MOFs Under Pressure: The Reversible Compression of a Single Crystal

Kevin J. Gagnon^{a*}, Christine M. Beavers^b, and Abraham Clearfield^a

a Department of Chemistry, Texas A&M University, College Station, TX 77840.

b Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, CA 94720.

* Correspond author e-mail: kgagnon@mail.chem.tamu.edu.

Synthesis of ZAG-4: In a typical experiment $Zn(Oac)_2 \cdot 2H_2O$ (0.1 mmol in 2 mL ddi H₂O), in a 20 mL glass scintillation vial, was adjusted to a pH of ~1.8 using glacial acetic acid. In a separate vial the 1,4-butanebis(phosphonic acid) (0.2 mmol) was dissolved in 2 mL of ddi H₂O and was subsequently layered on top of the zinc acetate solution and set undisturbed for two days to allow for crystal growth. The resulting large colorless crystals were filtered and washed with ethanol and dried at room temperature.

	Vo	Ko	K'	K''	X^2w	delP _{max}
Μ	1160.173	9.38236	5.21098	-	1.049	0.077
BM2	1159.283	12.15152	4	-	12.7517	0.332
BM3	1160.174	8.73766	6.51476	-1.45664	0.9408	0.099
BM4	1160.096	11.66431	1.97567	1.3776	0.049	0.015
NS2	1158.199	16.09971	2	-	45.903	-0.585
NS3	1160.166	7.46254	10.24467	-10.3476	3.5833	0.134
NS4	1160.096	12.95447	-0.73121	3.21682	0.1571	0.027
V	1160.189	8.59717	6.71975	-	1.994	0.108

 Table S1. Results of equation of state calculations from eosfit¹

*Murnaghan, Birch-Murnaghan (2nd, 3rd and 4th order), Natural Strain (2nd, 3rd, and 4th order) and Vinet

Table S2. K. P. I's for the structures at each pressure

	Ambient	1.65(10) GPa	2.81(9) GPa	5.69(3) GPa	7.32(7) GPa	Ambient post			
K. P. I.*	69.7%	76.5%	80%	86.5%	87.5%	69.8%			
* A scalar lated by the preserve Plater ²									

*As calculated by the program Platon.

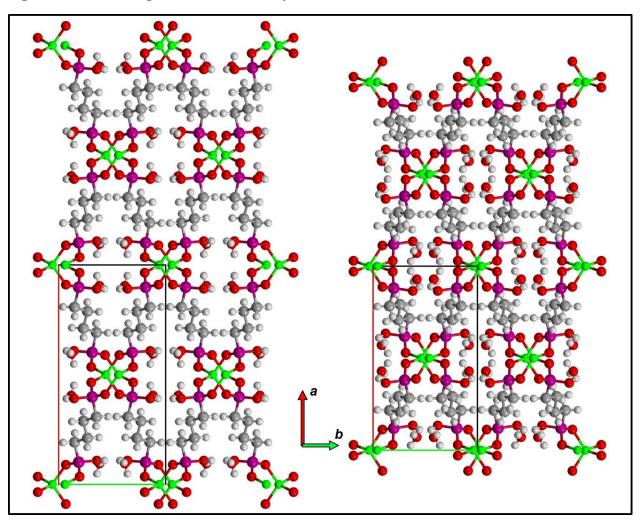


Figure S1. Full-size Figure 1 from main body of work

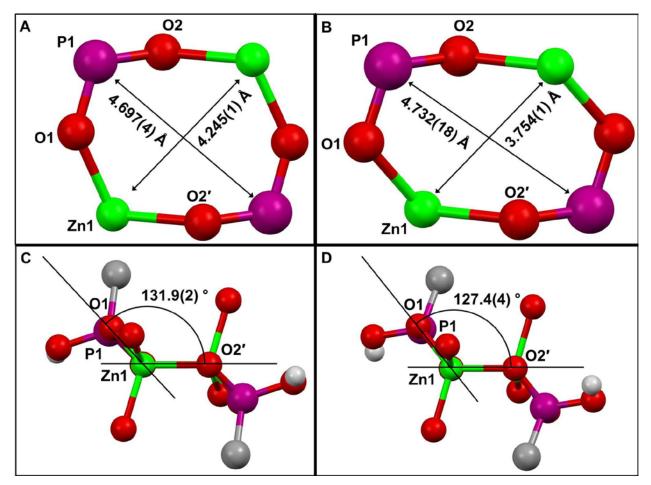
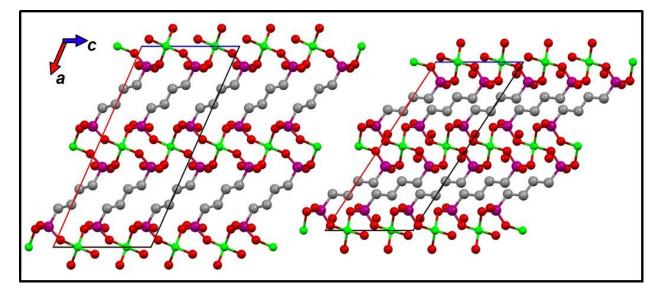
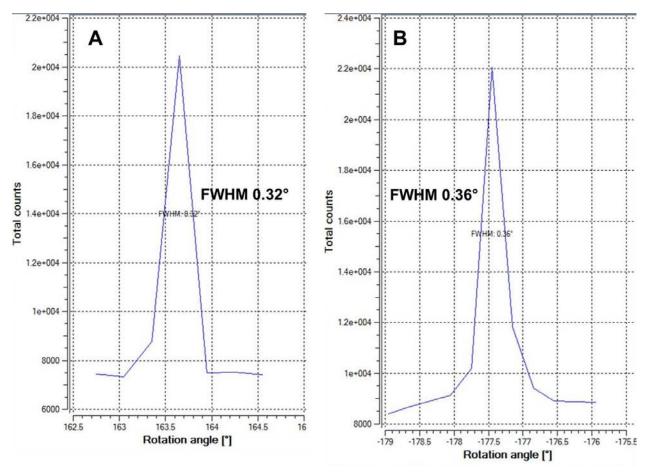
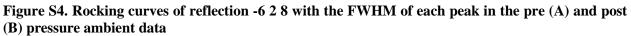





Figure S2. Full-size Figure 4 from main body of work

Figure S3. Full-size Figure 5 from the main body of work

Refrences

- 1. Angel, R. J., *Reviews in Mineralogy and Geochemistry* 2000, 41 (1), 35-59.
- 2. A.L.Spek, Acta Cryst. 2009, D65, 148-155.