Supporting Information

Facile Fabrication and Enhanced Photocatalytic Performance of Ag/AgCl/rGO Heterostructure Photocatalyst

Guoqiang Luo † , Xiaojuan Jiang † , Meijuan Li †,‡ , Qiang Sheng † , Lianmeng Zhang †* ,

Huogen Yu ‡*

[†] State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China

[‡] Department of Chemistry, School of Science, Wuhan University of Technology,
Wuhan 430070, People's Republic of China

Phone: 0086-27-87871029. Fax: 0086-27-87879468.

E-mail: lmzhang@whut.edu.cn (L. Zhang), yuhuogen@yahoo.cn (H.Yu)

Contents:

Figure S1 The photographs of GO solution (left) before and (right) after hydrothermal treatment at 130°C

Figure S2 FESEM image of the rGO obtained from a hydrothermal treatment at 130°C

Figure S3. The rate constant (k) of phenol decomposition by various photocatalysts:

(a) Ag/AgCl, (b) Ag/AgCl/rGO (1.7 wt%), (c) Ag/AgCl/rGO (2.3 wt%), (d) Ag/AgCl/rGO (3.2 wt%), and (e) Ag/AgCl/rGO (6.4 wt%)

Figure S1:

Figure S1 The photographs of GO solution (left) before and (right) after hydrothermal treatment at 130° C

Figure S2:

Figure S2 FESEM image of the rGO obtained from a hydrothermal treatment

Figure S3. The rate constant (*k*) of phenol decomposition by various photocatalysts:

(a) Ag/AgCl, (b) Ag/AgCl/rGO (1.7 wt%), (c) Ag/AgCl/rGO (2.3 wt%), (d)

Ag/AgCl/rGO (3.2 wt%), and (e) Ag/AgCl/rGO (6.4 wt%)