S1 appendix to "A model of colour appearance based on efficient coding of natural images" by Jolyon Troscianko \& Daniel Osorio

The ability of humans and other animals to perceive contrasts is dependent on the spatial frequency of those contrasts. Contrast sensitivity functions describe the contrast a of a sinwave that is detectable at different spatial frequencies. A related phenomenon is contrast constancy, where suprathreshold contrasts appear to be uniform irrespective of spatial frequency.

Contrast sensitivity functions	Sinewaves are generated with specific Michelson contrasts to ensure the model only permits detectable contrasts.	Generated	Removes sub- threshold contrasts, matching CSF
Contrast constancy	Suprathreshold sinewaves of different spatial frequencies should have equal amplitudes.	Suprathreshold contrast constancy is enhanced by saturation thresholds preventing multiplicative gain effects.	

 This family of illusions causes grey targets to differ in perceived brightness dependent on the arrangement of (typically high contrast) surrounds. Some of the
illusions, such as simultaneous contrast and Mach bands have traditionally been attributed to centre-surround antagonism [18]. However the White illusions create the opposite effect, and have variously been attributed to oriented filtering with normalisation [3, 19], T-junctions [e.g. 20], Gestalt/grouping/anchoring based mechanisms [5]. A further set of illusions have been attributed to 3D surface and lighting based inferences [see 20], or atmospheric-based inferences [see 20].
A grey bar flanked by black appears
darker than the same grey flanked by
white

| | variance and therefore the magnitude of
 differences. Moreover, we note that the
 effects our Gabor model fails to predict
 well are also effects that are only |
| :--- | :--- | :--- |
| marginally visible to us. | |

Contrast induction
A target's internal contrast is influenced by the contrast of its surrounds. The causes are unclear, though are generally thought to depend on local normalisation of contrasts.

$\begin{array}{ll}\text { Colour constancy } & \text { Colour constancy causes surfaces to appear to have the same colour under different lighting colours, generally attributed to chromatic adaptation. The } \\ \text { and chromatic } & \text { mechanism by which this occurs is poorly understood, and models of whole scene averages, local surround averages and local maxima do not explain the }\end{array}$ adaptation effects fully [21].

Chromatic simultaneou contrast

Simultaneous contrast causes a target's colour to shift in the opposite direction as its surrounds. This was one of the first visual illusions to have been described 1000 years ago by lbn al-Haytham [23], who noted that green paint surrounded by blue appeared red-tinted, while the same paint surrounded by yellow appeared green-tinted.

Chromatic	This example from Fairchild [13] shows a
simultaneous	blue-yellow grating. The red squares

IIfili |月

Hfit

Colour Assimilation Also known as the von Bezold spreading effect, this causes a colour to blend with the colour of its surrounds under certain circumstances. This is the opposite of simultaneous contrast, and early research established the conditions that cause each situation.
This illusion developed by David Novick
places beige spheres behind a colour
grating (all these spheres are the same
colour). Spreading causes dramatic colour
shifts in the spheres depending on the
colour of grating in front of them, making
them appear red, green or blue.

Colour Illusions

A number of the brightness illusions above are also powerful in a chromatic context (though not all). Interesting exceptions include illusory spots such as the Hermann grid (which our model suggests requires orientation-sensitive filters.

	Chromatic Chevreul staircase	The concentric circles on the left appear to have internal gradients, but they are actually uniform flat colours. The black line surrounding the circles on the right eliminates the effect.	Adapted from [15] \& [22]	The model is able to simulate the gradients in the staircase, and the control does show flat steps (although the effect reduces toward the centre)	The output figure here shows the RG signal, processed with a bandwidth of 5	${ }^{M}$ MWN
	Patterns increase perceived saturation	Shapley et al. [22] show that a checker pattern (left) is perceived to have a higher saturation than the same colour averaged over a larger area (right), even though both have the same average cone stimulation.		We simulated Sh input image's RG axis). The outpu increases more axis).	ey et al.'s [22] data by multiplying the gnal by different values (graph's xsignal for the checker pattern the area-averaged RG value (y -	

References:

