2.6858790	0.7814900	0.0000000
Н	2.6858790	-0.7814900	0.0000000
Н	0.7814900	0.0000000	2.6858790
Н	-0.7814900	0.0000000	2.6858790
Н	0.0000000	2.6858790	0.7814900
Н	0.0000000	2.6858790	-0.7814900
Н	0.0000000	-2.6858790	-0.7814900
Н	0.0000000	-2.6858790	0.7814900

8-HQ

Ν	0.804533	1.492976	0
С	0 0.400	0421 0	
С	0.473075	-0.948231	0
С	1.883264	-1.109219	0
С	2.700989	0.004959	0
С	2.112815	1.292283	0
С	-1.40799	0.671773	0
С	-2.306606	-0.385396	0
С	-1.823713	-1.712936	0
С	-0.470531	-2.007564	0
0	-1.804187	1.954039	0
Н	2.310261	-2.112946	0
Н	3.785812	-0.094275	0
Н	2.742968	2.185307	0
Н	-0.956464	2.450616	0
Н	-3.375565	-0.180244	0
Η	-2.548492	-2.527554	0
Н	-0.124586	-3.040583	0

[Fe(8-HQ)₁(H₂O)₄]³⁺

•	- /-(- /-)		
Ν	0.29753	0.798543	-0.000002

С	1.432346	0.041516	-0.000002
С	2.738966	0.61177	0
С	2.847331	2.021395	0.000001
С	1.681887	2.78798	0.000001
С	0.438487	2.142468	0
С	1.317115	-1.389646	-0.000003
С	2.453213	-2.224748	-0.000003
С	3.724022	-1.652042	-0.000002
С	3.877551	-0.251998	0
0	0.056035	-1.844592	-0.000004
Н	-0.478462	2.730032	-0.000001
Fe	-1.696292	-0.063765	0.000001
0	-1.85041	-0.082499	-2.170867
0	-2.998432	-1.767763	0.000006
0	-1.850393	-0.082505	2.170869
Н	1.72175	3.877174	0.000001
Н	3.827772	2.500672	0.000002
Н	4.87856	0.182723	0.000001
Н	4.605304	-2.2944	-0.000002
Н	2.342112	-3.311048	-0.000005
Н	0.007976	-2.817641	-0.000007
Н	-2.650802	-0.075985	-2.716992
Н	-3.420424	-2.17013	0.773554
Н	-2.650781	-0.075967	2.717002
Н	-1.112667	-0.061509	2.797342
Н	-1.112689	-0.061495	-2.797345
Н	-3.420442	-2.170122	-0.773538
0	-2.95878	1.671274	0
Н	-3.383003	2.072137	-0.773753
Н	-3.382999	2.072145	0.773752

$[Fe(8-HQ)_2(H_2O)_2]^{3+}$

С	4.829114	-1.54955	0.579587
С	4.095828	-0.635513	-0.229938
С	2.741334	-0.334218	0.108383
С	2.167888	-0.972118	1.243475
С	2.900065	-1.863608	2.027828
С	4.2317 -2.150	1.6866	509
С	4.64422	0.006864	-1.364983
С	3.856696	0.888092	-2.098725
С	2.534943	1.12112	-1.696956
Ν	1.977136	0.542693	-0.614738
Fe	0.000005	0.985638	-0.00007
0	0.504706	2.563667	1.448106
0	0.866732	-0.642025	1.473221
Ν	-1.97714	0.542797	0.614647
С	-2.741332	-0.334249	-0.108317
С	-4.095833	-0.635473	0.230041

С	-4.644239	0.007123	1.364954
С	-3.856723	0.888488	2.09854
С	-2.534963	1.121433	1.696746
С	-2.167874	-0.972368	-1.243282
С	-2.900049	-1.863997	-2.027479
C	-4.231691	-2.150735	-1.686226
C	-4.829114	-1.549657	-0.579322
0	-0 866712	-0 642335	-1 473069
0	-0 50471	2 563347	-1 448612
Ĥ	1 902638	1 799066	-2.268058
Н	4 247976	1 399164	-2.977246
Н	5 674948	-0 192666	-1 660913
Н	5 866992	-1 770057	0 33042
Н	4 798919	-2 849749	2 300021
Н	2 447884	-2 342104	2.808021
Н	0 506671	-1 113078	2.242031
Н	-0 506648	-1 113531	-2 241789
Н	-2 44786	-2 34266	-2 897748
Н	-4 798907	-2 850172	-2 299518
Н	-5 866996	-1 770113	-0.330126
Н	-5 674972	-0 192348	1 660908
Н	-4 248013	1 399731	2 976956
Н	-1 902664	1 799485	2.270230
Н	-1 288744	2 553948	-2 015392
Н	-0 164966	3 468429	-1 487403
Н	1 288751	2 554388	2 014872
Н	0 164934	3 468745	1 48675
	0.101951	5.100715	1.10070
HO1	-1		
C	2.778452	1.195614	0.318857
Ċ	1.379502	1.126034	0.095457
C	0.773072	-0.145579	-0.133995
C	1.576556	-1.332566	-0.137294
C	2.943046	-1.234941	0.082619
C	3.527433	0.031087	0.308472
C	0.496712	2.236817	0.081123
С	-0.85059	2.042044	-0.146265
C	-1.352171	0.730312	-0.368912
N	-0.552254	-0.328534	-0.361447
C	-2.827915	0.490542	-0.681101
N	-3.423134	-0.741711	-0.21072
С	-3.550112	-0.834185	1.235301
0	0.966528	-2.509368	-0.358133
H	-4.246306	-0.060199	1.588387
Н	-1.537418	2.888431	-0.153416
Η	0.890154	3.23916	0.256888
Η	3.250509	2.161474	0.495318
Н	4.603031	0.083215	0.479036

