S1 appendix to "A model of colour appearance based on efficient coding of natural images" by Jolyon Troscianko & Daniel Osorio

••	Simultaneous brightness contrast	A grey square surrounded by black appears darker than the same grey surrounded by white.	Adapted from [3]		• •		•
	Chevreul staircase	The steps in a sequence of grey levels from light to dark appear flat/homogeneous on a contrasting gradient, but when viewed against a matching gradient each step appears to have a strong internal gradient.	-	The internal gradients are much stronger in the lower rather than upper staircase	Gradients	The internal gradients are much stronger in the lower rather than upper staircase	Gradients Staircase
	Chevreul staircase control	Geier & Hudák (2011) find that the illusion persists when a counter-gradient surround is placed around the illusion, and suggest that traditional centre-surround antagonism cannot explain the effect.	Adapted from [4]	As above, though the effect is not as powerful		As above, though the effect is not as powerful	MARI
Е	Chevreul staircase control	As above, however a white surround is found to eliminate the internal gradients of the staircases.	-	Still retains fairly clear internal gradients, although they are less powerful than above	Marine Contraction	Still retains fairly clear internal gradients, although they are less powerful than above	
	Dungeon illusion	A light grid causes a grey rectangle to appear lighter than the same grey surrounded by a dark grid.	[5]				
	Grating induction	Illusory checkerboard patterns are created in a horizontal grey bar placed over a vertical grating.	Adapted from [3]		H		**
	Hong-Shevell illusion	Circular variant of White's bar illusion. The grey ring neighbouring white rings appears lighter, and the same grey neighbouring dark rings appears darker.	From [3]				
0 0	Luminance illusion	Simultaneous brightness illusion that uses a background gradient.	-				
	Poggendorff illusion	Illusory stripes are created in a grey bar placed over a diagonal grating.	-	Illusory stripes don't span the entire height of the bar			
	Corrugated plaid	The perceived brightness of identical grey patches on a checkerboard can be altered by various 3D and shading manipulations. The controls demonstrate how 3D- inference does not explain the effect [20].	Figures from [20]	Correctly predicts the direction and approximate magnitude of the effect i.e. the effect is most powerful in the lower two versions with a parallelogram (rather than square) tile. Effect is 31% more powerful in the middle, and 34% more powerful in the lower version compared to the top.		Same as DoG to the left, although even more powerful. The effect is 296% more powerful in the middle, and 147% more powerful in the lower version compared to the top.	

	Haze illusion	Dark, high contrast surrounds increase perceived brightness of the lower tile. Adelson attributes the effect to perceived atmospheric differences between the tiles.	-	Lower tile 11% brighter than upper tile		Lower tile 21% brighter than upper tile	
	Crisscross illusion	A patterned grey target surrounded by a light background appears darker than the same grey with dark surrounds. Note this is the opposite effect of White's illusions, and is similar to simultaneous contrast.	-				
	Snake illusion	Similar to the crisscross illusion above, however a control shows how the effect can be negated by removing "atmospheric" bands.	-	Brightness illusion in the upper version with haze layer is more powerful than the lower (control)		Same as DoG (left), with an even larger difference between upper and lower	
	Koffka rings	An intact grey ring appears uniform when viewed against a split light/dark surround. However, when the ring is split into two halves and separated slightly the two sides have a strong brightness difference. Offsetting the rings has a similar effect.	-	The separated ring (centre) has a contrast between left and right sides 51% higher than the intact ring, and the offset ring (lower) has a contrast 8% higher than the intact ring. A lower dynamic range can eliminate all internal contrast in the intact ring.		Same as DoG (left), separated ring is 66% higher contrast and offset ring is 13% higher contrast than the intact ring. Likewise, the effect is enhanced with a lower dynamic range.	
	Adelson checker shadow illusion	The shadow cast onto the checkerboard causes the shaded square to appear brighter than a square with the same grey level outside of the shadow.	Adelson (1995). Retrieved from wikimedia.		÷.		
	Reverse contrast illusion	The grey diagonal bar surrounded by black bars and white background appears brighter, and the opposite is true for an inverted example.	[5]				
+	Benary cross illusion	The triangle cutting into the arm of the cross appears brighter than the triangle that spans between two arms.	-		+		+
	Wedding cake illusion	Variant of White's bar illusion with zigzag background	[6]				
f H	Figure 2	Zaidi [7] provide a detailed study of the magnitude of various brightness induction effects. They use t-junction theory to model the predicted outcomes.	Generated following [7], matching luminance and viewing	Marginal effect in wrong direction	FH		A A
4 A 6 A	* Figure 3	I ne study details the experimental viewing conditions, allowing for accurate representation and model testing. Although the authors do quantify the magnitude of the effects (i.e. the brightness adjustments required to nullify the illusion) only two subjects were used, meaning it is impossible to quantify	angle precisely		4 H 6 H	·	H H H H

