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Abstract. Ontology matching facilitates interoperability and semantic
integration across heterogeneous knowledge bases. Over the years, nu-
merous techniques have been developed to effectively tackle the chal-
lenge of aligning ontologies. This paper provides a comprehensive review
of classic and modern techniques for ontology matching. We present an
overview of the fundamental concepts and principles underlying ontol-
ogy matching, followed by an in-depth analysis of traditional methods,
such as linguistic-based, structure-based, and instance-based approaches.
Subsequently, we delve into the recent advancements in ontology match-
ing, including machine learning-based techniques, deep learning-based
strategies, and hybrid methods that combine multiple algorithms. We
compare these techniques based on critical metrics, such as precision,
recall, and F-measure, and discuss their strengths, limitations, and ap-
plicability in real-world scenarios. Additionally, we highlight the impact
of ontological characteristics, such as size, complexity, and heterogeneity,
on the performance of different matching techniques. Furthermore, we ex-
plore the challenges and open research directions in ontology matching,
such as handling semantic drift, scalability, and incorporating contex-
tual information. Therefore, this paper aims to provide researchers and
practitioners with a comprehensive understanding of classic and modern
ontology matching techniques, paving the way for further advancements
and improvements in this critical area of semantic integration.

Keywords: Ontology alignment, Ontology mapping, Ontology match-
ing

1 Introduction

In the increasing data complexity and heterogeneity era, achieving semantic in-
teroperability has become crucial for enabling effective information integration
and knowledge sharing across different systems and domains. Ontology match-
ing aims to align and establish correspondences between ontologies and plays a
fundamental role in bridging the semantic gaps among diverse knowledge repre-
sentations [1]. Ontology matching supports various applications, including data
integration, semantic search, and ontology merging By facilitating the seamless
exchange of information [2,3]. Consequently, there has been a growing interest
in developing robust and accurate techniques in academia and industry [4].
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Figure 1 illustrates a simplified example of ontology matching between two
ontologies. The ontologies are represented as circles, each representing a concept
in the respective ontology. In this scenario, Ontology 1 consists of concepts:
Concept 1a, 1b, and 1c. Ontology contains two concepts: Concept 2a and Concept
2b. The arrows connecting the concepts represent the matched entities between
the ontologies. In this case, Concept 1a and 1b from Ontology 1 have been
matched with Concept 2a from Ontology 2. Similarly, Concept 1c from Ontology
1 has been matched with Concept 2b from Ontology 2.

Ontology matching aims to establish correspondences or alignments between
entities in different ontologies, enabling semantic integration and interoperabil-
ity. Therefore, it can facilitate complex tasks such as knowledge sharing [5].

Concept 1a

Concept 1b

Concept 1c

Concept 2a

Concept 2b

Ontology 1 Ontology 2

Fig. 1. Example of ontology matching

This paper aims to provide a review of classic and modern techniques for
ontology matching. We aim to present an overview of the fundamental concepts
and principles underlying ontology matching and delve into the strengths and
limitations of different approaches. We evaluate and compare various techniques
to show their performance and effectiveness under other ontological characteris-
tics and scenarios. Furthermore, we discuss the recent advancements in ontology
matching, including machine learning-based techniques, deep learning-based ap-
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proaches, and hybrid methods. Furthermore, we seek to identify the gaps in the
existing literature and suggest potential lines for future improvements.

The subsequent sections of this paper are organized as follows: Section 2
provides a background and fundamental understanding of ontology matching,
including its definition, importance, and evaluation metrics. Section 3 presents
a detailed analysis of classic techniques for ontology matching, encompassing
linguistic-based, structure-based, and instance-based approaches. Section 4 delves
into modern techniques, including machine learning-based, deep learning-based,
and hybrid methods. Section 5 focuses on evaluating and comparing the per-
formance of different techniques based on established metrics. In Section 6, we
explore the impact of ontological characteristics, such as size, complexity, and
heterogeneity, on the performance of ontology matching techniques. Section 7
discusses the challenges that ontology matching faces and highlights potential
research directions. Finally, Section 8 concludes the paper by summarizing the
techniques reviewed and highlighting key findings.

