Configuration Control in the Synthesis of Homo- and Heteroleptic Bis(oxazolinylphenolato/thiazolinylphenolato) Chelate Ligand Complexes of Oxorhenium(V): Isomer Effect on Ancillary Ligand Exchange Dynamics and Implications for Perchlorate Reduction Catalysis

Jinyong Liu,^{*,†,§} Dimao Wu,¹ Xiaoge Su,[⊥] Mengwei Han,[†] Susana Y. Kimura,[†] Danielle L. Gray,[‡] John R. Shapley,[‡] Mahdi M. Abu-Omar,[#] Charles J. Werth,[⊽] and Timothy J. Strathmann^{*,§}

[†]Department of Civil and Environmental Engineering and [‡]Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States

[§]Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States ¹Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States

[⊥]Pure Storage Inc., Mountain View, California 94041, United States

[#]Department of Chemistry and School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States ^vDepartment of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States

Corresponding Author

*(J.L.) E-mail: <u>jyliu@mines.edu</u>; <u>jinyong.liu101@gmail.com</u>. *(T.J.S.) E-mail: <u>strthmnn@mines.edu</u>.

Present Address

D.W.: Room B-901, Hong Ta Xiao Qu, Anhai, Jinjiang, Fujian 362261, P.R. China

S.K.: Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States

Table of content

Supplemental tables and figures (S2-S12)

A proposed mechanism for isomer conversion (S13)

NMR spectra (S14-S26)

Coordinates of DFT-optimized structures (*S27-S31*)

References (S32)

SUPPLEMENTAL TABLES AND FIGURES

	N,N-trans	N,N-cis	$[\operatorname{Re}(O)(hoz)_2(H_2O)]$	$[\mathbf{H}_{2}hoz]$
	$\operatorname{Re}(\mathbf{U})(\operatorname{noz})_2 \operatorname{CI}$	$Ke(U)(noz)_2 CI^{\bullet}C_7H_8$	[011]	$[\text{Re}(\mathbf{U})(noz)\text{Cl}_3]$
Formula	CueHucClN2OcRe	CasHa4ClNaOsRe	C10H18E2N2O0ReS	CıeHieCleNeOeRe
Formula weight	561.98	654.11	693.61	634 89
Temperature (K)	193(2)	173(2)	188(2)	188(2)
Wavelength (Å)	0.71073	1.54178	0.71073	0.71073
Crystal system	monoclinic	monoclinic	triclinic	monoclinic
Space group	$P2_1/c$	$P2_1/c$	P1	$P2_1/c$
a(Å)	9.2210(9)	17.5402(6)	11.8818(3)	9.8742(8)
$b(\mathbf{A})$	7.9281(8)	7.4270(2)	13.6186(4)	15.0566(12)
$c(\dot{A})$	23.284(2)	19.3930(6)	14.7507(4)	3.6439(11)
α (deg)	90	90	108.1620(10)	90
β (deg)	95.854(4)	110.2000(10)	93.3860(10)	90.1360(10)
γ (deg)	90	90	99.3290(10)	90
$V(Å^3)$	1693.3(3)	2370.96(13)	2222.61(11)	2028.5(3)
Z	4	4	4	4
$\rho_{\text{calc}} (\text{g cm}^{-3})$	2.204	1.832	2.073	2.079
Absorption coefficient (mm ⁻¹)	7.370	11.399	5.642	6.419
F(000)	1080	1280	1344	1224
Crystal size (mm ³)	$0.492 \times 0.266 \times 0.206$	$0.323\times0.314\times0.054$	$0.465 \times 0.169 \times 0.03$	$0.322 \times 0.127 \times 0.05$
θ range (deg)	1.758 - 25.689	7.581 - 68.071	1.463 - 25.507	1.35 - 26.41
Index ranges	$-11 \le h \le 11$	$-20 \le h \le 21$	$-14 \le h \le 14$	$-12 \le h \le 12$
	$-9 \le k \le 9$	$-8 \le k \le 8$	$-16 \le k \le 16$	$-18 \le k \le 18$
	$-28 \le l \le 27$	$-23 \le l \le 18$	$-17 \le l \le 17$	$-17 \le l \le 17$
No. of reflections collected	23771	23318	31644	24087
No. of independent rflns, Rint	3209, 0.0239	4216, 0.0274	8247, 0.0252	4160, 0.0295
Completeness to $\theta = 25.69^{\circ}$	100.0 %	98.1 %	99.9 %	100.0 %
Absorption correction	integration	integration	integration	integration
Max. and min. transmission	0.4314 and 0.1966	0.6635 and 0.1665	0.8483 and 0.1558	0.7524 and 0.2258
Refinement method	full-matrix	full-matrix	full-matrix	full-matrix
	least-squares on F ²	least-squares on F ²	least-squares on F ²	least-squares on F ²
Data/restraints/parameters	3209 / 0 / 244	4216 / 0 / 309	8247 / 0 / 643	4160 / 0 / 269
Goodness-of-fit on F ²	1.379	1.138	1.041	1.052
$R1/wR2 (I > 2\sigma(I))$	0.0285 / 0.0586	0.0214 / 0.0554	0.0166 / 0.0394	0.0152 / 0.0366
R1/wR2 (all data)	0.0299 / 0.0590	0.0217 / 0.0557	0.0189 / 0.0404	0.0164 / 0.0372
Largest diff. peak/hole (e Å ⁻³)	1.643 and -1.197	0.905 and -0.865	1.419 and -0.567	0.820 and -0.508
Instrument	A^a	\mathbf{B}^{o}	А	A

Table S1. Crystal Data and Refinement Details

^aSiemens Platform diffractometer equipped with an Apex II CCD detector using graphite-monochromatized Mo K α radiation. ^bBruker X8 kappa diffractometer equipped with an Apex II CCD detector using graphite-monochromatized Cu K α radiation.