Figure 4	variance and therefore the magnitude of differences. Moreover, we note that the effects our Gabor model fails to predict well are also effects that are only marginally visible to us.	Marginal effect in correct direction		
Figure 6	-	Marginal effect in wrong direction		HI
Figure 8	_	ų		HEAL
Figure 9	-	Marginal effect in correct direction	Predicts difference	
Figure 10		Marginal effect in wrong direction, although the illusion itself is weak	We do no perceive illusory e from this	ot a strong iffect stimulus
Figure 11	-	Marginal effect in wrong direction, although the illusion itself is weak	Marginal wrong dii although illusion it weak	effect in rection, the self is
Mach bands	Mach bands are the perceived light and dark stripes created where a ramp of grey meets a flat grey. Mach bands are traditionally explained by centre-surround antagonism, but other theories have been used to explain their presence or absence [see Kingdom (2014)].	Predicts the Mach band effect will be most powerful when the ramp is a similar width to peak sensitivity SF (4cpd)	Similar to (left) C C C C C C C C C C C C C	D DOG
Hilbert-transformed Mach band	Various transforms have been shown to disrupt the Mach band effect, such as this Hilbert transform. These transforms generally simply remove the high spatial frequency "foot" of the Mach band.	Correctly predicts no Mach bands	Luminance Model	v predicts bands
Hermann grid and wavy grid	The Hermann grid (upper image) causes [9] dark spots to appear at the intersections between squares. The effect seems to depend on straight edges, and a curved grid (wavy grid, lower) does not create the illusory spots.	The DoG model does not simulate the effect. Altering the gain values enables the DoG model to simulate the effect, but then it is also present in the control wavy grid.	Correctly that dark should a the straig angled g not with 1 grid. The Gabo from brid gap betw opposing corners.	y predicts spots ppear on phr- rid, but the wavy courved event or filters ging the veen

A target's internal contrast is influenced by the contrast of its surrounds. The causes are unclear, though are generally thought to depend on local normalisation of contrasts.

	Orientation- dependent contrast induction ("tilt illusion")	High contrast surrounds reduce perceived Cusis target contrast when texture orientations match. In the example here the upper target has bars aligned with the [3] fn background (in phase). In the centre is the effect same target rotated 90 degrees (orientations mismatched), and it appears to have a higher contrast. We also include a final control where the aligned target is out of phase with the surround. This target also appears to have higher contrast than the in-phase upper target (implying the effect is not entirely controlled by orientation).	tom Interestingly the re with DoG model (without or similar orientation or similar orientation ct. sensitivity) is able to simulate the effect, albeit weakly. Compared to the top, internal SD is 6% higher in the middle target, and 4% higher in the lower target.	The orient model is a predict the contrast in effect. Co to the top, internal SI 10% highe middle tar 11% highe lower targ	ed ble to e duction D is er in the get and er in the et.
	Chromatic contrast induction	High chromatic-contrast surrounds reduce Ada, perceived chromaticity. The high and low- from contrast surrounds have the same luminance, red-green, and blue-yellow background averages. The targets appear to be more colourful (higher chromaticity) in the lower image.	pted Chromaticity (average Euclidean distance from each target's colour to the background average) is 19% higher on the low contrast background.	Chromatic channels DG, so C (same 19) chromatic (same 19) chromatic (same 19) chromatic as left). The predicts chromatic induction as left). The predicts chromatic induction high contr surround.	use Inly Varies effect ne grating n the ast
Colour constancy and chromatic adaptation	Colour constancy cau mechanism by which effects fully [21].	ses surfaces to appear to have the same colour this occurs is poorly understood, and models of v	under different lighting colou whole scene averages, local	rs, generally attributed to chrom surround averages and local m	atic adaptation. The axima do not explain the
	Lotto, Purves & Nundy cube	The cube is rendered with different [12] simulated lighting conditions; yellow-tinted and blue-tinted. Colour-constancy causes	Models colour con right becomes yell	stancy effects (i.e. grey in the le ow). Also models brightness inc	ft becomes blue, grey on the luction effect.
		grey tiles to appear blue in the yellow- tinted example, and yellow in the blue- tinted example.			
	Simulated chromatic adaptation of natural scene, here the linear red channel is multiplied by 5	Chromatic adaptation lets us (and other animals) estimate the colour of an object even as the colour of the illuminant shifts. So, for example, as illuminant colour alters with weather and time of day, objects appear to stay the same colour.	erated Chromatic mple modelling only uses DoG, however in this case we use the Gabor model for	The model is largely robust aga even comparatively extreme differences in a scene's simulat illumination colour. Nevertheles model will start to show differen when the colours become so e	inst ed s, the ces treme
	Red channel multiplied by 1.5	The capacity for maintaining colour constancy through chromatic adaptation is limited at some point by saturation levels.	luminance.	that they saturate some spatial frequencies more. e.g. here the image has more blue-yellow saturation. Another interesting f of the model is that it does not it scene normalisation – this gree	lower eature esult in
	Neutral image	-		scene of a woodland is predicte green by the model (not averag	d to be e grey)
	Blue channel multiplied by 3	-			
	Blue channel multiplied by 10	-			
Chromatic	Simultaneous contras	t causes a target's colour to shift in the opposite	direction as its surrounds. T	his was one of the first visual illu	isions

