Zn₂(VO₄)(IO₃): A Novel Polar Zinc(II) Vanadium(V) Iodate With A Large SHG Response

Bing-Ping Yang, Chun-Li Hu, Xiang Xu, Chao Huang and Jiang-Gao Mao*

Supporting Information

- Table S1. Selected bond angles (°) for Zn₂(VO₄)(IO₃).
- Table S2. Calculation of dipole moment for IO₃, ZnO_6 , ZnO_5 , VO_4 polyhedra and net dipole moment for a unit cell in $Zn_2(VO_4)(IO_3)$ (D = Debyes).
- Table S3. The state energies (eV) of the highest valence band (H-VB) and the lowest conduction band (L-CB) of the crystal Zn₂(VO₄)(IO₃).
- Figure S1. Interconnections of ZnO_n and IO₃ polyhedra (a), interconnections of ZnO_n and VO₄ polyhedra (b). Zn(1)O₅ trigonal bipyramids and Zn(2)O₆ octahedra are shaded in blue and turquoise, respectively.
- Figure S2. Experimental and simulated powder X-ray diffraction data for Zn₂(VO₄)(IO₃).
- Figure S3. Infrared spectrum for Zn₂(VO₄)(IO₃).
- Figure S4. UV-Vis absorption spectrum for $Zn_2(VO_4)(IO_3)$.
- Figure S5. Calculated band structures of Zn₂(VO₄)(IO₃) (the Fermi level is set at 0 eV).
- Figure S6. Total and partial electronic density of states of Zn₂(VO₄)(IO₃).
- Figure S7. The imaginary and real parts of the dielectric function polarized along three dielectric axes directions (a and b) and the average imaginary part and real part of the dielectric function over three dielectric axes directions (c) for Zn₂(VO₄)(IO₃).

Figure S8. Calculated linear refractive indices for Zn₂(VO₄)(IO₃).

Figure S9. The calculated macroscopic dipole moment vector for compound $Zn_2(VO_4)(IO_3)$ (D = Debyes).

Table S1 Selected bond angles (°) for $Zn_2(VO_4)(IO_3)$.

O(11)-Zn(1)-O(3)#1	130.2(3)	O(1)#3-Zn(2)-O(13)#3	108.0(3)
O(11)-Zn(1)-O(4)	117.8(3)	O(1)#3-Zn(2)-O(12)#4	90.4(3)
O(3)#1-Zn(1)-O(4)	110.8(3)	O(13)#3-Zn(2)-O(12)#4	92.7(2)
O(11)-Zn(1)-O(3)	98.2(3)	O(1)#3-Zn(2)-O(11)	93.4(3)
O(3)#1-Zn(1)-O(3)	95.5(3)	O(13)#3-Zn(2)-O(11)	152.0(2)
O(4)-Zn(1)-O(3)	85.3(2)	O(12)#4-Zn(2)-O(11)	105.3(2)
O(11)-Zn(1)-O(4)#1	88.4(3)	O(1)#3-Zn(2)-O(12)	160.4(2)
O(3)#1-Zn(1)-O(4)#1	84.1(2)	O(13)#3-Zn(2)-O(12)	90.3(2)
O(4)-Zn(1)-O(4)#1	87.0(2)	O(12)#4-Zn(2)-O(12)	81.64(12)
O(3)-Zn(1)-O(4)#1	171.6(3)	O(11)-Zn(2)-O(12)	71.8(2)
O(1)-V(1)-O(4)#6	108.6(3)	O(1)#3-Zn(2)-O(2)#5	97.0(3)
O(1)-V(1)-O(3)	110.8(3)	O(13)#3-Zn(2)-O(2)#5	76.6(2)
O(4)#6-V(1)-O(3)	114.2(3)	O(12)#4-Zn(2)-O(2)#5	168.4(2)
O(1)-V(1)-O(2)	107.4(4)	O(11)-Zn(2)-O(2)#5	83.3(2)
O(4)#6-V(1)-O(2)	107.3(3)	O(12)-Zn(2)-O(2)#5	94.0(2)
O(3)-V(1)-O(2)	108.3(3)	O(13)-I(1)-O(11)	96.4(3)
O(13)-I(1)-O(2)#7	80.8(3)	O(13)-I(1)-O(12)	90.7(3)
O(11)-I(1)-O(2)#7	85.4(2)	O(11)-I(1)-O(12)	86.7(3)
O(12)-I(1)-O(2)#7	167.6(3)		
Zn(1)#2-O(3)-Zn(1)	95.5(3)	Zn(1)-O(4)-Zn(1)#2	93.8(2)
Zn(1)-O(11)-Zn(2)	124.0(3)	Zn(2)#12-O(12)-Zn(2)	130.2(3)
V(1)-O(1)-Zn(2)#8	159.3(4)	V(1)-O(2)-Zn(2)#9	130.2(3)
V(1)-O(3)-Zn(1)#2	125.0(4)	V(1)-O(3)-Zn(1)	139.2(4)
V(1)#11-O(4)-Zn(1)	130.2(4)	V(1)#11-O(4)-Zn(1)#2	127.3(3)
I(1)-O(11)-Zn(1)	129.2(3)	I(1)-O(11)-Zn(2)	101.6(3)
I(1)-O(12)-Zn(2)#12	126.6(3)	I(1)-O(12)-Zn(2)	99.9(3)
I(1)-O(13)-Zn(2)#8	111.9(3)		

