SUPPLEMENTARY MATERIALS

TABLES

Table S1. Cross-docking results on the HIV protease set for (a) rigid docking using LigDockCSA, (b) GalaxyDock with 2 flexible residues (ARG8 of the two chains), and (c) GalaxyDock with 4 flexible residues (ARG8 and ILE50 of the two chains). Ligand RMSD of the predicted binding pose (starting from ligand A + protein structure B) from that of the crystal structure (ligand A + protein structure A) is presented for each cross docking of ligand A (row) to protein structure B (column).

(a)

Proteins

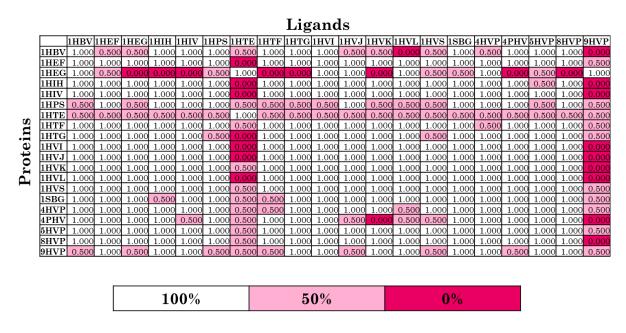
Ligands

		1HBV	1HEF	1HEG	1HIH	1HIV	1HPS	1HTE	1HTF	1HTG	1HVI	1HVJ	1HVK	1HVL	1HVS	1SBG	4HVP	4PHV	5HVP	8HVP	9HVP
1	HBV	1.023	0.558	11.416	1.024	1.441	0.629	7.524	6.745	2.380	1.752	1.276	1.785	1.631	12.029	0.942	2.010	0.608	1.131	1.533	12.585
1	HEF	1.708	1.508	1.436	0.674	0.929	1.145	9.938	3.269	0.910	1.594	12.102	14.770	1.669	12.075	0.739	1.111	10.754	1.087	1.538	0.588
1	HEG	1.547	0.837	1.290	1.107	1.205	0.848	6.449	3.172	0.981	2.339	2.078	14.380	1.779	2.771	0.689	1.856	0.870	1.090	1.455	12.610
	HIH	10.954	1.386	11.393	0.698	1.551	0.826	6.594	2.797	1.129	2.213	2.032	12.099	2.299	12.907	9.758	2.371	0.767	1.647	1.435	1.147
	HIV	10.987	2.047	11.464	0.910	0.653	0.667	6.866	1.337	1.206	1.107	1.362	0.720	1.429	0.768	0.391	1.350	0.459	1.235	1.698	1.479
1	HPS	1.739	1.209	1.349	0.890	0.954	0.556	10.010	1.004	1.267	2.133	1.935	14.877	2.082	11.187	1.450	1.474	0.627	1.135	1.356	1.062
	HTE	2.177	1.092	1.494	0.491							1.351	1.090						_		1.265
-	HTF	11.026	1.026				0.467					11.294	1.739								
	HTG	1.744					0.716					1.313		0.985		0.667			1.207		
-	HVI	10.985	1.575		1.365					2.822		1.016						0.673			
	HVJ	1.665												0.899				0.635			
	HVK	1.787		1.318												1.217					
-	HVL	1.812									1.024				1.065				1.307		1.554
-	HVS	2.086							1.491								2.011			1.483	
	SBG	11.095	1.311				0.484							1.450	2.246						
	HVP	1.896	1.441				0.998		1.594					1.056		0.425					
-	PHV	10.983	11.685	1.270										11.866	1.384						
-	HVP	2.036				1.095					0.983			_		9.677	1.390		1.058		
	HVP		2.009		1.227		0.774			2.541				1.376				0.532			
9	HVP	1.380	1.596	1.153	1.292	1.350	0.452	6.334	1.368	0.436	11.996	1.696	6.899	1.570	11.994	0.993	1.104	0.624	1.482	1.222	0.650

