MOF Luminescence in the Yellow Gap by Co-doping of the Homoleptic Imidazolate ${}^{3}_{\infty}$ [BaIm₂]:Eu²⁺ with Divalent Europium

Jens-Christoph Rybak[¥], Michael Hailmann[¥], Philipp R. Matthes[¥], Alexander Zurawski[¥], Jörn Nitsch[¥], Andreas Steffen[¥], Joachim G. Heck[#], Claus Feldmann[#], Stefan Götzendörfer[|], Jürgen Meinhardt[|], Gerhard Sextl[|], Holger Kohlmann^{&,#}, Stefan J. Sedlmaier[§], Wolfgang Schnick[§] and Klaus Müller-Buschbaum^{*},[¥].

[¥]Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

[#] Institut f
ür Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 15,76131 Karlsruhe, Germany

Fraunhofer Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg, Germany

[&] Anorganische Festkörperchemie, Universität des Saarlandes, 66125 Saarbrücken, Germany
 [#] Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig,
 Germany

[§] Department Chemie, Universität München LMU, Butenandtstraße 5-13, 81377 München, Germany

Crystallographic data:

Investigation by powder diffraction shows that 1 - 5 build structures isotypic to the non-doped compound 6 (see Fig. 1). The structure of 6 was solved from PXRD date exclusively. Crystallo-graphic data is displayed in Table 1.

Further information was deposited at the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223336033 or e-mail: <u>depos-</u> <u>it@ccdc.cam.ac.uk</u>) and may be requested by citing the deposition number CCDC-856315, the names of the authors and the literature citation.

Fig. 2 shows the complete coordination spheres and linkage of the Ba centers in **6**. The octahedral coordination polyhedra for the two Ba atoms are depicted in Fig. 3. Selected interatomic distances and angles can be found in Table 2.

Fig. S1: Powder diffraction data of ${}^{3}_{\infty}[Ba_{1-x}Eu_{x}(Im)_{2}]$ (x = 0.01, 0.02, 0.2) (1, 2, 5) and ${}^{3}_{\infty}[Ba(Im)_{2}]$ (6).

Formula	C ₆ H ₆ BaN ₄
Formula weight [g/mol]	271.48
Crystal system, space group	monoclinic, $P2_1/c$
	a = 934.21(5)
Lattice parameters [pm]	b = 2209.82(9)
	c = 764.54(3)
Monoclinic angle [°]	$\beta = 95.597(3)$
Cell volume [nm ³]	1570.84(12)
Ζ	8
Density [g/cm ³]	2.2957(2)
$\mu [{\rm cm}^{-1}]$	38.941
X-ray radiation	Cu-K _{α1} , $\lambda = 154.059 \text{ pm}$
Diffractometer	STOE STADI P
<i>d</i> range	1.80643-9.29765
Data Points	4000
Reflections	276
Refined parameters	70 (18 for background)
R_P	0.038
wR _P	0.047
R _{bragg}	0.009
χ^2	1.120
Wght. Durbin-Watson	1.288

Tab. S1: Crystallographic data for ${}^{3}_{\infty}$ [Ba(Im)₂] (6). Standard deviations are given in parentheses.

Fig. S2: The coordination spheres and linkage of Ba1 and Ba2 in ³_∞[Ba(Im)₂]. Symmetry operations: I: x, 3/2-y, z-1/2; II: 1-x, y-1/2, ¹/₂-z; III: 2-x, y-1/2, ¹/₂-z; IV: 1+x, 3/2-y, ¹/₂+z; V: 1+x, 3/2y, z-1/2;

Fig. S3: Coordination polyhedra of the atoms Ba1 (left) and Ba2 (right) in ${}^{3}_{\infty}$ [Ba(Im)₂] (6). Ba atoms are displayed in grey, N in green and C in blue. H atoms have been omitted for clarity. Edges of the polyhedra do not represent bonds.