Chromatic simultaneous contrast Simultaneous contrast causes a target's colour to shift in the opposite direction as its surrounds. This was one of the first visual illusions to have been described 1000 years ago by Ibn al-Haytham [23], who noted that green paint surrounded by blue appeared red-tinted, while the same paint surrounded by yellow appeared green-tinted.

Also known as the von Bezold spreading effect, this causes a colour to blend with the colour of its surrounds under certain circumstances. This is the opposite of simultaneous contrast, and early research established the conditions that cause each situation. Colour Assimilation

9 9 9 9 9 9 9 9 9	Spreading example with 3D spheres	This illusion developed by David Novick places beige spheres behind a colour grating (all these spheres are the same colour). Spreading causes dramatic colour shifts in the spheres depending on the colour of grating in front of them, making them appear red, green or blue.	David Novick) () ()	
	Subtractive colour circles illusion	This illusion places a cyan and magenta circle above a blue-white grating. The third circle is white, however simultaneous contrast makes it appear yellow. Spreading combines with the simultaneous contrast to make the intersection between cyan and white appear green.	Generated			
	Monnier & Shevell Ilusion	Colour assimilation is found to be more powerful (i.e. colour blending with its surrounds more powerfully) with a striped surround than with a solid surround. In this example the orange ring is identical in all five upper instances, however the spreading effect is more powerful for the ring surrounded by stripes, than the rings surrounded by the same solid colours.	Adapted from [14]	Both models demonstrate powerful spreading effects, however they predict it should be more powerful with a solid surround.	When adjusting the model to give higher spatial frequencies a higher gain, this effect can be modelled correctly.	

Colour Illusions

A number of the brightness illusions above are also powerful in a chromatic context (though not all). Interesting exceptions include illusory spots such as the Hermann grid (which our model suggests requires orientation-sensitive filters.

Chromatic Chevreul staircase	The concentric circles on the left appear to have internal gradients, but they are actually uniform flat colours. The black line surrounding the circles on the right eliminates the effect.	Adapted from [15] & [22]	The model is able to simulate the gradients in the staircase, and the control does show flat steps (although the effect reduces toward the centre)		The output figure here shows the RG signal, processed with a bandwidth of 5	W	hh M
Patterns increase perceived saturation	Shapley et al. [22] show that a checker pattern (left) is perceived to have a higher saturation than the same colour averaged over a larger area (right), even though both have the same average cone stimulation.		We simulated Sha input image's RG axis). The output increases more th axis).	apley et al.'s [22] data signal by different val RG signal for the cher nan the area-averaged	by multiplying the ues (graph's x- cker pattern RG value (y-	0.04 0.00 0.00 0 0 0 0	0.5 1 1.5 2

References:

1. Whittle P. Brightness, discriminability and the "Crispening Effect." Vision Research. 1992;32: 1493–1507. doi:10.1016/0042-6989(92)90205-W