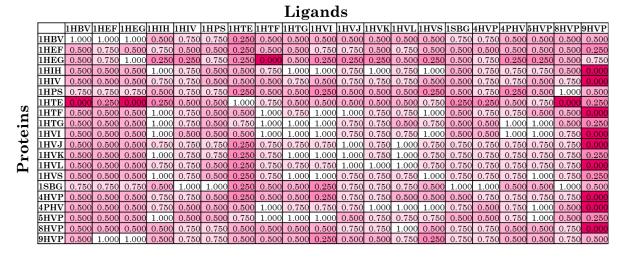
0Å~ 2Å~ 4Å~ 6Å~ 8Å~ 10Å~

(b)

Ligands


		1HBV	1HEF	1HEG	1HIH	1HIV	1HPS	1HTE	1HTF	1HTG	1HVI	1HVJ	1HVK	1HVL	1HVS	1SBG	4HVP	4PHV	5HVP	8HVP	9HVP
	1HBV	0.862	0.853	1.016	0.958	1.498	0.657	1.054	0.847	1.630	0.626	0.691	0.566	0.727	0.556	0.907	1.636	0.708	1.056	1.239	0.808
oteins	1HEF	1.406	1.115	1.156	0.649	1.788	0.846	0.829	0.630	0.763	1.126	0.669	0.570	0.570	1.262	1.780	1.566	0.592	0.949	1.261	0.525
	1HEG	1.397	0.776	1.233	0.903	0.983	0.702	0.988	0.686	1.544	1.155	0.992	0.564	0.507	0.683	0.595	0.919	1.915	0.770	1.232	0.646
	1HIH	1.347	1.269	1.169	4.581	1.047	0.506	0.874	0.874	1.589	0.629	0.621	0.674	0.789	0.277	1.103	1.112	0.600	1.021	1.134	0.971
	1HIV	1.699	1.487	0.924	0.662	0.479	0.491	1.207	0.928	0.929	1.566	0.581	0.971	0.836	0.809	0.378	1.248	0.457	1.039	1.424	1.592
	1HPS	1.257	1.676	1.111	0.791	0.784	0.526	0.967	0.675	1.694	0.671	0.875	0.638	0.652	0.763	1.194	1.349	0.568	0.868	1.152	0.718
	1HTE	1.633	0.990	1.439	4.833	0.699	0.807	0.603	0.913	0.442	0.657	0.716	0.602	0.712	0.702	0.692	1.780	1.968	0.913	1.200	0.981
	1HTF	1.575	0.697	1.077	0.903	0.989	0.736	0.543	0.783	1.596	0.716	0.845	0.645	0.764	0.800	1.466	1.345	0.626	1.003	1.175	0.863
	1HTG	1.463	0.806	0.887	0.719	1.132	0.696	0.896	0.772	0.359	1.113	0.883	0.697	1.259	0.879	0.506	1.686	0.724	1.013	1.301	0.773
	1HVI	1.414	1.083	1.132	0.822	1.477	1.083	1.319	1.279	1.759	0.862	0.666	0.686	0.643	0.507	1.884	1.624	0.566	0.966	1.139	1.156
	1HVJ	1.330	1.096	1.015	0.843	1.186	1.001	1.272	1.203	1.809	0.669	0.597	0.710	0.720	0.474	0.982	0.996	0.591	1.028	1.355	1.185
H	1HVK	1.323	1.737	1.111	0.784	1.274	0.854	1.097	1.254	1.859	1.729	0.613	0.644	0.769	0.372	0.794	1.056	0.550	1.086	1.328	1.526
Ь	1HVL	1.399	1.040	1.135	0.874	1.315	0.901	1.317	1.067	1.772	0.588	0.535	0.735	0.708	0.526	1.009	1.051	0.583	1.012	1.157	1.596
	1HVS	1.565	5.002	1.303	0.971	1.025	0.877	1.133	1.082	1.764	0.517	0.585	0.687	0.675	0.366	1.726	1.661	0.643	1.080	1.240	0.994
	1SBG	1.316	1.105	0.974	0.417	0.982	0.390	0.790	0.768	1.556	0.863	1.049	0.608	0.611	0.674	0.665	1.619	0.688	0.791	1.229	1.460
	4HVP	1.553	1.184	1.038	0.707	0.445	0.727	1.311	1.122	0.560	0.862	0.891	0.617	1.126	0.687	0.406	1.078	0.464	1.106	1.182	0.781
	4PHV	1.586	1.590	1.108	0.784	0.921	0.397	0.719	0.986	1.544	0.898	0.914	0.708	0.904	0.958	0.811	0.941	0.494	0.792	1.098	1.522
	5HVP	1.633	1.102	0.935	0.915	4.894	0.478	1.413	1.174	0.790	0.924	0.855	0.865	0.816	0.919	0.285	1.331	0.397	0.855	1.150	0.831
	8HVP																				
	9HVP	0.926	1.329	1.085	0.842	1.239	0.414	0.769	0.774	0.436	1.616	0.878	0.670	0.801	0.623	1.922	1.672	0.570	0.736	1.136	0.485