	N,N-trans Re(O)(htz) ₂ Cl (5a)	N,N-cis Re(O) $(htz)_2$ Cl (5b)	N,N-trans Re(O)(hoz)(htz)Cl (7a)	[HtBu ₂ Py] [Re(O)(htz)Cl ₃] (6)
Formula	C ₁₈ H ₁₆ ClN ₂ O ₃ S ₂ Re	C ₁₈ H ₁₆ ClN ₂ O ₃ S ₂ Re	C ₁₈ H ₁₆ ClN ₂ O ₄ SRe	$C_{22}H_{30}Cl_3N_2O_2SRe$
Formula weight	594.10	594.10	578.04	679.09
Temperature (K)	100(2)	100(2)	173(2)	100(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_{1}/c$	$P2_{1}/n$	$P2_{1}/c$	$P\overline{1}$
a (Å)	9.4422(8)	16.2996(6)	9.2555(8)	8.1795(4)
$b(\mathbf{A})$	8.0051(7)	7.5281(2)	8.0421(7)	9.8471(4)
c (Å)	24.614(2)	16.4903(6)	24.075(2)	16.8728(8)
α (deg)	90	90	90	104.3792(17)
β (deg)	93.041(3)	111.7661(12)	94.944(4)	101.3449(18)
γ (deg)	90	90	90	98.7890(18)
$V(Å^{3})$	1857.9(3)	1879.18(11)	1785.3(3)	1261.29(10)
Ζ	4	4	4	2
$\rho_{\rm calc} ({\rm g \ cm^{-3}})$	2.124	2.100	2.151	1.788
Absorption coefficient (mm ⁻¹)	6.932	6.853	7.101	5.239
F(000)	1144	1144	1112	668
Crystal size (mm ³)	$0.223\times0.157\times0.067$	$0.201\times0.165\times0.081$	$0.174 \times 0.10 \times 0.049$	$0.163\times0.075\times0.029$
θ range (deg)	2.652 - 27.244	2.215 - 28.311	1.698 - 28.432	2.185 - 25.373
Index ranges	$-12 \le h \le 12$	$-21 \le h \le 21$	$-12 \le h \le 12$	$-9 \le h \le 9$
	$-10 \le k \le 10$	$-10 \le k \le 10$	$-10 \le k \le 10$	$-11 \le k \le 11$
	$-31 \le l \le 31$	$-21 \le l \le 21$	$-32 \le l \le 32$	$-20 \le l \le 20$
No. of reflections collected	60050	51563	53422	29598
No. of independent rflns, R _{int}	4142, 0.0248	4657, 0.0469	4465, 0.0488	4612, 0.0352
Completeness to $\theta = 25.69^{\circ}$	99.9 %	100.0 %	100.0 %	99.9 %
Absorption correction	integration	integration	integration	integration
Max. and min. transmission	0.71771 and 0.41746	0.84296 and 0.62854	0.7459 and 0.3678	0.97943 and 0.86410
Refinement method	full-matrix	full-matrix	full-matrix	full-matrix
	least-squares on F ²	least-squares on F ²	least-squares on F ²	least-squares on F ²
Data/restraints/parameters	4142 / 0 / 244	4657 / 0 / 244	4465 / 0 / 244	4612 / 0 / 290
Goodness-of-fit on F ²	1.332	1.086	1.068	1.072
$R1/wR2 (I > 2\sigma(I))$	0.0262 / 0.0551	0.0184 / 0.0371	0.0249 / 0.0496	0.0142 / 0.0308
R1/wR2 (all data)	0.0265 / 0.0552	0.0250 / 0.0388	0.0298 / 0.0511	0.0164 / 0.0314
Largest diff. peak/hole (e Å-3)	2.521 and -1.792	0.427 and -0.938	1.632 and -0.980	0.389 and -0.636
Instrument	C^{c}	С	\mathbf{D}^{d}	С

Table S1 (continued). Crystal Data and Refinement Details

^cBurker D8 Venture equipped with a Photon 100 detector using multilayer optics to monochromatize Mo K α radiation. ^dBruker X8 kappa diffractometer equipped with an Apex II CCD detector using graphite-monochromatized Mo K α radiation.

2a, 5a and 7a

	<u>_</u>		
2h -	bnc	5h	

	2a	2b	5a	5b	7a
Re(1)-O(1)	1.671(4)	1.6902(18)	1.692(3)	1.6927(17)	1.681(3)
Re(1)-O(2)	1.977(4)	1.9863(17)	1.979(3)	1.9933(17)	1.993(3)
Re(1)-O(3)	1.990(4)	2.0006(16)	1.990(3)	2.0036(16)	2.005(3)
Re(1)-N(2)	2.038(4)	2.099(2)	2.079(3)	2.102(2)	2.062(3)
Re(1)-N(1)	2.090(4)	2.113(2)	2.094(3)	2.108(2)	2.102(3)
Re(1)-Cl(1)	2.3824(14)	2.3700(6)	2.4175(10)	2.3650(6)	2.4061(10)

Table S3. Calculated Energy of Optimized Structures (B3LYP, Augmented LANL2DZ Basis Set for Re; 6-31G** for C, H, O, N; 6-311G* for S)