Symmetry transformations used to generate equivalent atoms: #1 x, -y+1, z+1/2; #2 x, -y+1, z-1/2; #3 x+1, y, z; #4 x, -y+2, z-1/2; #5 x+1, y, z+1; #6 x-1, -y+1, z-1/2; #7 x, y, z+1; #8 x-1, y, z; #9 x-1, y, z-1; #10 x, y, z-1; #11 x+1, -y+1, z+1/2; #12 x, -y+2, z+1/2.

Table S2. Calculation of dipole moment for IO₃, ZnO_6 , ZnO_5 , VO_4 polyhedra and net dipole moment for a unit cell in $Zn_2(VO_4)(IO_3)$ (D = Debyes).

$Zn_2(VO_4)(IO_3) (Z = 2)$							
Polar unit (a unit cell)	Dipole moment (D)						
	x-component	y-component	z-component	total magnitude			
IO ₃	6.043674967	-5.43944	-14.8672	16.94545			
	6.043654865	5.439315	-14.8671	16.94532			
ZnO ₆	-0.603396147	1.071935	2.301066	2.609221			
	-0.603561645	-1.0719	2.300968	2.609158			
ZnO ₅	2.018369277	-1.36626	-0.71147	2.539027			
	2.01826008	1.366327	-0.71136	2.538947			
VO_4	-0.909799716	2.60281	-0.49807	2.801862			
	-0.909915945	-2.6027	-0.49807	2.801799			
Net dipole moment	13.09728574	0	-27.5513	30.51			
Cell Volume	285.8 Å ³						

Table S3. The state energies (eV) of the highest valence band (H-VB) and the lowest conduction band (L-CB) of the crystal Zn₂(VO₄)(IO₃).

Compound	k-point	H-VB	L-CB
Zn ₂ (VO ₄)(IO ₃)	Z (0.000, 0.000, 0.500)	-0.26316	3.19116
	G (0.000, 0.000, 0.000)	-0.10011	2.74104
	Y (0.000, 0.500, 0.000)	-0.00005	2.70447
	A (-0.500, 0.500, 0.000)	0	2.73605
	В (-0.500, 0.000, 0.000)	-0.01875	2.80005
	D (-0.500, 0.000, 0.500)	-0.36018	3.29278
	E (-0.500, 0.500, 0.500)	-0.32275	3.26668
	C (0.000, 0.500, 0.500)	-0.28764	3.12957

Figure S1. Interconnections of ZnO_n and IO_3 polyhedra (a), Interconnections of ZnO_n and VO_4 polyhedra (b). $Zn(1)O_5$ trigonal bipyramids and $Zn(2)O_6$ octahedra are shaded in blue and turquoise, respectively.

Figure S2. Experimental and simulated powder X-ray diffraction data for $Zn_2(VO_4)(IO_3)$.

Figure S3. Infrared spectrum for Zn₂(VO₄)(IO₃).

Figure S4. UV-Vis absorption spectrum for $Zn_2(VO_4)(IO_3)$.

Figure S5. Calculated band structures of $Zn_2(VO_4)(IO_3)$ (the Fermi level is set at 0 eV).

Figure S6. Total and partial electronic density of states of $Zn_2(VO_4)(IO_3)$.

(a)

(c)

Figure S7. The imaginary and real parts of the dielectric function polarized along three dielectric axes directions (a and b) and the average imaginary part and real part of the dielectric function over three dielectric axes directions (c) for $Zn_2(VO_4)(IO_3)$.

Figure S8. Calculated linear refractive indices for Zn₂(VO₄)(IO₃).

Figure S9. The calculated macroscopic dipole moment vector for $Zn_2(VO_4)(IO_3)$ (D = Debyes).