0Å~ 2Å~ 4Å~ 6Å~ 8Å~ 10Å~


										Lig	and	ls									
		1HBV	1HEF	1HEG	1HIH	1HIV	1HPS	1HTE	1HTF	1HTG	1HVI	1HVJ	1HVK	1HVL	1HVS	1SBG	4HVP	4PHV	5HVP	8HVP	9HVP
oteins	1HBV	0.954	0.726	0.963	0.751	3.212	0.985	0.975	0.717	1.736	0.541	0.721	0.646	0.824	0.421	0.910	0.893	0.729	1.032	1.255	0.804
	1HEF	1.393	1.734	1.002	4.910	0.608	0.511	0.851	0.795	1.680	1.494	1.694	0.568	1.042	1.025	0.631	1.658	0.652	1.048	1.246	0.445
	1HEG	1.329	0.813	1.023	0.703	1.022	0.732	0.661	0.830	0.426	0.952	0.840	0.641	0.867	0.717	0.625	0.873	1.954	0.766	1.208	0.482
	1HIH	1.380	1.262	1.147	2.834	1.205	0.646	0.702	0.739	0.928	0.684	0.614	0.663	0.721	0.417	1.829	1.737	0.595	0.974	1.122	1.001
	1HIV	1.695	1.449	0.953	0.741	0.487	0.524	0.788	1.102	0.901	0.657	1.169	0.639	0.829	0.777	0.492	1.362	0.464	1.085	1.448	1.134
	1HPS	1.323	0.751	1.098	0.741	0.819	0.494	1.001	0.718	0.638	0.670	1.622	0.620	0.797	0.984	1.238	0.922	0.543	0.848	1.093	1.382
	1HTE	1.887	0.843	1.218	4.938	0.688	0.754	0.885	0.930	1.737	1.429	0.748	0.587	0.681	0.704	0.626	1.173	0.813	0.848	1.178	0.890
	1HTF	1.438		1.110	0.649				0.762		1.069							0.674			
	1HTG	1.632			0.511	0.718	0.639			0.498	1.290			0.962					1.014	1.311	
	1HVI	1.292		1.161	0.935		0.614					0.674							_		
0	1HVJ	1.442		1.010			0.890	1.241		1.773	0.642			1.418			_				
r	1HVK	1.389		1.122	0.591		0.842					0.593						0.538			
Ь	1HVL	1.419		1.092	0.788		0.877	1.413				0.727	0.726								
	1HVS	1.657			0.666		0.632							0.660						1.232	
	1SBG	1.308		0.989			0.461	0.484					0.536					0.633			
	4HVP	1.542	2.000		0.694		0.709			0.604				0.676				0.402			
	4PHV	1.280		1.091	0.651		0.338		0.847			0.829					_				0.000
	5HVP	1.586					0.416	1.353		0.826		0.847			0.917			0.512	_		
	8HVP	1.411	1.603		1.374		0.693				0.899		0.936							1.274	
	9HVP	1.157	1.590	1.003	0.339	1.095	2.942	0.638	0.650	0.471	0.735	0.811	0.671	0.690	0.642	0.964	0.563	0.566	0.724	1.098	0.467

0Å~ 2Å~ 4Å~ 6Å~ 8Å~ 10Å~

Table S2. Accuracy of χ_1 angles on the HIV protease set for flexible docking with GalaxyDock for (a) 2 flexible residues (2 ARG8's) and (b) 4 flexible residues (2 ARG8's and 2 ILE50's). The χ_1 angle prediction is considered accurate is its value is within 30° from the experimental value.

