Kramers Escape Rate Problem

Damodar Rajbhandari, B.Sc.

Theory of Complex Systems Division Marian Smoluchowski Institute of Physics

Jagiellonian University

Specialisation Seminar II
11 May, 2020

What you see in this talk?

- Quick Recap
- Basic Idea
- Quest for Solution
- Closing Remarks

AIM of this talk: To find the rate at which a Brownian particle escapes from a potential well over a potential barrier

A Quick Recap

Using a box and some number of particles, we want to make a system out of it.

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random
- Ask what is the equilibrium phase space density for this particle?

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random
- Maxwellian distribution for velocities applies,

$$
f_{\text {eq }}(\vec{r}, \vec{v})=\frac{1}{\text { Volume }}\left(\frac{m}{2 \pi K_{B} T}\right)^{3 / 2} e^{-\frac{m|\vec{V}|^{2}}{2 K_{B} T}}
$$

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
- Given that at some instant of time it has (say) position r_{0} and velocity v_{0}, ask what happens to it as a function of time?

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
- We ask for the conditional PDF i.e. $f\left(\vec{r}, \vec{v}, t \mid \vec{r}_{0}, \overrightarrow{v_{0}}, t_{0}\right)$. Ask what's this equal to?

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
- We ask for the conditional PDF i.e. $f\left(\vec{r}, \vec{v}, t \mid \overrightarrow{r_{0}}, \overrightarrow{v_{0}}, t_{0}\right)$. Ask what's this equal to?
- Intuitively, we can guess:
- At $\left(t-t_{0}\right) \rightarrow \infty$, it's equal to $f_{\text {eq }}(\vec{r}, \vec{v})$ and particle will relax to equilibrium and looses its memory of what was its initial values

A Quick Recap

- Conditions: systems represents ideal gas $\&$ is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
- We ask for the conditional PDF i.e. $f\left(\vec{r}, \vec{v}, t \mid \overrightarrow{r_{0}}, \overrightarrow{v_{0}}, t_{0}\right)$. Ask what's this equal to?
- Intuitively, we can guess:
- At $\left(t-t_{0}\right) \rightarrow \infty$, it's equal to
$f_{\text {eq }}(\vec{r}, \vec{v})$
- At $\left(t-t_{0}\right) \rightarrow 0$, it's equal to
$\delta^{(3)}\left(\vec{r}-\overrightarrow{r_{0}}\right) \delta^{(3)}\left(\vec{v}-\overrightarrow{v_{0}}\right)$

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random

- Want to somehow track that particle
- We ask for the conditional PDF i.e. $f\left(\vec{r}, \vec{v}, t \mid \overrightarrow{r_{0}}, \overrightarrow{v_{0}}, t_{0}\right)$.
- - At $\left(t-t_{0}\right) \rightarrow \infty$, it's equal to $f_{\text {eq }}(\vec{r}, \vec{v})$
- At $\left(t-t_{0}\right) \rightarrow 0$, it's equal to
$\delta^{(3)}\left(\vec{r}-\overrightarrow{r_{0}}\right) \delta^{(3)}\left(\vec{v}-\overrightarrow{v_{0}}\right)$
- Ask what's in-between t and t_{0} ?

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle

- We ask for the conditional PDF i.e. $f\left(\vec{r}, \vec{v}, t \mid \overrightarrow{r_{0}}, \overrightarrow{v_{0}}, t_{0}\right)$.
- - At $\left(t-t_{0}\right) \rightarrow \infty$, it's equal to $f_{\text {eq }}(\vec{r}, \vec{v})$
- At $\left(t-t_{0}\right) \rightarrow 0$, it's equal to $\delta^{(3)}\left(\vec{r}-\overrightarrow{r_{0}}\right) \delta^{(3)}\left(\vec{v}-\overrightarrow{v_{0}}\right)$
- Ask what's in-between t and t_{0} ?
- A very HARD question because it turns out to be a many body problem due to particle-particle correlation

A Quick Recap

- Conditions: systems represents ideal gas \& is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle

- We ask for the conditional PDF i.e. $f\left(\vec{r}, \vec{v}, t \mid \overrightarrow{r_{0}}, \overrightarrow{v_{0}}, t_{0}\right)$.
- - At $\left(t-t_{0}\right) \rightarrow \infty$, it's equal to $f_{\text {eq }}(\vec{r}, \vec{v})$
- At $\left(t-t_{0}\right) \rightarrow 0$, it's equal to $\delta^{(3)}\left(\vec{r}-\overrightarrow{r_{0}}\right) \delta^{(3)}\left(\vec{v}-\overrightarrow{v_{0}}\right)$
- Ask what's in-between t and t_{0} ?
- Lets add one more condition to make our problem easier!

