
Supporting Information for "Mixing Thermodynamics of Ternary Block-Random Copolymers Containing a Polyethylene Block" (by Bryan S. Beckingham, Adam B. Burns, and Richard A. Register, submitted as Article ma-2013-00311p to *Macromolecules*)

Thermal Characterization

For the block-random copolymers, both E block melting endotherms and VCH*r*hI or S*r*hI glass transitions could be observed, with relevant values given in the article's Table 1. Figure S-1 shows a representative second-heat DSC thermogram, for E-(VCH*r*hI)₄₉-68.

Figure S-1. DSC heating thermogram of E-(VCH*r*hI)₄₉-68. A distinct polyethylene melting peak, $T_m = 101$ °C, and glass transition for the VCH*r*hI block, $T_g = 23$ °C, are observed.

Polymer Specific Volumes (Mass Densities)

To precisely determine block volume fractions and interaction energy densities, accurate expressions for the mass densities of the various polymers are required. A quadratic expression for lnV was employed, Equation [S-1], where V is the specific volume (cm^3/g), T_r is a reference temperature, and A, B, and C are polymer-dependent constants:

$$\ln V = A + B(T-T_r) + C(T-T_r)^2$$
 [S-1]

Equation [S-1] implies a linear dependence of thermal expansion coefficient, α , on temperature:

$$\alpha \equiv d(\ln V)/dT = B + 2C(T-T_r)$$
[S-2]

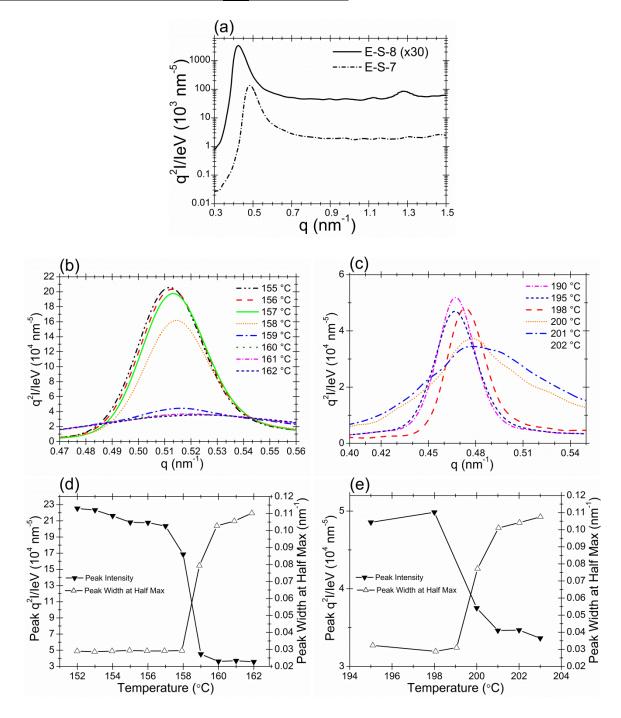

One can thus obtain values of A, B, and C either from a quadratic fit of lnV *vs.* T, using Equation [S-1], or a linear fit of α *vs.* T, using Equation [S-2], coupled with a value of V at a single temperature (typically at 23 °C, V₂₃). Parameters for the polymers of interest in the present work, as well as the sources of the data used in the fits, are summarized in Table S-1, with T_r = 160 °C. 50SPI is a saturated polyisoprene whose precursor contained 37% 1,4-addition; the parameters for hI (54% 1,4-addition) were thus simply obtained by linear interpolation in 1,4-content between 50SPI and EP (poly(ethylene-*alt*-propylene), 93% 1,4-addition in precursor).

Table S-1. Temperature Parameters Describing Specific Volumes for Polymers of Interest (T_r = 160 °C)

Polymer	T Range Fit (°C)	Α	B × 10 ⁴ (K ⁻¹)	$\begin{array}{c} C\times 10^8 \\ (K^{\text{-}2}) \end{array}$	Data Source
EP	27-167	0.2519	7.18	23	[1] for α , [2] for V ₂₃
50SPI	27-167	0.2508	7.33	16	[1] for α , [2] for V_{23}
hI		0.2511	7.28	18	interpolation
S	100-210	0.0079	5.79	1	[3]
VCH	171-277	0.0890	5.75	8	[4]
Е	140-270	0.2567	7.60	12	[5], [6]

For copolymers, values of V were calculated as the weight-fraction-weighted average of the values of V for the copolymers' constituents.

