
There are hundreds of rare coding variants in ACE2 
reported in the gnomAD4 database. Amongst the 
majority that are missense, some occur at the Spike 
binding site and are most likely to affect binding.

In April 2000, we predicted ΔΔG for all gnomAD 
variants and more with an algorithm called mCSM-
PPI21,6 (A, below). Later, we measured the affinities 
of key variants with a set of accurate Surface Plasmon 
Resonance (SPR) experiments (C) and improved the 
predictions2,3 (D). We found that there were ACE2 
alleles with altered Spike binding.

1. Population variants in ACE2

ACE2 (green) bound by SARS-CoV-2 Spike RBD. Key sites with 
missense variants in gnomAD are coloured magenta (PDB: 6vw15).

ACE2 
Variant

Dist. (A) mCSM-
PPI2 ΔΔG

(B) 2020 
Insight

(C) SPR 
ΔΔG

(D) Refit 
ΔΔG

(E) 2022 
Insight

S19P 2.6 −0.2 No effect 0.59 0.2 High 
affinity

K26R 6.0 0.0 No effect 0.26 0.4 High 
affinity

E37K 3.2 −1.2 Resistance −1.33 −1.3 Resistance

G326E 5.5 1.0 High 
affinity

−0.65 *2.1 Low 
affinity

G352V 5.4 −1.1 Resistance - −1.2 Resistance

D355N 3.5 −1.3 Resistance <−3.16 −1.5 Near-total 
protection

*Outside range of interpolation

Before our SPR experiments, we tested mCSM-PPI2 
with data on SARS-CoV. Low affinity predictions 
seemed reliable, but we saw hints that high affinity 
predictions were less so. This benchmark enabled our 
2020 insights (see B, bottom left).

SPR experiments showed we were right about 
inhibitory alleles, but high affinity predictions were 
unreliable. Also, an offset masked the high affinities 
of two more common alleles. We recalibrated mCSM-
PPI2 with the well-modelled variants (D, bottom left).

These conclusions were re-iterated by comparing 
predictions to binding data from a deep mutagenesis 
screen (DMS)8. This clarifies the effects of ACE2 
mutations.

2. Three benchmarks

When we compared our affinity data to published 
pseudovirus infectivities9, we found a stronger 
correlation with our SPR experiments than any other 
ACE2 mutant binding dataset. This confirmed that 
inhibitory variants reduce infectivity.

High affinity variants have normal infectivity here, 
but this doesn’t rule out a biological effect. We argue 
that higher affinity could facilitate entry into cells 
with lower ACE2 surface abundance. This idea is 
consistent with work in other viruses10 and the 
improved fitness of later SARS-CoV-2 strains2.

This informed our 2022 insights (see E, bottom left)

3. Affinity vs. Infectivity

• There are rare ACE2 alleles that are likely to confer 
complete resistance to SARS-CoV-2

• Two relatively common alleles, S19P and K26R, 
enhance Spike binding, but their biological effect is 
less clear

• Predictions gave the first insights into the effects 
of ACE2 variants on Spike binding and now help to 
expand and interpret experimental data

• The next generation of affinity predictors should 
focus on improving affinity enhancing predictions

What have we learned?
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SARS-CoV-2 infection varies in severity from a mild 
illness to a fatal disease. As a key mediator of viral 
entry, ACE2 was one of the first candidate genes 
suspected to influence Covid-19 risk and 
susceptibility. The affinity of the virus Spike protein 
for host ACE2 influences the host-range of related 
coronaviruses and so we hypothesised that ACE2 
alleles with altered binding could contribute to 
carriers’ genetic risk. Over the last two years we have 
characterised ACE2 variants, initially with purely 
computational methods1 and then by combining 
predictions with experimental data2,3.
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