A Quick Recap

- Conditions: systems represents the ideal gas and in thermal equilibrium and has very few bigger particles i.e. Brownian particles
- Guess the equation of motion for this particle?

A Quick Recap

- Conditions: systems represents the ideal gas and in thermal equilibrium and has Brownian particles
- Gives Langevin equation

$$
\frac{d a_{j}(t)}{d t}=h_{j}(\boldsymbol{a})+\delta F_{j}(t)
$$

where, $\left\{a_{1}, \ldots, a_{N}\right\}$ are N dynamical variables, h_{j} is some non-linear deterministic function but without memory, and $\delta F(t)$ is a random force (noise) which is generated by Gaussian white noise with delta correlated second moment i.e.

$$
\begin{aligned}
& \left\langle\delta F_{j}(t)\right\rangle=0 \\
& \left\langle\delta F_{j}(t) \delta F_{k}\left(t^{\prime}\right)\right\rangle=2 B_{j k} \delta\left(t-t^{\prime}\right)
\end{aligned}
$$

A Quick Recap

- Langevin equation

$$
\frac{d a_{j}(t)}{d t}=h_{j}(\boldsymbol{a})+\delta F_{j}(t)
$$

- Fokker-Planck suggested, instead of fluctuating, stochastic trajectories $a_{j}(t)$, why not we're interested in the probability phase-space distribution $f(\boldsymbol{a}, t)$ averaged over the noise $\delta F(t)$?
- Using Gaussian white noise property
i.e. $\left\langle\delta F_{j}(t)\right\rangle=0$,

$$
\left\langle\delta F_{j}(t) \delta F_{k}\left(t^{\prime}\right)\right\rangle=2 B_{j k} \delta\left(t-t^{\prime}\right)
$$

- Then which results

A Quick Recap

- Langevin equation

$$
\frac{d a_{j}(t)}{d t}=h_{j}(\boldsymbol{a})+\delta F_{j}(t)
$$

- Fokker-Planck suggested, instead of fluctuating, stochastic trajectories $a_{j}(t)$, why not we're interested in the probability phase-space distribution $f(\boldsymbol{a}, t)$ averaged over the noise $\delta F(t)$?
- Using Gaussian white noise property
i.e. $\left\langle\delta F_{j}(t)\right\rangle=0$,

$$
\left\langle\delta F_{j}(t) \delta F_{k}\left(t^{\prime}\right)\right\rangle=2 B_{j k} \delta\left(t-t^{\prime}\right)
$$

- Then which results

$$
\begin{aligned}
\frac{\partial}{\partial t}\langle f(\boldsymbol{a}, t)\rangle=- & \frac{\partial}{\partial \mathrm{a}_{j}} h_{j}(\boldsymbol{a})\langle f(\boldsymbol{a}, t)\rangle \\
& +\frac{\partial}{\partial \mathrm{a}_{j}} B_{j k} \frac{\partial}{\partial \mathrm{a}_{k}}\langle f(\boldsymbol{a}, t)\rangle
\end{aligned}
$$

A Quick Recap but lets be little forward in our quest

- Consider the same Brownian particle but is in an external potential $U(x)$ so, the corresponding Langevin equations of motion is $\dot{x}(t)=\frac{p(t)}{m}, \dot{p}(t)=-U^{\prime}(x)-\zeta \frac{p}{m}+\delta F(t)$ where ζ is the frictional coefficient due to particles viscosity

A Quick Recap but lets be little forward in our quest

- Langevin equations of motion is

$$
\dot{x}(t)=\frac{p(t)}{m}, \dot{p}(t)=-U^{\prime}(x)-\zeta \frac{p}{m}+\delta F(t)
$$

- Assume the magnitude of the frictional force $\zeta \frac{p}{m}$ is much larger than the magnitude of the Brownian particle inertial force $\dot{p}(t)$. In-other words, $\dot{p}(t)$ is negligible. i.e. $\dot{p}(t) \approx 0$