1. Whittle P. Brightness, discriminability and the "Crispening Effect." Vision Research. 1992;32: 1493-1507. doi:10.1016/0042-6989(92)90205-W
2. Blakeslee B, McCourt ME. A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization. Vision Research. 2004;44: 2483-2503. doi:10.1016/j.visres.2004.05.015
3. Bertalmío M, Calatroni L, Franceschi V, Franceschiello B, Gomez Villa A, Prandi D. Visual illusions via neural dynamics: Wilson-Cowan-type models and the efficient representation principle. Journal of Neurophysiology. 2020;123: 1606-1618. doi:10.1152/jn.00488.2019
4. Geier J, Hudák M. Changing the Chevreul Illusion by a Background Luminance Ramp: Lateral Inhibition Fails at Its Traditional Stronghold - A Psychophysical Refutation. PLOS ONE. 2011;6: e26062. doi:10.1371/journal.pone.0026062
5. Gilchrist A. A Gestalt Account of Lightness Illusions. Perception. 2014;43: 881-895. doi:10.1068/p7751
6. Spehar B, Clifford CWG. The Wedding Cake Illusion: Interaction of Geometric and Photometric Factors in Induced Contrast and Assimilation. The Oxford Compendium of Visual Illusions. New York: Oxford University Press; 2017. doi:10.1093/acprof:oso/9780199794607.003.0059
7. Zaidi Q, Spehar B, Shy M. Induced Effects of Backgrounds and Foregrounds in Three-Dimensional Configurations: The Role of T-Junctions. Perception. 1997;26: 395-408 doi:10.1068/p260395
8. Kingdom FAA. Mach bands explained by response normalization. Frontiers in Human Neuroscience. 2014;8: 843. doi:10.3389/fnhum.2014.00843
9. Geier J, Bernáth L, Hudák M, Séra L. Straightness as the Main Factor of the Hermann Grid Illusion. Perception. 2008;37: 651-665. doi:10.1068/p5622
10. Chubb C, Sperling G, Solomon JA. Texture interactions determine perceived contrast. PNAS. 1989;86: 9631-9635. doi:10.1073/pnas.86.23.9631
11. Brown RO, MacLeod DIA. Color appearance depends on the variance of surround colors. Current Biology. 1997;7: 844-849. doi:10.1016/S0960-9822(06)00372-1
12. Purves D, Lotto RB, Nundy S. Why We See What We Do. Scientific American. 2002;90: 236-243.
13. Fairchild MD. Color appearance models. John Wiley \& Sons; 2013.
14. Monnier P, Shevell SK. Large shifts in color appearance from patterned chromatic backgrounds. Nat Neurosci. 2003;6: 801-802. doi:10.1038/nn1099
15. Shapley R, Nunez V, Gordon J. Cortical double-opponent cells and human color perception. Current Opinion in Behavioral Sciences. 2019;30: 1-7. doi:10.1016/j.cobeha.2019.04.001
16. Solomon JA. The history of dipper functions. Attention, Perception \& Psychophysics. 2009;71: 435-443. doi:10.3758/APP.71.3.435
17. Kane D, Bertalmío M. A reevaluation of Whittle $(1986,1992)$ reveals the link between detection thresholds, discrimination thresholds, and brightness perception. Journal of Vision. 2019;19: 16-16. doi:10.1167/19.1.16
18. Eagleman DM. Visual illusions and neurobiology. Nature Reviews Neuroscience. 2001;2: 920-926. doi:10.1038/35104092
19. Blakeslee B, Cope D, McCourt ME. The Oriented Difference of Gaussians (ODOG) Model of Brightness Perception: Overview and Executable Mathematica Notebooks. Behav Res Methods. 2016;48: 306-312. doi:10.3758/s13428-015-0573-4
20. Adelson EH. Lightness Perception and Lightness Illusions. 2nd ed. The new cognitive neurosciences. 2nd ed. MIT Press, Cambridge, MA; 2000.
21. Kraft JM, Brainard DH. Mechanisms of color constancy under nearly natural viewing. PNAS. 1999;96: 307-312. doi:10.1073/pnas.96.1.307
22. Shapley R, Nunez V, Gordon J. Cortical double-opponent cells and human color perception. Current Opinion in Behavioral Sciences. 2019;30: 1-7. oi:10.1016/J.cobeha.2019.04.001
23. Sabra AI. The Optics of Ibn al-Haytham: Books I-III On Direct Vision, 2 vols. 1989