		298K (2	25 °C)	351K (7	78 °C)
Structure	B3LYP Energy ^a (Hartree)	Total Gibbs free energy ^{a,b} (Hartree)	$\frac{\varDelta G}{(\text{kcal mol}^{-1})}$	Total Gibbs free energy ^{<i>a,b</i>} (Hartree)	$\Delta G $ (kcal mol ⁻¹)
2a 2b	-1720.688525 -1720.687935	-1720.422307 -1720.421373	0 +0.586	-1720.437156 -1720.436212	0 +0.592
5a 5b	-2366.67799 -2366.678647	-2366.418359 -2366.419179	0 -0.515	-2366.433381 -2366.434217	0 -0.525
7a 7b 7c	-2043.686061 -2043.681982 -2043.683102	-2043.422091 -2043.419053 -2043.419643	0 +1.906 +1.536	-2043.436861 -2043.433963 -2043.434525	$0 \\ +1.819 \\ +1.466$
7d	-2043.681775	-2043.419211	+1.807	-2043.434217	+1.659
7a ⁺ 7b ⁺	-1716.086866 -1716.083104	-1715.780738 -1715.777755	0 +1.872		

With solvent effect (ethanol for 2a to 7d, acetonitrile for $7a^+$ and $7b^+$) addressed using SMD model.

^bWith zero-point energy corrected.

Figure S1. ORTEP diagrams (35% probability thermal ellipsoids) of **2a** and **2b**. Hydrogen atoms and co-crystallized toluene with **2b** are omitted for clarity.

Figure S2. ORTEP diagram (35% probability thermal ellipsoids) of $[\text{Re}(O)(hoz)_2(H_2O)][OTf]$ crystallized from the CH₃CN solution of $2a^+$. Only one of the two crystallographically independent molecules is shown. Hydrogen atoms and $[OTf]^-$ anion are omitted for clarity.

Additional note: Crystallization of $2b^+$ from CH₃CN solution also yielded this structure. Highly disordered yellow and orange crystals were also obtained as μ -oxo trimers and tetramers of C₂-symmetric Re(O)(*hoz*)₂ units. Since $2a^+$ and $2b^+$ do not interconvert appreciably in solution (i.e., <5% interconversion for both isomers at 80 °C for 4 h), this aqua complex should not be a dominant species for either $2a^+$ and $2b^+$ in CH₃CN. Attempts to crystallize $2a^+$ and $2b^+$ in anhydrous solvents were not successful.

Figure S3. VT ¹H NMR (500 MHz, CD₃CN) spectra (half-height line width shown) of CH₃CN coordinated in $5a^+$ (left) and $5b^+$ (right). Inset plots: model fitting for measured solvent exchange rate (k_s) and temperature (*T*).

Figure S4. VT ¹H NMR (500 MHz, CD₃CN) spectra (half-height line width shown) of CH₃CN coordinated in $7a^+$. Inset plot: model fitting for measured solvent exchange rate (k_s) and temperature (T).

Figure S5. Comparative assignment of ¹H NMR (500 MHz, CD₃CN) resonances from equitorial *htz* and axial *hoz* ligands in the three N,N-*trans* cations at low temperature. The trace amount of $7b^+$ is identified in the zoomed-in spectrum of $7a^+$.

Figure S6. Partial ¹H NMR (500 MHz, 95/5 CD₃CN/D₂O) spectra of the homogeneous reaction mixture during ClO₄⁻ reduction using cation $2a^+$. Reaction conditions: Re (4 mM), LiClO₄ (100 mM) and Me₂S (400 mM) in 95/5 (v/v) CD₃CN/D₂O (corresponding to the data shown in **Figure 10a**).

Figure S7. Partial ¹H NMR (500 MHz, 95/5 CD₃CN/D₂O) spectra of the homogeneous reaction mixture after ClO_4^- reduction was completed using (**a**) cation $2a^+$ and (**b**) $2b^+$. Reaction conditions: Re (16 mM), LiClO₄ (100 mM) and Et₂S (400 mM) in 95/5 (v/v) CD₃CN/D₂O.

Figure S8. (a) Reaction profile and (b) partial ¹H NMR (500 MHz, 95/5 CD₃CN/D₂O) spectra of the homogeneous reaction mixture using $2b^+$ at corresponding time points. Reaction conditions: Re (16 mM), LiClO₄ (100 mM) and Et₂S (400 mM) in 95/5 (v/v) CD₃CN/D₂O. The dominant species at 8 min and 240 min are shown in (c).

Figure S9. Ultraviolet and visible absorbance spectra of the five Re(O)(L_{O-N})₂Cl complexes in CH₂Cl₂ (1.78 × 10⁻⁵ M for UV and 1.78 × 10⁻³ M for visible).

Selected adsorption band assignment based on literature:³ **2a** 231 nm (ϵ = 38500 M⁻¹ cm⁻¹, *IL*) 266 nm (ϵ = 20100, *IL*); 329 nm (ϵ = 14900, *LMCT*); 670 nm (ϵ = 109, *LF/MLLCT*) **2b** 230 nm (ϵ = 42100); 264 nm (ϵ = 22300); 340 nm (ϵ = 17200); 649 nm (ϵ = 105) **5a** 230 nm (ϵ = 37600); 273 nm (ϵ = 23900); 355 nm (ϵ = 15700); 696 nm (ϵ = 142) **5b** 229 nm (ϵ = 34000); 263 nm (ϵ = 25400); 358 nm (ϵ = 12300); 632 nm (ϵ = 168) **7a** 229 nm (ϵ = 29300); 266 nm (ϵ = 18300); 340 nm (ϵ = 11900); 676 nm (ϵ = 133)

(IL = inter-ligand transition; LMCT = ligand-metal charge transfer; LF = ligand field transition, MLLCT = metal-ligand-to-ligand charge transfer)

Figure S10. Ultraviolet and visible absorbance spectra of the five $[\text{Re}(O)(L_{O-N})_2]^+$ complexes in CH₃CN (concentration for UV: 5×10^{-5} M for (a) and 2.5×10^{-5} M for (c) and (e); concentration for visible: 2.5×10^{-3} M for all).