A Quick Recap but lets be little forward in our quest

- Langevin equations of motion is

$$
\dot{x}(t)=\frac{p(t)}{m}, \dot{p}(t)=-U^{\prime}(x)-\zeta \frac{p}{m}+\delta F(t)
$$

- Assume $\dot{p}(t) \approx 0$
- Becomes $\dot{x}(t)=-\frac{1}{\zeta} U^{\prime}(x)+\frac{1}{\zeta} \delta F(t)$
- Comparing with general Langevin equation $\frac{d a_{j}(t)}{d t}=h_{j}(\boldsymbol{a})+\delta F_{j}(t)$ and substitute required quantities in Fokker-Planck (FP) equation

$$
\frac{\partial}{\partial t}\langle f(\boldsymbol{a}, t)\rangle=-\frac{\partial}{\partial a_{j}} h_{j}(\boldsymbol{a})\langle f(\boldsymbol{a}, t)\rangle+\frac{\partial}{\partial a_{j}} B_{j k} \frac{\partial}{\partial a_{k}}\langle f(\boldsymbol{a}, t)\rangle \text { then, FP }
$$

equation reduces to Smoluchowski equation i.e.

$$
\frac{\partial}{\partial t}\langle f(x, t)\rangle=\frac{\partial}{\partial x} \frac{U^{\prime}(x)}{\zeta}\langle f(x, t)\rangle+\frac{\partial^{2}}{\partial x^{2}} \frac{K_{B} T}{\zeta}\langle f(x, t)\rangle
$$

A Quick Recap but lets be little forward in our quest

- Smoluchowski equation i.e.

$$
\begin{aligned}
\frac{\partial}{\partial t}\langle f(x, t)\rangle & =\frac{\partial}{\partial x} \frac{U^{\prime}(x)}{\zeta}\langle f(x, t)\rangle+\frac{\partial^{2}}{\partial x^{2}} \frac{K_{B} T}{\zeta}\langle f(x, t)\rangle \\
& =\left(\frac{K_{B} T}{\zeta}\right) \frac{\partial}{\partial x}\left[e^{-U / K_{B} T}\left(\frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle\right)\right] \\
& =D \frac{\partial}{\partial x} e^{-U / K_{B} T} \frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle
\end{aligned}
$$

where D is the diffusion coefficient $D=K_{B} T / \zeta$ and equal to the strength of the fluctuating force B by fluctuation-dissipation theorem

A Quick Recap but lets be little forward in our quest

- Smoluchowski equation i.e.

$$
\begin{aligned}
\frac{\partial}{\partial t}\langle f(x, t)\rangle & =\frac{\partial}{\partial x} \frac{U^{\prime}(x)}{\zeta}\langle f(x, t)\rangle+\frac{\partial^{2}}{\partial x^{2}} \frac{K_{B} T}{\zeta}\langle f(x, t)\rangle \\
& =\left(\frac{K_{B} T}{\zeta}\right) \frac{\partial}{\partial x}\left[e^{-U / K_{B} T}\left(\frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle\right)\right] \\
& =D \frac{\partial}{\partial x} e^{-U / K_{B} T} \frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle
\end{aligned}
$$

- Also, follows the equation of continuity i.e.

$$
\frac{\partial}{\partial t}\langle f(x, t)\rangle=-\frac{\partial}{\partial x}\left(-D e^{-U / K_{B} T} \frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle\right)=-\frac{\partial}{\partial x} J(x, t)
$$

where $J(x, t)$ is flux density such that

$$
J(x, t)=-D e^{-U / K_{B} T} \frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle
$$

Hendrik Anthony (Hans) Kramers, while studying the chemical kinetics:

|". . . . A particle moves in an external field of force, but - in addition to this - is subject to the irregular forces of a surrounding medium in temperature equilibrium (Brownian motion). The conditions are such, that the particle is originally caught in a potential hole but may escape in the course of time by passing over a potential barrier. We want to calculate the probability of escape in its dependency on temperature and viscosity of the medium ..."