(b)

100% 75% 50% 25% 0%

Table S3. Comparison of the LXR β cross-docking experiment with RosettaLigand²⁸ and AutoDock4.

Receptor	Ligand	Galaxy-	Rosetta-	Rosetta-	AutoDock4 ^c	LigDock-
		Dock	Ligand 1 ^a	Ligand 2 ^b		CSA
1P8D	1P8D	1.33 Å	1.49 Å	1.39 Å	2.11 Å	2.01 Å
	1PQ6	2.41 Å	$2.06~\mathrm{\AA}$	2.24 Å	4.82 Å	3.73 Å
	1PQC	1.97 Å	1.78 Å	2.29 Å	4.42 Å	4.58 Å
1PQ6	1P8D	1.75 Å	1.20 Å	1.27 Å	2.91 Å	2.08 Å
	1PQ6	0.89 Å	2.05 Å	$2.08~{\rm \AA}$	1.45 Å	1.64 Å
	1PQC	1.84 Å	3.46 Å	3.61 Å	3.65 Å	2.41 Å
1PQC	1P8D	1.60 Å	0.98 Å	0.98 Å	4.57 Å	9.27 Å
	1PQ6	1.90 Å	3.70 Å	2.20 Å	2.73 Å	4.31 Å
	1PQC	1.00 Å	0.49 Å	0.53 Å	1.62 Å	1.81 Å
Avei	rage	1.63 Å	1.91 Å	1.84 Å	3.14 Å	3.64 Å
Succes	s Rate	88.9%	55.6%	44.4%	22.2%	22.2%

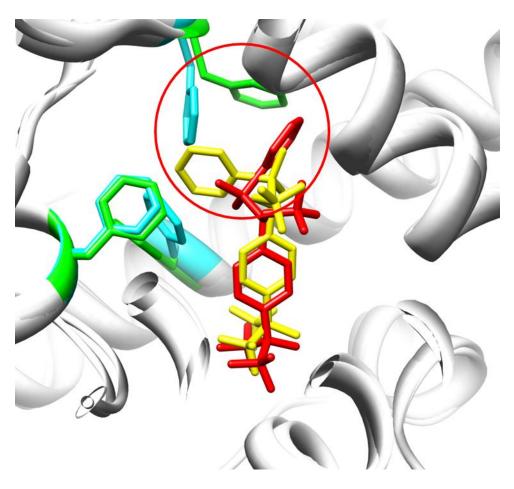
a. Flexible side-chain with rigid backbone.

Table S4. Cross-docking results of GalaxyDock for the cAPK set. RMSD (in \mathring{A}) and χ_1 angle accuracy (in %, in parenthesis) are shown.

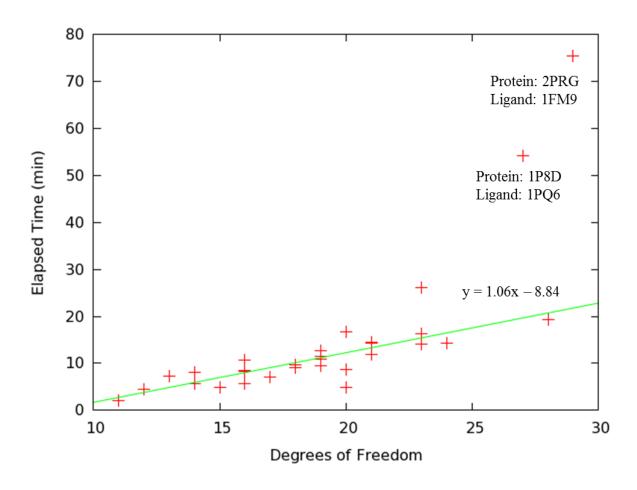
	Ligand	1BKX	1BX6	1STC	1YDT
Receptor					
1B	KX	1.11 (100)	2.94 (100)	2.93 (100)	1.37 (100)
1E	BX6	0.99 (50)	2.96 (100)	4.15 (50)	0.96 (50)
1S	STC	1.04(0)	3.75 (50)	0.56 (50)	5.92 (50)
1Y	'DT	1.06 (100)	1.19 (100)	0.97 (100)	1.21 (100)

b. Backbone flexibility allowed during minimization after side-chain and ligand placing.