Selected adsorption band assignment based on literature:³

- **2a**⁺ 211 nm (ε = 48100 M⁻¹ cm⁻¹, *LMCT/IL*); 283 nm (ε = 15100, *IL*); 309 nm (ε = 12900, *LMCT*); 565 nm (ε = 113, *LF*)
- $2b^+$ 209 nm (ε = 48200); 319 nm (ε = 14700); 537 nm (ε = 160); 662 nm (ε = 126)
- **5a**⁺ 216 nm (ε = 26000); 325 nm (ε = 12600); 594 nm (ε = 128)
- **5b**⁺ 216 nm (ε = 30300); 316 nm (ε = 13000); 348 nm (ε = 11400); 561 nm (ε = 274); 698 nm (ε = 194)
- $7a^+$ 215 nm ($\varepsilon = 31300$); 266 nm ($\varepsilon = 14600$); 330 nm ($\varepsilon = 9400$); 582 nm ($\varepsilon = 101$)

PROPOSED MECHANISM FOR ISOMER INTERCONVERSION

Reflux in EtOH enables the conversion from **2b** to thermodynamically favored **2a**. **2b** did not convert to **2a** at room temperature either in nonpolar solvent (CH₂Cl₂ or CHCl₃) after weeks or in the solid state after 4 years. Therefore, a polar environment is favorable to facilitate the conversion. Scrutiny of ¹H NMR spectra of **2a** and **2b** in CD₃CN identifies several slightly broadened resonances, while all resonances are sharp in CDCl₃. This supports a conclusion that certain dynamic processes are favored in polar solution environments. The possibility of thermodynamically driven isomer conversion via cationic [Re(O)(*hoz*)₂]⁺ species upon chloride dissociation is excluded, because heating CH₃CN solutions of **2a**⁺ and **2b**⁺ at 80 °C for 4 h only resulted in ~5% interconversion in both directions.

Therefore, we propose a mechanism whereby either EtOH or pyridines act to replace one of the oxazoline N in **2b** to open the chelate ring,¹ and the resulting intermediate (**A** or **B**) undergoes an interconversion such as a turnstile mechanism shown in **Scheme S1**, where the two isomers (**B** and **C**) could equilibrate based on their respective stabilities. Coordination with a relatively bulky and electron-rich pyridine might further lower the conversion energy barrier than with EtOH. A moderate steric hindrance on the pyridine is also needed to ensure that the oxazoline N pendant in **C** could readily exchange with the substituted pyridine to yield **2a'** (the enantiomer of **2a**).

Scheme S1. Proposed Mechanism for Pyridine-facilitated Conversion of 2b to 2a

NMR SPECTRA

Figure A1. ¹H NMR (CDCl₃, 500 MHz) spectrum of N,N-*trans* $Re(O)(hoz)_2Cl$ (2a). Solvent impurity peaks are assigned based on literature.²

Figure A2. ¹H NMR (CDCl₃, 500 MHz) spectrum of N,N-cis Re(O)(hoz)₂Cl (2b).

Figure A3. ¹H NMR (CD₃CN, 500 MHz) spectrum of N,N-*trans* [Re(O)(hoz)₂(NCMe)][OTf] (**2a**⁺) at room temperature.

Figure A4. ¹H NMR (CD₃CN, 500 MHz) spectrum of N,N-*cis* $[\text{Re}(O)(hoz)_2(\text{NCMe})][\text{OTf}]$ (**2b**⁺) at room temperature.

Figure A5. ¹H NMR (CD₃CN, 500 MHz) spectrum of $[H_2hoz][Re(O)(hoz)Cl_3]$ (**3**). Asterisks indicate an uncharacterized impurity containing one Re-coordinated *hoz* or two *hoz* ligands showing symmetry.

Figure A6. ¹H NMR (CD₃CN, 500 MHz) spectrum of $[HtBu_2Py][Re(O)(hoz)Cl_3]$ (4).

Figure A7. ¹H NMR (CDCl₃, 500 MHz) spectrum of N,N-*trans* Re(O)(*htz*)₂Cl (5a).

Figure A8. ¹H NMR (CDCl₃, 500 MHz) spectrum of N,N-*cis* Re(O)(*htz*)₂Cl (5b).

Figure A9. ¹H NMR (CD₃CN, 500 MHz) spectrum of N,N-*trans* $[\text{Re}(O)(htz)_2(\text{NCMe})][\text{OTf}]$ (**5a**⁺) at room temperature.

Figure A10. ¹H NMR (CD₃CN, 500 MHz) spectrum of N,N-*cis* [Re(O)(htz)₂(NCMe)][OTf] (**5b**⁺) at room temperature. Impurities marked with asterisks represent **5a**⁺ formed during the chloride abstraction from **5b** under reflux temperature.

Figure A11. ¹H NMR (CD₃CN, 500 MHz) spectrum of $[HtBu_2Py][Re(O)(htz)Cl_3]$ (6).

Figure A12. ¹H NMR (CDCl₃, 500 MHz) spectrum of N,N-*trans* Re(O)(hoz)_{eq}(htz)_{ax}Cl (**7a**). Asterisks indicate an uncharacterized isomer upon dissolution in CDCl₃.

Figure A13. ¹H NMR (CD₃CN, 500 MHz) spectrum of N,N-*trans* [Re(O)(hoz)_{eq}(htz)_{ax}(NCMe)][OTf] (**7a**⁺) at room temperature.

