The C-terminus of Botulinum A Protease Has Profound and Unanticipated Kinetic Consequences Upon the Catalytic Cleft

Peter Šilhár¹, Matthew A. Lardy², Mark S. Hixon², Charles B. Shoemaker³, Joseph T. Barbieri⁴ Anjali K. Struss¹, Jenny M. Lively¹, Sacha Javor¹ and Kim D. Janda^{1,5}*

¹ Departments of Chemistry and Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA, 92037, USA

²Takeda California Inc., 10410 Science Center Drive, San Diego, CA 92121, USA.

³ Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA, 01536, USA

⁴ Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI, 53226, USA

⁵ Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA, 92037, USA

KEYWORDS: Botulinum neurotoxin, zinc-dependent metalloprotease, protease inhibitor, small molecule inhibitor, natural product

Supporting Information

General. D-chicoric acid was purchased from ChromaDex. 2,4-Dichlorocinnamic hydroxamate was synthetized and described previously.¹ Lomofungin was purchased from Santa Cruz Biotechnology, Inc.

LC/MS Assay for BoNT/A Light Chain Activity with SNAP-25 (141-206)²

BoNT/A LC (1-448) at 0.1 nM was assayed at 20 °C, pH 7.4, in 40 mM HEPES in 100 µl volumes with a total DMSO concentration of 2%. At timed intervals, ranging from 20 min to 40 min, 25 µl aliquots were withdrawn and quenched by the addition of 3 µl of 15% aqueous TFA, ¹³C – labeled internal standard was added to a 1.0 µM final concentration. Sample analysis was done by use of an Agilent 1100 LC/MS system. A 20 µl sample was injected onto a Zorbax 300SB-C8 column (4.6 x 50 mm, 5 µm, Agilent Technologies) subjected to a gradient (A to B where A = 0.1 % formic acid in water and B = 0.1 % formic acid in acetonitrile) of 2.5 % B from 0 to 2.5 min, 2.5 % B to 97.5 % B from 2.5 to 10 min, and 97.5 % B from 10 to 13 min at a constant flow rate of 0.5 ml/min. A column-solvent equilibration time of 4 min was conducted prior to the next sample analysis. Mass spectral acquisition included a solvent front delay of 2.5 min. Operational parameters were: positive single ion monitoring of m/z 460.9 and 462.9 corresponding to the M⁺² peak of the reaction product and labeled internal standard respectively, nitrogen as a nebulizing and drying gas (20 psi, 3 L/min), HV capillary voltage at 4 kV and the drying gas temperature to 300 °C. Run analysis and quantitation was done by use of Chemstation software (Agilent). Enzyme velocities were determined from a linear fit of product formation versus incubation time. The inhibition constants were determined by a non-linear least squares global fit of the suitable inhibition model to the initial rates of product formation for a matrix of substrate and inhibitor concentrations bracketing *K*_M(apparent) and *K*_I(apparent).

Competitive: $v = \frac{v_{max}S}{K_m \left(1 + \frac{I}{K_{is}}\right) + S}$ Uncompetitive: $v = \frac{v_{max}S}{K_m + S \left(1 + \frac{I}{K_{ii}}\right)}$ Noncompetitive: $v = \frac{v_{max}S}{K_m \left(1 + \frac{I}{K_{is}}\right) + S \left(1 + \frac{I}{K_{ii}}\right)}$ Partial Noncompetitive: $v = \frac{v_{max}S \left(1 + \delta \frac{I}{K_{ii}}\right)}{K_m \left(1 + \frac{I}{K_{is}}\right) + S \left(1 + \frac{I}{K_{ii}}\right)}$

 V_{max} = velocity at saturating substrate concentration

- K_m = substrate concentration producing a velocity = 0.5 V_{max}
- K_{is} = inhibition constant for the free enzyme
- K_{ii} = inhibitor constant for the enzyme-substrate complex
- δ = fractional velocity at saturating inhibitor concentration

Figure S1. Inhibition profile of 2,4-dichlorocinnamic hydroxamate against BoNT/A LC (1-448).

Figure S2. Inhibition profile of Lomofungin against BoNT/A LC (1-448).

Figure S3. Inhibition profile of chicoric acid against BoNT/A LC (1-448).

Figure S4. Double inhibition experiment against BoNT/A LC (1-448) – chicoric acid (**3**) in combination with 2,4dichlorocinnamic hydroxamate (**1**) displaying synergistic inhibition (α – synergistic coefficient, δ – partial inhibition coefficient for chicoric acid, EC₅₀ – effective inhibition concentration).

¹ Boldt, G. E.; Kennedy, J. P.; Janda, K. D. Org. Lett. 2006, 8, 1729-1732.

² Čapková, K., Hixon, M.S., McAllister, L.A.; Janda, K.D. *Chem. Commun*, **2008**, *14*, 3525-3527.