- Excerpt taken from [Kramers, 1940]

Solving Kramers Problem

- When we start at A, with which rate does a particle come to point C ?
- Two limiting cases: extremely strong force of friction and extremely weak force of friction. Later one is difficult so, we choose first case and use Smoluchowski equation i.e.

$$
\frac{\partial}{\partial t}\langle f(x, t)\rangle=\frac{\partial}{\partial x}\left(D e^{-U / K_{B} T} \frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle\right)
$$

Figure: First well (A) with position x_{1}, potential barrier (B) with position x_{2} and second well (C).

Solving Kramers Problem

Figure: First well (A) with position x_{1}, potential barrier (B) with position x_{2} and second well (C).

- When we start at A, with which rate does a particle come to point C?
- Smoluchowski equation i.e.

$$
\frac{\partial}{\partial t}\langle f(x, t)\rangle=\frac{\partial}{\partial x}\left(D e^{-U / K_{B} T} \frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle\right)
$$

At stationary, $\frac{\partial}{\partial t}\langle f(x, t)\rangle=0$ then, the flux density $J(x, t)$ becomes constant. i.e.

$$
J(x, t)=-D e^{-U / K_{B} T} \frac{\partial}{\partial x} e^{U / K_{B} T}\langle f(x, t)\rangle \neq 0
$$

Solving Kramers Problem

Figure: First well (A) with position x_{1}, potential barrier (B) with position x_{2} and second well (C).

For simplicity, replace the notation $J(x, t)$ by $J,\langle f(x, t)\rangle$ by F and $U / K_{B} T$ by \tilde{U} then flux density looks

$$
\begin{aligned}
J & =-D e^{-\tilde{U}} \frac{\partial}{\partial x} e^{\tilde{U}_{f}} \\
\text { or, } \frac{J e^{\tilde{U}}}{D} & =-\frac{\partial}{\partial x} e^{\tilde{U}} f \\
\Longrightarrow \int_{x_{1}}^{x_{2}} \frac{J e^{\tilde{U}}}{D} d x & =-\int_{x_{1}}^{x_{2}} d\left(e^{\tilde{U}} f\right) \\
& \Longrightarrow-\left[e^{\tilde{U}} f\right]_{x_{1}}^{x_{2}} \\
\therefore \frac{J}{D} & =\frac{-e^{\tilde{U}\left(x_{2}\right)} f\left(x_{2}\right)+e^{\tilde{U}\left(x_{1}\right)} f\left(x_{1}\right)}{\int_{x_{1}}^{x_{2}} e^{\tilde{U}} d x}
\end{aligned}
$$

Solving Kramers Problem

Figure: First well (A) with position x_{1}, potential barrier (B) with position x_{2} and second well (C).

- Since no particle can get to x_{2} from the right so this $f\left(x_{2}\right)=0$ that gives

$$
\frac{J}{D}=\frac{-e^{\tilde{U}\left(x_{2}\right)} f\left(x_{2}\right)+e^{\tilde{U}\left(x_{1}\right)} f\left(x_{1}\right)}{\int_{x_{1}}^{x_{2}} e^{\tilde{U}} d x}
$$

becomes

$$
\frac{J}{D}=\frac{e^{\tilde{U}\left(x_{1}\right)} f\left(x_{1}\right)}{\int_{x_{1}}^{x_{2}} e^{\tilde{U}} d x}
$$

Solving Kramers Problem

Figure: First well (A) with position x_{1}, potential barrier (B) with position x_{2} and second well (C).

- For a high barrier, we can expand \tilde{U} near the maximum (i.e. $\tilde{U}^{\prime}\left(x_{2}\right)=0$ and $\tilde{U}^{\prime \prime}\left(x_{2}\right)<0$) at x_{2} using Taylor's expansion and replace $\tilde{U}\left(x_{2}\right)$ by \tilde{U}_{2} gives

$$
\tilde{U} \approx \tilde{U}_{2}-\frac{\left|\tilde{U}_{2}^{\prime \prime}\right|}{2}\left(x-x_{2}\right)^{2}
$$

$-\left|\tilde{U}_{2}^{\prime \prime}\right|$ ensure the potential barrier is always concave downward. So,

$$
\begin{aligned}
& \int_{x_{1}}^{x_{2}} e^{\tilde{U}} d x \approx e^{\tilde{U}_{2}} \int_{x_{1}}^{x_{2}} e^{-\frac{\left|\tilde{U}_{2}^{\prime \prime}\right|}{2}\left(x-x_{2}\right)^{2}} d x \\
& \approx \frac{1}{2} e^{\tilde{U}_{2}} \int_{-\infty}^{\infty} e^{\left.\left.-\frac{\left|\tilde{U}_{2}^{\prime \prime}\right|}{2} \right\rvert\, x-x_{2}\right)^{2}} d x=e^{\tilde{U}_{2}} \sqrt{\frac{\pi}{2\left|\tilde{U}_{2}^{\prime \prime}\right|}}
\end{aligned}
$$

Solving Kramers Problem

Figure: First well (A) with position x_{1}, potential barrier (B) with position x_{2} and second well (C).