2 Background

Ontology matching refers to establishing correspondences between entities, rela-
tionships, and concepts in different ontologies [6]. An ontology represents a for-
mal, explicit specification of a domain’s concepts, attributes, and relationships.
It serves as a shared vocabulary for knowledge representation and facilitates the
integration and interoperability of information.

The importance of ontology matching lies in its ability to bridge the seman-
tic gaps among diverse ontologies. As ontologies are often created independently
and vary in terminology, structure, and conceptualizations, achieving a coherent
and unified view of the underlying knowledge becomes challenging. Ontology
matching enables the alignment of overlapping or related concepts, allowing for
seamless data integration, information retrieval, and knowledge sharing. Estab-
lishing correspondences between ontologies makes it possible to infer implicit
relationships, merge ontology, and support advanced inference mechanisms.

2.1 Ontology Representation and Structure

Ontologies typically represent using formal languages, such as the Web Ontology
Language (OWL) or the Resource Description Framework (RDF). These lan-
guages provide a structured and machine-readable representation of concepts,
attributes, and relationships, enabling automated processing and reasoning.

The structure of an ontology encompasses various components, including
classes, properties, instances, and axioms. Classes define the concepts or cate-
gories in a domain, while properties represent relationships or attributes asso-
ciated with classes. Instances represent individual entities or objects within a
domain. Axioms, expressed in logical formalisms, specify additional constraints,
rules, or logical relationships between the different components.
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Ontologies can vary in size, complexity, and level of formalization. Some on-
tologies are domain-specific, focusing on particular areas such as biology [7],
while others aim for a broader coverage across multiple domains [8]. The com-
plexity of ontologies can range from simple taxonomies to more complex repre-
sentations that involve inference rules, constraints, and logical expressions [9].

2.2 Evaluation Metrics for Ontology Matching

The evaluation of ontology matching requires the definition of metrics to assess
the performance. Commonly used evaluation metrics include precision, recall,
and F-measure. Precision measures the accuracy, indicating the proportion of
correctly aligned entities Recall quantifies the completeness of the matching
process by measuring the ratio of correctly aligned entities. F-measure combines
precision and recall into a metric that provides a balanced evaluation.

Additional quality measures assess the alignment by considering various fac-
tors, such as semantic consistency, and expressiveness. These measures aim to
capture the extent to which the alignment captures the intended semantics and
the relationships between the ontologies being matched [10].

3 Classic Techniques for Ontology Matching

Classic techniques for ontology matching encompass a range of approaches de-
veloped over the years to address the challenge of aligning ontologies effectively
[11,12]. These techniques primarily focus on leveraging linguistic, structural, and
instance-based information.

The classical algorithm for simple ontology matching algorithm can be seen
in Algorithm 1., and it is based on the following steps:

1. The algorithm takes two input ontologies, denoted as O1 and O2, and aims to
find matching entities between them. The output is a set of matched entities,
denoted as M .

2. The MatchOntologies function is the primary function that performs the on-
tology matching. It takes O1 and O2 as input and returns the set of matched
entities M .

3. Initially, the set of matched entities M is initialized as an empty set.
4. The algorithm iterates over each entity e1 in O1.
5. For each entity e1 in O1, it initializes variables ebest and simbest to keep

track of the best matching entity and the corresponding similarity score.
6. It then enters a nested loop, iterating over each entity e2 in O2.
7. Within the nested loop, the algorithm computes the similarity score between

the entities e1 and e2 using the function ComputeSimilarity(e1, e2). The
similarity score quantifies the semantic similarity between the entities.

8. If the computed similarity score sim is greater than the current best similar-
ity simbest, it updates the simbest and ebest variables with the new values.
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Algorithm 1 Ontology Matching

Require: O1, O2 ▷ Input ontologies
Ensure: M ▷ Matched entities
1: function MatchOntologies(O1, O2)
2: M ← {} ▷ Initialize empty set of matched entities
3: for e1 in O1 do
4: ebest ← NULL ▷ Best matching entity
5: simbest ← 0 ▷ Best similarity score
6: for e2 in O2 do
7: sim← ComputeSimilarity(e1, e2) ▷ Compute similarity
8: if sim > simbest then
9: simbest ← sim ▷ Update best similarity
10: ebest ← e2 ▷ Update best matching entity
11: end if
12: end for
13: if simbest ≥ threshold then ▷ Threshold for considering a match
14: M ←M ∪ {(e1, ebest)} ▷ Add match to set
15: end if
16: end for
17: return M ▷ Return set of matched entities
18: end function

9. After iterating over all entities in O2, it checks if the best similarity simbest is
greater than or equal to a specified threshold. If it is, it considers the entities
as a match and adds the pair (e1, ebest) to the set of matched entities M .