COORDINATES OF DFT-OPTIMIZED STRUCTURES (corresponding to Table S3)

2a

2b

Atom	Х	Y	Z
Re	-0.067682	-0.027931	-0.778052
CI	1.313178	-1.852678	-1.809258
0	-0.406236	0.522387	-2.345479
0	0.73359	-0.716511	0.909764
0	3.675339	2.028856	-0.129489
0	-0.958095	1.375294	0.355773
0	-3.690636	-1.913242	0.313679
Ν	1.673166	1.206249	-0.696516
Ν	-1.678772	-1.281657	-0.418634
С	1.960348	-0.826662	1.420052
С	3.011979	0.028641	1.001691
С	4.287574	-0.098922	1.583224
Н	5.084252	0.560141	1.255327
С	4.527126	-1.057821	2.557813
Н	5.515875	-1.154398	2.994677
С	3.48275	-1.8963	2.974698
Н	3.663351	-2.645621	3.740399
С	2.213082	-1.781471	2.419831
Н	1.398586	-2.423865	2.740582
С	2.747093	1.068433	0.025106
С	3.239297	2.878415	-1.236212
Н	3.864749	2.639678	-2.100596
Н	3.390755	3.915877	-0.939029
С	1.771097	2.486001	-1.43471
Н	1.072184	3.208116	-0.999876
Н	1.512742	2.33754	-2.484337
С	-2.224015	1.434805	0.772921
С	-3.161284	0.367072	0.698085
С	-4.477013	0.559625	1.183009
Н	-5.181881	-0.261372	1.11641
С	-4.868741	1.767056	1.73177
Н	-5.882855	1.898956	2.094451
С	-3.938632	2.816752	1.814288
Н	-4.233209	3.76922	2.246246
С	-2.643832	2.653461	1.34746
Н	-1.91997	3.46037	1.408168
С	-2.800398	-0.932675	0.174675
С	-3.190462	-3.089741	-0.401532
Н	-3.78835	-3.19088	-1.310444
Н	-3.339131	-3.953573	0.245522
С	-1.725445	-2.744352	-0.672428
н	-1.038822	-3.249344	0.013154
н	-1.421757	-2.960805	-1.695762

Atom	Х	Y	Z
Re	-0.070718	-1.008473	-0.067034
CI	0.701985	-2.378377	-1.963501
0	-0.187705	-2.28877	1.044044
0	0.447749	0.596035	-1.114915
0	4.100428	-0.086187	0.763265
0	-1.831861	-0.892531	-1.021409
0	-2.174593	1.791917	2.327888
Ν	1.992232	-0.813939	0.544957
Ν	-0.764739	0.382706	1.330614
С	1.414427	1.511896	-1.169641
С	2.639392	1.332881	-0.481166
С	3.636564	2.321834	-0.564054
Н	4.569498	2.176556	-0.030249
С	3.429744	3.472212	-1.314942
Н	4.202259	4.232648	-1.368538
С	2.219078	3.641831	-2.001194
Н	2.052389	4.538503	-2.591632
С	1.221691	2.674203	-1.935411
Н	0.282042	2.796404	-2.465458
С	2.85991	0.118022	0.283639
С	4.050605	-1.280542	1.60139
Н	4.114972	-0.954853	2.643066
Н	4.910765	-1.901328	1.350727
С	2.697627	-1.909532	1.252552
Н	2.787892	-2.76795	0.579799
Н	2.136281	-2.215985	2.13561
С	-2.924457	-0.190829	-0.704172
С	-3.050256	0.68015	0.414618
С	-4.275437	1.35155	0.636395
Н	-4.36175	2.007443	1.49517
С	-5.352549	1.184079	-0.216347
Н	-6.284152	1.707903	-0.028511
С	-5.223199	0.332349	-1.324711
Н	-6.059307	0.194128	-2.004776
С	-4.033975	-0.339403	-1.562686
Н	-3.925601	-1.001926	-2.416023
С	-1.959153	0.916416	1.341878
С	-1.00663	1.786058	3.209588
н	-1.312892	1.31954	4.148578
н	-0.720655	2.823528	3.3819
С	0.031179	0.965777	2.43409
н	0.83283	1.583014	2.020045
Н	0.473569	0.171441	3.038404

5a

Atom	Х	Y	Z
Re	0.04995	0.085208	-0.731476
CI	-1.21791	-1.747875	-1.923682
S	4.229236	-1.822636	0.112581
S	-4.19525	1.905366	0.196558
0	0.826596	1.449814	0.508366
0	-0.611863	-0.870233	0.878157
0	0.317033	0.748597	-2.2709
Ν	1.814718	-1.048951	-0.500996
Ν	-1.803959	1.110409	-0.485313
С	3.064669	-3.145609	-0.396891
Н	3.575836	-3.843085	-1.061156
Н	2.724184	-3.669655	0.498923
С	1.939376	-2.399105	-1.100907
н	2.157766	-2.264405	-2.167463
н	0.99132	-2.92676	-1.011864
С	2.920192	-0.623072	0.069298
С	3.148716	0.689541	0.651844
С	2.101271	1.635023	0.850105
С	2.398038	2.864695	1.476288
Н	1.578916	3.560796	1.628455
С	3.686869	3.176634	1.872982
н	3.885935	4.134573	2.345308
С	4.731765	2.261124	1.666328
н	5.745293	2.501352	1.969718
С	4.454907	1.042133	1.077343
Н	5.271741	0.342461	0.931826
С	-3.377594	2.843964	-1.153839
н	-3.783983	2.508486	-2.110507
н	-3.567527	3.909841	-1.024075
С	-1.900085	2.496691	-1.000111
н	-1.37476	2.56746	-1.953613
н	-1.403834	3.157687	-0.279243
С	-2.858833	0.728872	0.18378
С	-2.978519	-0.498518	0.956032
С	-1.816959	-1.23806	1.308569
С	-1.932708	-2.355448	2.152841
н	-1.029128	-2.893625	2.422397
С	-3.179031	-2.763566	2.609951
н	-3.254469	-3.638498	3.24943
С	-4.336655	-2.060518	2.244716
н	-5.311064	-2.389112	2.591269
-	4 220516	-0 939525	1 434959
С	-4.230310	0.000020	1.404000