c. Rigid docking. The values were taken from the RosettaLigand paper²⁸


Table S5. Cross-docking results of GalaxyDock for the diverse set. RMSD (in $\mbox{\normalfont\AA}$) is shown.

Protein	Receptor	Ligand	Flexible	Known	ocket	Predicte	d pocket
			residues	Galaxy Dock	LigDock CSA	Galaxy Dock	LigDock CSA
Aldose Reductase	2ACR	2FZB	F122, L300	3.651	4.882	3.430	3.653
Anti- Steroid Fab	1DBA	1DBB	W100	4.318	6.568	3.825	6.822
CDK2	1AQ1	1DM2	H84	1.742	6.628	1.206	1.764
	1DM2	1AQ1	I10, H84, Q131, L148	0.512	0.788	1.314	1.124
COX-2	1CX2	3PGH	R120	0.986	1.042	1.010	0.952
	3PGH	1CX2	F518	1.055	1.007	0.829	1.088
Estrogen Receptor	1ERR	3ERT	E419, M421, L525	1.646	1.239	1.894	2.435
11000pto1	3ERT	1ERR	M421, L525, L539	1.297	2.518	1.563	1.203
Factor Xa	1KSN	1XKA	Y99	1.687	1.585	1.686	2.941
	1XKA	1KSN	Q192	0.797	2.485	4.184	4.892
GSK-3 β	1Q4L	1UV5	R141	0.825	1.219	0.956	1.219
	1UV5	1Q4L	S66, R141, Q185	1.945	2.637	1.974	2.637
Hiv1 RT	1C1C	1RTH	K102, W229, P236	5.273	3.310	3.534	2.908
	1RTH	1C1C	K102, W229, P236	1.482	1.320	1.450	1.368
JNK3	1PMN	1PMV	I124, M146	1.087	1.116	0.919	5.071
	1PMV	1PMN	I124, M146	0.911	5.549	0.920	5.058
LXR β	1P8D	1PQ6	L330, F340, I353	1.955	2.113	1.888	3.274
	1PQ6	1P8D	R319, I353	1.637	1.798	1.749	1.734
Neuroami nidase	1A4Q	1NSC	E274	0.911	1.107	1.135	1.181
maasc	1NSC	1A4Q	E274	1.009	4.476	1.387	2.288
P38 Kinase	1BMK	1DI9	M109	1.758	5.980	3.635	4.006
ixiiiuse	1DI9	1BMK	I84, M109	1.197	1.025	1.048	4.023
PKA	1STC	1YDS	T183, F327	1.601	1.283	1.568	1.310


	1YDS	1STC	F54, F327	1.737	3.914	1.728	2.096
PPARγ	1FM9	2PRG	F282, F363	1.296	5.255	5.655	3.135
	2PRG	1FM9	E259, F282, Q286, F363, L453	4.459	3.830	6.394	7.891
TK	1KI4	1KIM	Y101, Y132, Y172	1.419	1.398	1.462	0.870
	1KIM	1KI4	Y101, Y132	0.894	4.120	0.907	1.367
Trypsin	1PPC	1PPH	Q192	1.069	8.458	0.680	2.904
	1PPH	1PPC	Q192, Y228	1.691	1.655	1.700	1.655

FIGURES

Figure S1. An example of LXRβ cross-docking experiments. When the ligand of 1PQC was docked to 1P8D (predicted: red and cyan, native: yellow and green, ligand RMSD: 1.97 Å, and χ_1 accuracy: 66.7%), some π - π interaction was preserved although the predicted pose has some error.

Figure S2. Correlation plot of the diverse set using experimental pocket between degrees of freedom and time. The green line is a trend line except two outliers.