10. Finally, the function returns the set of matched entities M .

The algorithm compares each entity in O1 with every entity in O2, computes
their similarity, and determines the best matches based on the similarity scores.
It applies a threshold to filter out matches that do not meet a specific similarity
criterion. The similarity computation function ComputeSimilarity(e1, e2) is
assumed to be defined separately.

3.1 Linguistic-based Approaches

Linguistic-based approaches exploit ontologies’ lexical and semantic informa-
tion to establish correspondences [13]. These techniques utilize lexical matching
algorithms, such as string similarity measures (e.g., edit distance, Jaccard co-
efficient), to compare labels, names, or terms associated with ontology entities.
Lexical matching is complemented by linguistic resources or domain-specific on-
tologies to effectively enrich the semantic information and handle synonyms,
hyponyms, and hypernyms. Thesaurus-based techniques, such as those using
thesauri, facilitate semantic matching by considering the hierarchical relation-
ships and synonyms in these resources.
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3.2 Structure-based Approaches

Structure-based approaches exploit the structural organization of ontologies to
establish correspondences. These techniques focus on aligning the hierarchical
relationships, and the overall structure of ontologies. Structural similarity mea-
sures, such as graph-based algorithms or similarity metrics based on the depth
and breadth of ontology entities, quantify the similarity between concepts and
relationships [14]. Methods like the Tree Edit Distance leverage the structure of
ontologies to determine the mapping between concepts.

3.3 Instance-based Approaches

Instance-based approaches utilize the instances or individual entities within on-
tologies to establish correspondences [15]. These techniques use instances’ char-
acteristics and properties, such as attribute values, object properties, or us-
age patterns, to infer semantic relationships between concepts. Instance-based
matching can be performed using clustering algorithms, such as k-means or hier-
archical clustering, to group instances based on their similarities. Alternatively,
statistical methods, such as co-occurrence analysis or information content mea-
sures, can identify relationships between instances based on their usage patterns.

Classic ontology matching techniques often employ linguistic, structural, and
instance-based approaches to achieve more accurate and comprehensive results.
Hybrid strategies integrate multiple matching algorithms, leveraging each ap-
proach’s strengths to overcome their limitations [16]. These techniques are often
rule-based or heuristic-based, employing predefined rules or heuristics to guide
the matching process based on the aligned ontologies’ characteristics [17].

While classic techniques have provided valuable contributions to ontology
matching, they face challenges in dealing with large-scale ontologies [18], han-
dling heterogeneity [19], and capturing complex semantic relationships [20]. Re-
cent advancements in ontology matching have introduced machine- and deep-
learning-based techniques to overcome these limitations [21].

4 Modern Techniques for Ontology Matching

Modern techniques for ontology matching have witnessed significant advance-
ments, leveraging the power of machine learning and deep learning to address
the challenges posed by complex and large-scale ontologies [22]. These techniques
go beyond traditional approaches and use data-driven methodologies to learn the
matching patterns and capture intricate semantic relationships. We discuss three
major categories of modern techniques: machine learning-based methods, deep
learning-based techniques, and hybrid approaches.

4.1 Machine Learning-based Techniques

Machine learning-based techniques utilize algorithms and models that learn from
labeled training data to predict correspondences between ontologies [23]. These
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techniques typically involve feature extraction, where relevant features are de-
rived from ontology entities or their attributes, and a machine learning algorithm
is trained to classify pairs of entities as matching or non-matching. Commonly
used machine learning algorithms for ontology matching include decision trees
[24], or support vector machines (SVM). Feature selection techniques, such as in-
formation gain or mutual information, are used to identify the most informative
features for matching.