5b	

Atom	X	Y	Z
Re	-0.04101	-1.173121	0.100736
S	-4.429038	0.603951	0.214373
S	2.35034	2.213994	2.265251
CI	-0.836848	-2.909859	-1.427613
0	-0.154241	-2.038225	1.561118
0	-0.137009	0.181999	-1.341113
0	1.776134	-1.528672	-0.644561
Ν	-2.092281	-0.565519	0.326854
Ν	0.758999	0.430091	1.238769
С	-0.798786	1.32196	-1.533713
С	-2.055235	1.556841	-0.915827
С	-2.702702	2.788248	-1.150167
Н	-3.650353	2.996512	-0.663248
С	-2.140295	3.749911	-1.977642
Н	-2.652547	4.692991	-2.138162
С	-0.910892	3.494745	-2.601818
Н	-0.468106	4.240703	-3.255693
С	-0.247447	2.293101	-2.386768
Н	0.706165	2.081531	-2.860638
С	-2.68417	0.50754	-0.125181
С	-4.265089	-0.773669	1.415847
Н	-4.123364	-0.354792	2.414757
Н	-5.168169	-1.384549	1.39646
С	-3.040729	-1.538384	0.9262
Н	-2.55116	-2.07062	1.741661
Н	-3.304261	-2.262597	0.147106
С	2.865567	-0.757164	-0.579182
С	3.002929	0.428194	0.205877
С	4.224703	1.141924	0.129219
Н	4.338736	2.060527	0.695645
С	5.281399	0.714155	-0.653811
Н	6.20225	1.287061	-0.685328
С	5.143182	-0.462652	-1.404732
Н	5.96312	-0.814825	-2.024304
С	3.957075	-1.177565	-1.36799
Н	3.831892	-2.085723	-1.949617
С	1.971487	0.901582	1.120932
С	0.576765	2.344985	2.722889
Н	0.493021	2.589488	3.782308
Н	0.117772	3.133698	2.122406
С	0.01649	0.966422	2.400283
Н	0.162812	0.270564	3.236302
Н	-1.048081	1.010704	2.171153

7a

Atom	X	Y	Z
Re	-0.169743	-0.014384	-0.753542
CI	1.132534	-1.844326	-1.884666
S	3.969671	2.081985	0.132518
0	-0.444475	0.627602	-2.300849
0	0.546583	-0.878634	0.886769
0	-1.010009	1.341787	0.474646
0	-3.890689	-1.801024	0.176148
Ν	1.635879	1.119821	-0.53875
Ν	-1.852673	-1.210444	-0.515313
С	1.767439	-1.154706	1.340169
С	2.887096	-0.360032	0.972136
С	4.156827	-0.703013	1.48291
Н	5.026054	-0.123501	1.187286
С	4.321229	-1.782811	2.337789
Н	5.309047	-2.034834	2.709656
С	3.204438	-2.542772	2.715103
Н	3.324425	-3.385764	3.389706
С	1.941826	-2.230796	2.227448
Н	1.069592	-2.813404	2.507722
С	2.703522	0.828604	0.152351
С	3.108597	2.926273	-1.251966
Н	3.230204	4.005359	-1.152901
Н	3.544946	2.589788	-2.19499
С	1.654287	2.491177	-1.100835
Н	1.109378	3.143648	-0.407831
Н	1.136909	2.498345	-2.060955
С	-2.28506	1.442694	0.857424
С	-3.271137	0.430858	0.691092
С	-4.589056	0.660134	1.152634
Н	-5.331235	-0.118253	1.016334
С	-4.937505	1.851393	1.762948
Н	-5.954461	2.013059	2.105033
С	-3.960197	2.845656	1.933998
Н	-4.220046	3.784499	2.415294
С	-2.661259	2.644529	1.493456
Н	-1.900994	3.408653	1.623302
С	-2.961024	-0.850998	0.094796
С	-3.434322	-2.955504	-0.600974
Н	-4.036766	-2.989499	-1.511732
Н	-3.611983	-3.845822	0.001456
С	-1.957473	-2.650269	-0.86004
Н	-1.287819	-3.224282	-0.213339
Н	-1.667429	-2.813428	-1.897284