2. Blakeslee B, McCourt ME. A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization. Vision Research. 2004;44: 2483-2503. doi:10.1016/j.visres.2004.05.015

3. Bertalmío M, Calatroni L, Franceschi V, Franceschiello B, Gomez Villa A, Prandi D. Visual illusions via neural dynamics: Wilson–Cowan-type models and the efficient representation principle. Journal of Neurophysiology. 2020;123: 1606–1618. doi:10.1152/jn.00488.2019

4. Geier J, Hudák M. Changing the Chevreul Illusion by a Background Luminance Ramp: Lateral Inhibition Fails at Its Traditional Stronghold - A Psychophysical Refutation. PLOS ONE. 2011;6: e26062. doi:10.1371/journal.pone.0026062

5. Gilchrist A. A Gestalt Account of Lightness Illusions. Perception. 2014;43: 881-895. doi:10.1068/p7751

6. Spehar B, Clifford CWG. The Wedding Cake Illusion: Interaction of Geometric and Photometric Factors in Induced Contrast and Assimilation. The Oxford Compendium of Visual Illusions. New York: Oxford University Press; 2017. doi:10.1093/acprof:oso/9780199794607.003.0059

7. Zaidi Q, Spehar B, Shy M. Induced Effects of Backgrounds and Foregrounds in Three-Dimensional Configurations: The Role of T-Junctions. Perception. 1997;26: 395-408. doi:10.1068/p260395

8. Kingdom FAA. Mach bands explained by response normalization. Frontiers in Human Neuroscience. 2014;8: 843. doi:10.3389/fnhum.2014.00843

9. Geier J, Bernáth L, Hudák M, Séra L. Straightness as the Main Factor of the Hermann Grid Illusion. Perception. 2008;37: 651-665. doi:10.1068/p5622

10. Chubb C, Sperling G, Solomon JA. Texture interactions determine perceived contrast. PNAS. 1989;86: 9631–9635. doi:10.1073/pnas.86.23.9631

11. Brown RO, MacLeod DIA. Color appearance depends on the variance of surround colors. Current Biology. 1997;7: 844–849. doi:10.1016/S0960-9822(06)00372-1

12. Purves D, Lotto RB, Nundy S. Why We See What We Do. Scientific American. 2002;90: 236-243.

13. Fairchild MD. Color appearance models. John Wiley & Sons; 2013.

14. Monnier P, Shevell SK. Large shifts in color appearance from patterned chromatic backgrounds. Nat Neurosci. 2003;6: 801-802. doi:10.1038/nn1099

15. Shapley R, Nunez V, Gordon J. Cortical double-opponent cells and human color perception. Current Opinion in Behavioral Sciences. 2019;30: 1–7. doi:10.1016/j.cobeha.2019.04.001

16. Solomon JA. The history of dipper functions. Attention, Perception & Psychophysics. 2009;71: 435-443. doi:10.3758/APP.71.3.435

17. Kane D, Bertalmío M. A reevaluation of Whittle (1986, 1992) reveals the link between detection thresholds, discrimination thresholds, and brightness perception. Journal of Vision. 2019;19: 16-16. doi:10.1167/19.1.16

18. Eagleman DM. Visual illusions and neurobiology. Nature Reviews Neuroscience. 2001;2: 920–926. doi:10.1038/35104092

19. Blakeslee B, Cope D, McCourt ME. The Oriented Difference of Gaussians (ODOG) Model of Brightness Perception: Overview and Executable Mathematica Notebooks. Behav Res Methods. 2016;48: 306-312. doi:10.3758/s13428-015-0573-4

20. Adelson EH. Lightness Perception and Lightness Illusions. 2nd ed. The new cognitive neurosciences. 2nd ed. MIT Press, Cambridge, MA; 2000.

21. Kraft JM, Brainard DH. Mechanisms of color constancy under nearly natural viewing. PNAS. 1999;96: 307-312. doi:10.1073/pnas.96.1.307

Shapley R, Nunez V, Gordon J. Cortical double-opponent cells and human color perception. Current Opinion in Behavioral Sciences. 2019;30: 1–7. doi:10.1016/j.cobeha.2019.04.001
Sabra AI. The Optics of Ibn al-Haytham: Books I-III On Direct Vision, 2 vols. 1989.