- Equation $\frac{J}{D}=\frac{e^{\tilde{U}\left(x_{1}\right)} f\left(x_{1}\right)}{\int_{x_{1}}^{x_{2}} e^{\tilde{U}} d x}$ now reads as

$$
J=D e^{-\left(\tilde{U}_{2}-\tilde{U}_{1}\right)} \sqrt{\frac{2\left|\tilde{U}_{2}^{\prime \prime}\right|}{\pi}} f\left(x_{1}\right)
$$

- Flux depends exponentially on the potential difference and also on the curvature $\tilde{U}_{2}^{\prime \prime}$ of the barrier
- Since the frictional force is strong enough, so the Brownian particle rapidly relaxed to the equilibrium.

Solving Kramers Problem

Figure: First well (A) with position x_{1}, potential barrier (B) with position x_{2} and second well (C).

- So, the average phase space distribution at x_{1} is given by equilibrium distribution i.e.

$$
f\left(x_{1}\right)=\frac{e^{-\tilde{U}\left(x_{1}\right)}}{\int_{x_{0}}^{x_{2}} e^{-\tilde{U}(x)} d x}
$$

- Expanding the potential around x_{1} and ensuring potential well is always concave upward $\tilde{U}^{\prime \prime}\left(x_{1}\right)>0$.

$$
\tilde{U}(x) \approx \tilde{U}_{1}+\frac{\tilde{U}_{1}^{\prime \prime}}{2}\left(x-x_{1}\right)^{2}
$$

- which yields $f\left(x_{1}\right) \approx \frac{1}{\int_{-\infty}^{\infty} e^{-\frac{U_{1}^{\prime \prime}}{2}}\left(x-x_{1}\right)^{2} d x} \approx \sqrt{\frac{\tilde{U}_{1}^{\prime \prime}}{2 \pi}}$

Solving Kramers Problem

Figure: First well (A) with position x_{1}, potential barrier (B) with position x_{2} and second well (C).

- So, the total flux

$$
J=D e^{-\left(\tilde{U}_{2}-\tilde{U}_{1}\right)} \sqrt{\frac{2\left|\tilde{U}_{2}^{\prime \prime}\right|}{\pi}} f\left(x_{1}\right)
$$

- becomes

$$
J=\frac{D \sqrt{\tilde{U}_{1}^{\prime \prime}\left|\tilde{U}_{2}^{\prime \prime}\right|}}{\pi} e^{-\left(\tilde{U}_{2}-\tilde{U}_{1}\right)}
$$

Replacing the previously replaced notations

$$
\begin{gathered}
\therefore J=\frac{D \sqrt{U_{1}^{\prime \prime}\left|U_{2}^{\prime \prime}\right|}}{\pi K_{B} T} e^{-\Delta U / K_{B} T} \\
\text { where, } \Delta U:=U\left(x_{2}\right)-U\left(x_{1}\right)
\end{gathered}
$$

Closing Remarks

- Suppose we have two potential wells in such a way that one is at left and another one is at right of potential well A. So there is equally likely probability that particle can cross from A to any one of these potential wells.
- So, half of total flux of Brownian particles cross the barrier to go from A to C.
- Thus, the rate of crossing the barrier $\kappa=J / 2$ and using $D=K_{B} T / \zeta$, we find

Closing Remarks

$$
\kappa=\frac{D \sqrt{U_{1}^{\prime \prime}\left|U_{2}^{\prime \prime}\right|}}{2 \pi K_{B} T} e^{-\Delta U / K_{B} T}
$$

Thank You For Listening!
I Invite You To Ask Any Questions You May Have...

References

Kramers, H. (1940).Brownian motion in a field of force and the diffusion model of chemical reactions.
Physica, 7(4):284-304.