7	h
	ν

Atom	v	v	7
Atom	•	1	L 0 700047
Re	0.044966	0.115146	-0.760817
CI	1.409401	-1.6/2/25	-1.925384
0	3.849041	1.944796	0.065787
0	-0.266673	0.71192	-2.319429
0	0.806353	-0.76536	0.862072
0	-0.77348	1.445185	0.499976
S	-3.915242	-2.050995	0.391925
Ν	1.8186	1.260056	-0.571924
Ν	-1.630096	-1.119283	-0.449295
С	2.037924	-0.99207	1.318636
С	3.124449	-0.149449	0.965871
С	4.404462	-0.400221	1.496298
н	5.226544	0.250814	1.218601
С	4.615512	-1.469578	2.354938
Н	5.60742	-1.661851	2.751146
С	3.538009	-2.296134	2.708131
н	3.697111	-3.132132	3.383535
С	2.264205	-2.060065	2.204237
Н	1.424917	-2.692695	2.476515
С	2.893139	1.002841	0.1179
С	3.430583	2.936846	-0.9234
Н	3.614747	3.924597	-0.501543
Н	4.042539	2.788214	-1.81685
С	1.949643	2.614791	-1.154063
Н	1.274987	3.30056	-0.631461
Н	1.681902	2.597958	-2.212137
С	-2.059223	1.582814	0.823999
С	-3.059159	0.58344	0.636907
С	-4.393369	0.88874	1.009205
H	-5.173355	0.15514	0.833144
С	-4.73642	2.105479	1.5677
H	-5.767913	2.311155	1.833748
С	-3.736803	3.068807	1.779947
н	-3 990152	4 027353	2 224123
С	-2.425922	2.810525	1.415195
н	-1 645886	3 550739	1 56441
C	-2 7/3/61	-0 7/53/3	0 1///733
C	-2 968099	-3 130007	-0 740945
ц	-2.300033	-3.169397	-0.7-03-5
н	-3 02/0252	-/ 160072	-0.38/312
C	-1 552070	-2 582727	-0.682025
ц	0.09502019	2 021140	0.002030
п	1 006074	-3.UZ1149	0.140/
11	-1.000974	-2.113400	-1.0000003

7c

Atom	X	Y	Z
Re	-0.15859	-1.010463	-0.073798
CI	0.541556	-2.472549	-1.921238
0	-0.226002	-2.227197	1.109825
0	0.245361	0.548068	-1.213741
S	4.409929	0.075512	0.724745
0	-1.967434	-1.007852	-0.927995
0	-2.24762	1.759647	2.367667
Ν	1.939299	-0.737134	0.408437
Ν	-0.818798	0.417266	1.308459
С	1.119079	1.552476	-1.261484
С	2.370001	1.467771	-0.598659
С	3.254445	2.561461	-0.69177
Н	4.217074	2.523047	-0.191055
С	2.918742	3.701941	-1.408739
Н	3.614296	4.533244	-1.459674
С	1.684888	3.766193	-2.070049
Н	1.419256	4.651204	-2.641194
С	0.79468	2.701131	-2.002372
Н	-0.16338	2.731839	-2.512055
С	2.733946	0.258263	0.133618
С	4.097257	-1.703157	1.04002
Н	4.642576	-2.021078	1.929423
Н	4.437966	-2.275174	0.17409
С	2.58798	-1.79001	1.232456
Н	2.212805	-2.76963	0.940338
Н	2.308421	-1.607763	2.277207
С	-3.057026	-0.305124	-0.596421
С	-3.149301	0.618947	0.482706
С	-4.371628	1.291435	0.715877
н	-4.430447	1.993803	1.539495
С	-5.480352	1.068109	-0.081932
Н	-6.40906	1.593781	0.114831
С	-5.386697	0.157632	-1.145837
н	-6.248632	-0.027261	-1.781024
С	-4.198921	-0.51198	-1.397886
н	-4.117572	-1.218329	-2.218436
С	-2.031888	0.902643	1.365665
С	-0.977489	1.986148	3.058792
н	-1.161597	1.878733	4.127595
н	-0.664242	3.00774	2.831533
C	-0.049205	0.918666	2.468863
0	-	-	-
н	0.908636	1.328769	2.14761

a
J.

Atom	Х	Y	Z
Re	0.059212	-1.091469	0.094131
CI	1.047407	-2.721829	-1.464179
0	0.004747	-2.119595	1.446577
0	0.455113	0.325611	-1.232253
0	4.12243	0.318184	0.742829
0	-1.662925	-1.315322	-0.9015
S	-2.402896	2.351297	2.076548
Ν	2.081678	-0.603129	0.671425
Ν	-0.811378	0.48662	1.201268
С	1.359912	1.271633	-1.485568
С	2.587852	1.324318	-0.782201
С	3.520598	2.332801	-1.085499
Н	4.457829	2.365901	-0.540758
С	3.247117	3.274839	-2.069423
Н	3.971372	4.050792	-2.295318
С	2.033327	3.213951	-2.768264
Н	1.81618	3.945375	-3.541636
С	1.098098	2.224121	-2.484165
Н	0.156673	2.165715	-3.021757
С	2.881738	0.318498	0.224203
С	4.15215	-0.683327	1.804535
Н	4.187889	-0.150463	2.758407
Н	5.056182	-1.278523	1.675241
С	2.850094	-1.466468	1.600484
Н	3.00897	-2.441654	1.130493
Н	2.296846	-1.613287	2.528765
С	-2.784457	-0.597728	-0.820869
С	-3.013414	0.490751	0.074465
С	-4.275683	1.135218	0.029928
Н	-4.480865	1.952561	0.713677
С	-5.268749	0.754764	-0.853267
Н	-6.22086	1.274868	-0.858218
С	-5.030042	-0.312601	-1.732654
Н	-5.79991	-0.627301	-2.43159
С	-3.81295	-0.972362	-1.712227
Н	-3.613293	-1.802114	-2.383304
С	-2.016222	0.965114	1.024757
С	-0.936098	1.985984	3.116952
Н	-1.253037	1.36976	3.961178
Н	-0.508129	2.920545	3.481077
С	0.005121	1.244559	2.17544
Н	0.63673	1.942711	1.613331
Н	0.649568	0.555827	2.723056