4.2 Deep Learning-based Techniques

Deep learning-based techniques leverage deep neural networks to learn com-
plex representations and patterns from ontology data [25]. These techniques use
architectures such as neural networks (RNN), or transformer-based models to
capture the semantic relationships between entities [26]. Deep learning models
can process various data types, including textual descriptions, structural infor-
mation, or even graph representations [27]. The models are trained on large-scale
datasets [28] and can learn hierarchical representations, encode contextual infor-
mation, and capture latent semantic relationships, leading to improved matching
accuracy.

4.3 Hybrid Approaches

Hybrid approaches combine the strengths of multiple techniques, including tradi-
tional methods, machine learning, and deep learning, to achieve more robust and
accurate ontology matching [29,30]. These techniques integrate diverse match-
ing algorithms, leveraging their complementary nature to overcome individual
limitations [31,32,33]. For instance, a hybrid approach may use linguistic-based
techniques for label matching, structure-based techniques for hierarchical align-
ment [34], and machine learning or deep learning models to capture more intri-
cate semantic relationships. Hybrid approaches often require careful integration
of different algorithms, parameter tuning, and selecting appropriate combination
strategies to achieve optimal matching performance [35].

Modern techniques for ontology matching have demonstrated improved ac-
curacy and flexibility in handling diverse characteristics, scalability, and com-
plex semantic relationships [36]. However, these approaches may require large
amounts of labeled training data, computational resources, and expertise in de-
signing and training the models. Additionally, the selection of suitable features,
handling of noisy or incomplete data, and interpretability of the models remain
ongoing research challenges in the field [33].

5 Evaluation and Comparison of Techniques

The evaluation and comparison of ontology matching techniques are essential
to assess their performance, effectiveness, and suitability for different scenarios.
This section discusses the metrics, evaluation datasets, and considerations for
evaluating and comparing these techniques.
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5.1 Performance Metrics and Evaluation Datasets

Various metrics are employed to measure the performance of ontology matching
techniques. Commonly used metrics include precision, recall, F-measure, and
accuracy. Precision measures the proportion of correctly matched entities out
of the total matched entities, while recall quantifies the proportion of correctly
matched entities out of the existing correspondences. F-measure combines pre-
cision and recall into a metric that provides a balanced evaluation. Accuracy
measures the overall correctness of the matching results, considering both true
positives and negatives.

Researchers typically employ benchmark datasets to evaluate and compare
techniques, consisting of pairs of ontologies with known correspondences. Promi-
nent datasets used for evaluation include OAEI (Ontology Alignment Evalua-
tion Initiative) datasets. These datasets cover various domains and represent
diverse characteristics, allowing for a comprehensive assessment of techniques
under different scenarios. Additionally, real-world ontologies and manually cu-
rated datasets can be used to evaluate techniques in specific application contexts.

5.2 Comparative Analysis of Techniques

Comparing ontology matching techniques involves analyzing their performance
across multiple dimensions. Key aspects to consider include precision, recall,
F-measure, and accuracy values achieved by each technique. Additionally, it is
crucial to evaluate their scalability, robustness to noise or missing data, com-
putational efficiency, and usability in practical scenarios. Comparisons may also
include analyzing the impact of different ontological characteristics, such as on-
tology size, complexity, and heterogeneity, on the performance of the techniques.

Comparative analysis may involve conducting experiments using different
techniques on the same datasets and reporting the results. Statistical significance
tests, such as t-tests, can be employed to determine if the performance differences
between techniques are statistically significant. Visualization techniques, such as
precision-recall curves or ROC (Receiver Operating Characteristic) curves, can
also provide a graphical representation of the comparative performance.

For example, Figure 2 depicts a precision-recall curve, which is a graphical
representation of the performance of a binary classification model in ontology
matching. The precision-recall curve illustrates the trade-off between precision
(y-axis) and recall (x-axis) for different decision thresholds or retrieval cutoffs.

In the figure, the x-axis represents the recall, which is the proportion of
relevant cases that are correctly retrieved. The y-axis represents the precision,
which is the proportion of relevant retrieved cases.