Н	3.551149	-2.137765	0.078274
Η	0.02728	-2.251464	-0.477862
Н	-2.85108	-1.513794	-0.543884
Н	-3.41763	1.335601	-0.297194
Н	-2.937278	0.523939	-1.778893
Н	-3.991508	-1.806152	1.491207
Η	-2.609308	-0.726868	1.806799
(Fe(H	$(1_1)_{(H_1)_{1}}^{3}$	i +	
C	4 076048	0 308374	-0.014963
C	2 778511	0.900962	-0.019791
C	1 630782	0.058971	0.00516
C	1 819735	-1 360838	0.050937
Č	3.107831	-1.926092	0.059948
Č	4.225281	-1.088961	0.025121
Ċ	2.557647	2.298337	-0.045594
С	1.254403	2.7887 -0.036	381
С	0.172613	1.890045	-0.006191
Ν	0.361086	0.550507	0.00241
Fe	-1.406543	-0.613768	0.013071
Ν	-2.200458	1.349354	-0.419935
С	-3.611321	1.61941	-0.039254
С	-1.252951	2.368149	0.080784
0	0.679605	-2.073255	0.092926
0	-2.622998	-2.355715	0.173513
0	-1.655895	-0.505311	2.196127
0	-1.484996	-1.066257	-2.182743
Η	-3.931768	2.606953	-0.400521
Н	1.070396	3.862711	-0.054217
Н	3.402438	2.988503	-0.071762
Н	4.959309	0.948149	-0.04115
Н	5.223756	-1.52694	0.031769
Н	3.238562	-3.009426	0.097555
Н	0.847945	-3.031524	0.135398
Н	-2.151551	1.367797	-1.443508
H	-1.485092	2.574358	1.13/289
H	-1.381404	3.319313	-0.456869
H	-4.265177	0.865059	-0.490132
H	-3.71908	1.59/4/9	1.049615
H	-2.261134	-1.20935	-2.744439
H	-2.926181	-2./69965	0.994/0/
H	-2.480155	-0.480276	2./04126
H	-0.94659/	-0.4/1233	2.855/35
H	-0./24803	-1.100113	-2.//2946
Н	-2.900935	-2.94439	-0.543053
[Fe(HO1-1) ₂] ³⁺			

1(11			
Fe	-0.000003	0.569952	-0.000007

Ν	2.019225	0.265276	-0.414951
Ν	-2.019222	0.265275	0.414951
С	2.583264	1.079958	-1.329627
С	-2.583251	1.079942	1.329647
С	3.944097	0.983163	-1.672778
C	-3.944083	0.983154	1.672801
C	4.737021	0.020441	-1.062697
Ċ	-4 737018	0 020448	1 062708
Č	4 175866	-0.85389	-0 100857
C	-4 175873	-0.853874	0 100853
C	4 914853	-1 865102	0.572308
C	-4 91487	-1 86507	-0 572322
C	4 289178	-2 682348	1 509071
C	-4 289205	-2 682307	-1 5091
C	2 925325	-2 521419	1 812069
C	-2 925352	-2.521417	-1 812102
C	2.923332	-1 535571	1 161261
C	-2 186429	-1.535548	-1 161285
C	2.100427	-0.687165	0 10/882
C	-2 789461	-0.687152	-0 194891
$\tilde{0}$	0.862461	-0.087152 -1.291452	1 382685
0	-0.86248	-1.291432 -1.201/13	-1.382711
н	0.486652	-1.27145 -1.947751	1 990562
и П	0.480032	-1.947705	1.990302
и П	-0.480089	-1.947703	-1.990027
н Ц	2.438143	-3.100730	2.337841
и П	-2.438177	-3.100711	2.023604
н Ц	4.037093	-3.430033	2.023004
П П	-4.03/92/	-3.433964	-2.023041
п	5.9/4/9	-1.991134	0.333008
п u	-3.9/480/	-1.991119	-0.333019
п	5.791475	-0.000932	-1.52/294
п	-3./914/1	-0.000921	1.32/309
Н	4.36/008	1.658145	-2.415635
Н	-4.300985	1.058120	2.415672
C	1.690653	2.135169	-1.92891
C N	-1.690624	2.135127	1.928953
IN N	0.2662/1	1./56083	-1.821915
N	-0.26624/	1./56036	1.82193
C	-0.655434	2.885951	-2.094599
C	0.655466	2.885891	2.094638
H	1.9/12/2	2.335917	-2.9/3516
H	-1.9/1231	2.33584	2.973569
H	1.844003	3.079204	-1.383617
H	-1.843974	3.079182	1.383696
H	0.088584	1.053127	-2.544294
Н	-0.088553	1.053057	2.544286
Н	-0.454491	3.335 -3.07	7088
Н	0.45453	3.334916	3.07714

-1.687852	2.523052	-2.086946
1.687882	2.522987	2.086969
-0.536036	3.661835	-1.331846
0.536067	3.661796	1.331906
	-1.687852 1.687882 -0.536036 0.536067	-1.6878522.5230521.6878822.522987-0.5360363.6618350.5360673.661796