7a⁺

Atom	Х	Y	Z
Re	0.207111	0.105675	-0.662175
Ν	-1.080936	1.70604	-1.225891
S	-3.629461	-2.584636	-0.130919
0	0.465516	-0.114231	-2.32413
0	-0.533456	0.55307	1.111161
0	1.240414	-1.407183	0.084581
0	3.827236	1.963854	0.46181
Ν	-1.452856	-1.246667	-0.660881
Ν	1.794895	1.351428	-0.220766
С	-1.768784	0.617571	1.61208
С	-2.807131	-0.213947	1.110097
С	-4.094055	-0.102146	1.678512
С	-4.348308	0.788094	2.711367
С	-3.308651	1.584956	3.212639
С	-2.030885	1.498875	2.673687
С	-2.520478	-1.214374	0.090908
С	-2.728211	-3.067432	-1.657582
С	-1.329911	-2.488927	-1.460165
С	2.521329	-1.478641	0.459552
С	3.407099	-0.369886	0.542232
С	4.74373	-0.575293	0.957898
С	5.202243	-1.838604	1.286011
С	4.322285	-2.930849	1.210318
С	3.006808	-2.754561	0.807439
С	2.969589	0.975568	0.241136
С	3.224276	3.218406	0.001496
С	1.770482	2.832866	-0.296192
С	-1.789272	2.56307	-1.545437
Н	-4.904668	-0.709987	1.288939
Н	-5.347821	0.865034	3.126189
н	-3.500633	2.279453	4.025243
н	-1.217497	2.110914	3.050501
Н	-2.716513	-4.154214	-1.743524
Н	-3.240343	-2.632341	-2.51829
Н	-0.681834	-3.177597	-0.906074
Н	-0.856807	-2.260782	-2.416316
Н	5.409545	0.278182	1.015084
н	6.23093	-1.981121	1.599717
Н	4.670627	-3.926579	1.469407
Н	2.320172	-3.592993	0.748125
Н	3.779283	3.537028	-0.882935
н	3.339543	3.948407	0.80213
н	1.070105	3.222174	0.447945
Н	1.449599	3.150974	-1.289203
С	-2.674475	3.639639	-1.942567
Н	-2.18929	4.603534	-1.763338
Н	-3.60085	3.58166	-1.363839
Н	-2.906946	3.540775	-3.007142

7b⁺

Atom	X	Y	Z
Re	0.006416	-0.04683	-0.688147
Ν	-1.311894	1.517194	-1.299677
0	-3.561361	-2.376433	-0.135727
0	0.303427	-0.267449	-2.34243
0	-0.76397	0.436185	1.071745
0	1.024434	-1.543213	0.094831
S	3.851508	2.185683	0.673621
Ν	-1.638627	-1.384959	-0.692357
Ν	1.590309	1.229291	-0.196971
С	-1.995196	0.45607	1.590383
С	-3.008584	-0.414074	1.109946
С	-4.285297	-0.389795	1.703865
С	-4.561381	0.484002	2.746061
С	-3.554183	1.337266	3.221478
С	-2.283374	1.322747	2.657292
С	-2.703153	-1.370213	0.061891
С	-3.089985	-3.135368	-1.296139
С	-1.660321	-2.620921	-1.507923
С	2.317973	-1.623565	0.409944
С	3.211853	-0.514856	0.469023
С	4.569791	-0.765028	0.7939
С	5.030835	-2.037247	1.074338
С	4.133403	-3.117141	1.039314
С	2.802688	-2.911786	0.713405
С	2.76821	0.850545	0.257854
С	2.754363	3.375243	-0.190824
С	1.388868	2.699348	-0.161486
С	-2.058648	2.326411	-1.654838
Н	-5.05226	-1.060177	1.331661
Н	-5.55051	0.503111	3.191593
Н	-3.765247	2.018641	4.040598
Н	-1.496927	1.97473	3.024067
Н	-3.152627	-4.194125	-1.046967
Н	-3.755274	-2.904364	-2.131692
Н	-0.897097	-3.311442	-1.137016
Н	-1.447123	-2.386123	-2.552197
Н	5.273345	0.060805	0.807119
Н	6.076689	-2.195907	1.3144
Н	4.481327	-4.121803	1.261293
Н	2.099002	-3.737163	0.674835
Н	3.129702	3.517794	-1.206241
Н	2.759146	4.325214	0.34398
Н	0.843252	2.939861	0.758795
Н	0.786496	3.004025	-1.016683
С	-2.988127	3.34569	-2.099778
Н	-2.466253	4.30053	-2.210777
Н	-3.790026	3.450769	-1.363067
н	-3.418098	3.049542	-3.061144

REFERENCES CITED IN SUPPORTING INFORMATION

- (1) Shan, X.; Ellern, A.; Espenson, J. H. Inorg. Chem. 2002, 41, 7136-7142.
- (2) (a) Fulmer, G. R.; Miller, A. J.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. Organometallics 2010, 29, 2176–2179. (b) Errington, R. J. Advanced Practical Inorganic and Metalorganic Chemistry; Blackie Academic & Professional, 1997; pp 279–280.
- (3) (a) Machura, B.; Kruszynski, R. Polyhedron 2007, 26, 2957-2963; (b) Machura, B.; Kusz, J. Polyhedron 2008, 27, 187-195; (c) Machura, B.; Kusz, J.; Tabak, D.; Kruszynski, R. Polyhedron 2009, 28, 493-500; (d) Machura, B.; Wolff, M.; Kruszynski, R.; Kusz, J. Polyhedron 2009, 28, 1211-1220; (e) Machura, B.; Wolff, M.; Kusz, J.; Kruszynski, R. Polyhedron 2009, 28, 2949-2964; (f) Machura, B.; Wolff, M.; Kowalczyk, W.; Musiol, R. Polyhedron 2012, 33, 388-395; (g) Machura, B.; Wolff, M.; Benoist, E.; Schachner, J.; Mösch-Zanetti, N.; Takao, K.; Ikeda, Y. Polyhedron 2014, 69, 205-218; (h) Machura, B.; Wolff, M. Struct. Chem. 2014, 25, 1607-1623.