The curve is formed by connecting several points on the graph. Each point
represents a specific precision-recall pair the model achieves at a particular de-
cision threshold or retrieval cutoff. The curve shows how precision changes as
recall varies. In the example, the curve starts from the origin (0,0) and gradually
rises towards the top-right corner. This indicates that as the recall increases, the
precision initially rises and then stabilizes or may decrease. Along the curve, the
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Fig. 2.

labeled points (A, B, C, D, E, and F) represent specific operating points. For
example, point A represents a high precision achieved at a relatively low recall,
while point F represents a relatively lower precision achieved at a high recall.

The precision-recall curve also helps evaluate and compare different classi-
fication or retrieval models. It provides insights into the model’s performance
across various decision thresholds, allowing one to select an appropriate operat-
ing point based on specific requirements. Typically, models that achieve higher
precision at lower recall levels are preferred when precision is paramount. At the
same time, models that maintain higher precision at higher recall levels are de-
sired for tasks where recall is crucial. It is possible to assess the trade-off between
precision and recall and make informed decisions about the model’s performance
and suitability for a given task by analyzing the precision-recall curve.

However, the choice of evaluation metrics and datasets should align with
the ontology matching task’s specific goals, requirements, and characteristics.
The evaluation process should be transparent, reproducible and consider the
limitations and assumptions of the compared techniques. Researchers and prac-
titioners can gain insights into different approaches’ strengths, weaknesses, and
applicability by evaluating and comparing ontology matching techniques. This
information can guide the selection and adaptation of techniques for specific use
cases.

6 Impact of Ontological Characteristics

The characteristics of ontologies, such as their size, complexity, and heterogene-
ity, can significantly impact the performance and effectiveness of ontology match-
ing techniques. Understanding and addressing the implications of these charac-
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teristics is crucial for selecting appropriate matching approaches and improving
the overall matching results. This section discusses the impact of ontological
aspects and the challenges they pose in ontology matching.

6.1 Size of Ontologies

The size of ontologies can vary significantly, ranging from small-scale ontologies
with a few concepts to large-scale ontologies with thousands or even millions
of entities [37]. The size of ontologies affects the scalability and efficiency of
matching techniques. Matching large-scale ontologies can be computationally
expensive and require specialized algorithms or optimization strategies to handle
the complexity. Efficient and scalable methods are necessary to ensure practical
usability.

6.2 Complexity of Ontologies

Ontologies can exhibit varying levels of complexity depending on the richness
of their structure, the number of relationships, and the presence of logical ax-
ioms or constraints. Complex ontologies may include multiple inheritance hierar-
chies, qualified cardinality restrictions, or higher-order logic expressions. Match-
ing complex ontologies requires handling intricate relationships, capturing logi-
cal constraints, and reasoning with expressive ontological languages. Developing
techniques that effectively address complex ontologies is an ongoing research
challenge [38].

6.3 Heterogeneity of Ontologies

Heterogeneity arises when ontologies originate from different sources or have
been developed independently. Heterogeneous ontologies can differ in their ter-
minology, conceptualizations, and modeling choices. Semantic mismatches, such
as synonymy, polysemy, or differences in granularity, may occur, making the
alignment task more challenging [39]. Matching techniques must be robust to
handle heterogeneity and accommodate variations in representation and termi-
nology across ontologies. Approaches that consider contextual information, or
use adaptable similarity measures can effectively address the heterogeneity chal-
lenge.

6.4 Multilinguality and Multiculturalism

Ontologies may also exhibit multilingual or multicultural characteristics, ex-
pressing concepts and labels in different languages or cultural contexts [40].
Matching multilingual or multicultural ontologies requires techniques for han-
dling cross-lingual or cross-cultural semantic relationships [41]. Language-aware
matching techniques can address this challenge by leveraging machine trans-
lation, cross-lingual resources, or other kinds of background knowledge [42,?].
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Determining linguistic and cultural variations is necessary to achieve culturally-
sensitive ontology alignments.

Addressing the impact of ontological characteristics requires the develop-
ment of techniques that are scalable, efficient, capable of handling complexity,
robust to heterogeneity, and adaptable to linguistic and cultural variations. Ad-
ditionally, the evaluation of ontology matching techniques should consider these
characteristics to assess their performance in real-world scenarios.

7 Challenges and Open Research Directions

Ontology matching is a complex task that poses several challenges due to the
diverse nature of ontologies, the evolving semantic landscape, and the increasing
scale of data. Addressing these challenges is crucial for advancing the field and
improving the accuracy and efficiency of ontology matching techniques [43]. This
section highlights some key challenges and suggests open research directions for
future exploration.