Additional SAXS Patterns and TODT Determination

Figure S-2. (a) SAXS patterns for E-S-7 and E-S-8 at 120 °C; intensities for the latter have been multiplied through by 30 for clarity. SAXS patterns for (b) E-S-7 and (c) E-S-8 near T_{ODT} and (d) and (e) the corresponding primary peak intensities and peak widths, indicating $T_{ODT} = 159$ and 200 ± 1 °C, respectively.

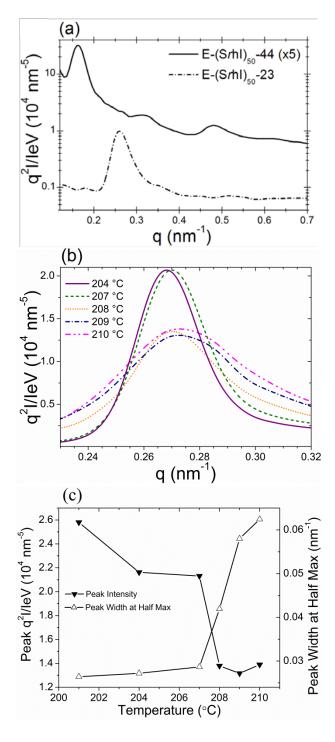


Figure S-3. (a) SAXS patterns for E-(SrhI)₅₀-44 and E-(SrhI)₅₀-23 at 185 ± 5 °C; intensities for the former have been multiplied through by 5 for clarity. (b) E-(SrhI)₅₀-23 near its order-disorder temperature, T_{ODT}. (c) E-(SrhI)₅₀-23 SAXS peak intensity ($\mathbf{\nabla}$, left axis) and full width at halfmaximum (Δ , right axis) plotted against temperature, indicating T_{ODT} = 208 ± 1°C.

References

- Krishnamoorti, R.; Graessley, W. W.; Dee, G. T.; Walsh, D. J.; Fetters, L. J.; Lohse, D. J. Macromolecules 1996, 29, 367-376.
- [2] Krishnamoorti, R. Ph.D. Thesis; Princeton University, 1994.
- [3] Richardson, M. J.; Savill, N. G. Polymer 1977, 18, 3-9. This reference contains correlations of V (not lnV) as quadratic equations in T. The correlation for the "liquid" density for a PS with M_w = 111 kg/mol, M_w/M_n < 1.1, was used to calculate V at every 1 °C from 100-210 °C, corresponding roughly to the range over which the V measurements were made, and those values were fit to Equation [S-1] to obtain the values of A, B, and C in Table S-1.</p>
- [4] Reichart, G. C. Ph.D. Thesis; Princeton University, 1997.
- [5] Zoller, P.; Walsh, D. J. Standard Pressure-Volume-Temperature Data for Polymers; Lancaster, PA: Technomic Publishing Co., 1995.
- [6] This equation is assumed also to hold for lightly-branched polyethylenes, such as hydrogenated low-vinyl polybutadiene. This assumption is bolstered by the limited thermal expansion coefficient data presented in Graessley, W. W.; Krishnamoorti, R.; Balsara, N. P.; Butera, R. J.; Fetters, L. J.; Lohse, D. J.; Schulz, D. N.; Sissano, J. A. *Macromolecules* **1994**, 27, 3896 (1994): $\alpha = 7.45 \times 10^{-4} \text{ K}^{-1}$ at 121 °C and 7.65 $\times 10^{-4} \text{ K}^{-1}$ at 167 °C, which interpolate to 7.62 $\times 10^{-4} \text{ K}^{-1}$ at 160 °C. Data given by Zoller and Walsh in reference [5] for branched (low-density) polyethylene yield slightly higher melt densities: A = 0.2564, B×10⁴ = 7.32 \text{ K}^{-1}, C×10⁸ = 27 K⁻²). Note that the fit parameters in Table S-1 yield a density for amorphous polyethylene at 23 °C of 0.860 g/cm³.