Supporting Information # Structural Characterization of Unprecedented $Al_{14}O^-$ and $Al_{15}O_2^-$: Photoelectron Spectroscopy and Density Functional Calculations ### Tomomi Watanabe and Tatsuya Tsukuda* Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, Tel: +81-3-5841-4363 #### 1. Experimental results **Figure S1.** Mass spectra of Al_n with O_2 with a channel length of 7mm. **Figure S2.** Photoelectron spectra of Al_n^- (n = 12-16) with the same kinetic energies as $Al_{14}0^-$ and $Al_{15}0_2^-$. **Figure S3.** Fitting results of photoelectron spectra of $Al_{14}O^-$ and $Al_{15}O_2^-$. Red curves were obtained by the least square fit of the data in the energy range of 3.6–4.2 eV with fourth–degree polynomials. #### 2. Computational results **Figure S4.** Optimized structures of Al_{n^-} (n = 12-16) obtained at the B3LYP/6-31G(d) level. The numbers are selected bond lengths (Å). **Table S1.** VDE of Al_{n} (n = 12-16). | n | VDE _{cal} (eV) ^a | VDE _{exp} (eV) ^b | |----|--------------------------------------|--------------------------------------| | 12 | 2.43 | 2.80 ± 0.1 | | 13 | 3.45 | 3.75 ± 0.1 | | 14 | 2.59 | 2.65 ± 0.1 | | 15 | 2.81 | 2.95 ± 0.1 | | 16 | 2.80 | | ^a calculated for the structures shown in Figure S4 at the B3LYP/6-31G(d) level. ^b from ref 1. **Figure S5.** Optimized structures of $Al_{13}O^-$, Al_2O and O_2 obtained at the B3LYP/6–31G(d) level. The numbers are selected bond lengths (Å). **Table S2.** Total energy of O_2 and Al_nO_{m} -. | | E (Hartree) ^a | |----------------------|--------------------------| | 02 | -150.3200421 | | Al_2O | -560.1798515 | | Al_{12} | -2909.3725651 | | Al ₁₃ O- | -3227.1492532 | | $Al_{14}O^{-}$ | -3469.6178843 | | Al_{15} | -3636.7520577 | | $Al_{15}O_2^-$ | -3787.3998384 | | Al_{16}^- | -3879.2035060 | $^{^{\}rm a}$ calculated for the structures shown in Figure 4, 5, S4 and S5 at the B3LYP/6–31G(d) level. #### References **1.** Cha, C. Y.; Ganteför, G.; Eberhardt, W. The Development of the 3p and 4p Valence Band of Small Aluminum and Gallium Clusters. *J. Chem. Phys.* **1994**, *100*, 995.