7.1 Semantic Heterogeneity and Interoperability

Semantic heterogeneity arises from the differences in terminology, conceptual-
izations, and domain-specific interpretations across ontologies. Developing tech-
niques that effectively handle semantic heterogeneity and ensure interoperabil-
ity between ontologies from different domains or communities is a significant
challenge [44]. Future research should explore advanced semantic matching ap-
proaches that can capture nuanced relationships, accommodate varying levels of
granularity, and handle complex linguistic variations.

7.2 Scalability and Efficiency

With the increasing size and complexity of ontologies, scalability and efficiency
have become critical factors in ontology matching. Techniques capable of han-
dling large-scale ontologies with millions of entities and complex relationships
are needed. Research should focus on developing scalable algorithms, leveraging
parallel and distributed computing [45], and employing indexing and compres-
sion techniques to improve the efficiency of matching processes.

7.3 Dynamic and Evolving Ontologies

Ontologies are dynamic entities that evolve due to updates, additions, or modifi-
cations. Keeping ontology alignments up to date in the face of evolving ontologies
is challenging. Techniques that can adapt to ontological changes, efficiently up-
date alignments, and detect and handle concept drift or concept evolution are
required [46]. Research should explore incremental matching approaches that
can incrementally update alignments based on changes in ontologies or leverage
machine learning techniques to adapt to evolving ontologies.
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7.4 Handling Big Data and Linked Data

The increasing volume and diversity of data present challenges for ontology
matching. Big data environments, where large amounts of data need to be pro-
cessed and matched, require efficient and scalable matching techniques. Addi-
tionally, where ontologies are interconnected through semantic links, linked data
poses challenges in effectively capturing and utilizing these relationships [47].
Future research should focus on developing techniques that can handle big data
environments, leverage distributed and parallel computing frameworks, and ex-
ploit the interconnectedness of linked data for improved matching results.

7.5 Explainability and Interpretability

As ontology matching techniques become more sophisticated, the need for ex-
plainability and interpretability becomes crucial [48]. Users must understand
and trust the matching results, especially in critical domains. Research should
develop techniques that provide transparent explanations of the matching pro-
cess, enable users to interpret and validate the results, and support interactions
to ensure trust and confidence in the matching outcomes [49].

7.6 Domain-specific Matching

Different domains may have specific requirements and characteristics for on-
tology matching. Research should explore domain-specific matching techniques
that capture domain-specific semantics, leverage domain-specific resources, and
address domain-specific challenges [50]. Customization of matching approaches
to specific application domains can significantly improve the accuracy and rele-
vance of the alignments.

Addressing these challenges and exploring these research directions will con-
tribute to advancing ontology matching techniques and enable their effective uti-
lization in real-world applications. Continued collaboration between researchers,
practitioners, and domain experts is crucial to addressing these challenges.

8 Conclusion

We have provided an overview of classic and modern techniques for ontology
matching. We have seen classic techniques, including linguistic-based, structure-
based, and instance-based approaches, which leverage lexical, structural, and
instance information for matching. We also explored modern techniques, such as
machine learning-based and deep learning-based approaches, which harness the
power of data-driven methodologies to capture complex relationships.

We have discussed the importance of evaluating and comparing ontology
matching techniques, highlighting the metrics, evaluation datasets, and consid-
erations involved in the evaluation process. Furthermore, we have emphasized
the impact of characteristics such as the size, complexity, and heterogeneity of
ontologies, on the performance of matching techniques.
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We have also outlined the open challenges, including semantic heterogene-
ity, scalability, evolving ontologies, handling big data and linked data, and the
need for explainability and interpretability. We have suggested open research
directions that address these challenges, such as developing semantic interoper-
ability and scalability techniques, handling evolving ontologies, and improving
explainability and interpretability.

The field of ontology matching is constantly shifting and developing, and it
is making steady progress thanks to the combination of diverse techniques. The
development of ontology matching strategies that are more accurate, efficient,
and domain-specific will be aided by combining traditional and modern methods,
considering ontological traits, and addressing issues related to these factors.
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