Atom sites	Distance /pm	Atom sites	Angle /°	
$Ba1 - N5^{V}$	279(2)	$N3 - Ba1 - Cent1^{1*}$	86.1	
$Bal - Centl^{1*)}$	286	$N3 - Ba1 - N1^{II}$	93.8(5)	
$Ba1 - N1^{IV}$	287(2)	$N1^{II} - Ba1 - Cent1^{I^*)}$	96.9	
$Ba1 - N8^{III}$	290(1)	$N1^{II} - Ba1 - N5^{V}$	164.6(5)	
$Ba1 - N1^{II}$	293(3)	$N1^{lV}-Ba1-Cent1^{l^{\ast})}$	173.8	
Ba1 – N3	309(2)	$N3-Ba1-N8^{III}\\$	176.4(4)	
$Ba2 - N4^{I}$	269(2)	N2 - Ba2 - N7	90.6(6)	
Ba2 – N2	270(2)	N2 - Ba2 - N6	91.3(8)	
Ba2 – N4	277(1)	N6 - Ba2 - N7	99.7(4)	
Ba2 – N7	282(1)	N2 - Ba2 - N4	166.8(8)	
$Ba2 - N6^{I}$	300(1)	$N6 - Ba2 - N4^{I}$	167.6(4)	
Ba2 – N6	310(2)	$N7 - Ba2 - N6^{I}$	169.6(6)	

Tab. S2: Selected interatomic distances and angles in ${}^{3}_{\infty}$ [Ba(Im)₂], deviations given in brackets

Sym. op. I: x, 3/2-y, z-1/2; II: 1-x, y-1/2, ¹/₂-z; III: 2-x, y-1/2, ¹/₂-z; IV: 1+x, 3/2-y, ¹/₂+z; V: 1+x, 3/2-y, z-1/2.

*) Cent1: centroid created from the atoms N7-C10-N8-C12-C11

Photoluminescence and determination of quantum yield:

Excitation and emission spectra were recorded using a photoluminescence spectrometer Horiba Jobin Yvon Spex Fluorolog 3, equipped with a 450 W Xenon lamp, double monochromators, Ulbricht sphere and photomultiplier as detector. Determination of the absolute quantum yield was performed as suggested by *Friend*.¹ In addition, the quantum yield was determined in comparison to a reference phosphor material with known quantum yield. To this concern, BaMgAl₁₀O₁₇:Eu (BAM) was used, having a quantum yield of 80% at λ_{exc} = 365 nm.

Fig. S4: Three-dimensional photoluminescence spectra of ${}^{3}_{\infty}$ [Ba(Im)₂]:0.1Eu²⁺ (4), depicting the correlation of emission and excitation by an antenna triggered and metal triggered luminescence.

S6

S6

1 ab. 55. Observed decay times t_{obs} of ∞ Da(111)/1.0.05 Eu (5), deviations are given in brack	Tab.	S3:	Observed	decay	times	τ_{obs} of	°∞[Ba	(Im)2]:	:0.0	5 Eu	(3)	, deviations	are given	i in	bracke	ets.
---	------	-----	----------	-------	-------	-----------------	-------	-----	------	------	------	-----	--------------	-----------	------	--------	------

T [K]	τ ₁ [ns]	τ ₂ [ns]	A ₁ (f) ^a	A ₂ (f) ^a
293	166(3)	444(3)	4016;	4085;
	. ,	. ,	26 %	74 %
77	357(14)	947(4)	1667;	7566;
			8 %	92 %

^a $A_{1/2}$ =Pre-exponential factor; $f_{1/2}$ =contribution to steady state emission.

Fig. S5: Decay fitting by a bi-exponential fit (top) and residuals (bottom) of ${}^{3}_{\infty}$ [Ba(Im)₂]:0.05Eu²⁺ (**3**) at 77K.

References:

(1) J. V. de Mello, H. F. Wittmann, R. H. Friend, Adv. Mater. 1997, 9, 230.

S7