Kramers Escape Rate Problem

Damodar Rajbhandari, B.Sc.

Theory of Complex Systems Division Marian Smoluchowski Institute of Physics Jagiellonian University

Specialisation Seminar II 11 May, 2020

	Closing Remarks
	00 0

What you see in this talk?

- Quick Recap
- Basic Idea
- Quest for Solution
- Closing Remarks

AIM of this talk: To find the rate at which a Brownian particle escapes from a potential well over a potential barrier

A Quick Recap

Using a box and some number of particles,

we want to make a system out of it.

Quick I	Recap
•00C	

3 of 15

A Quick Recap

<u>Conditions:</u> systems represents ideal
 gas & is in thermal equilibrium

Damodar Rajbhandari | दामोदर राजभण्डारी | ⟨firstname⟩@PhysicsLog.com

Kramers Escape Rate Problem

A Quick Recap

Conditions: systems represents ideal

gas & is in thermal equilibrium

- Pick a particle at random
- Ask what is the equilibrium phase space density for this particle ?

Conditions: systems represents ideal

gas & is in thermal equilibrium

- Pick a particle at random
 - Maxwellian distribution for velocities applies,

$$f_{
m eq}(ec{r},ec{v}) = rac{1}{
m Volume}(rac{m}{2\pi K_BT})^{3/2}e^{-rac{m|ec{V}|^2}{2K_BT}}$$

Conditions: systems represents ideal

gas & is in thermal equilibrium

- Pick a particle at random
- Want to somehow track that particle

- <u>Conditions:</u> systems represents ideal
 gas & is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
 - Given that at some instant of time it has (say) position r₀ and velocity v₀, ask what happens to it as a function of time ?

- <u>Conditions</u>: systems represents ideal
 - gas & is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
- We ask for the conditional PDF i.e. $f(\vec{r}, \vec{v}, t | \vec{r_0}, \vec{v_0}, t_0)$. Ask what's this equal to?

Quick Recap ●000	Quest for Solution	Closing Remarks OO O

- <u>Conditions:</u> systems represents ideal
 gas & is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
- ▶ We ask for the conditional PDF i.e. $f(\vec{r}, \vec{v}, t | \vec{r_0}, \vec{v_0}, t_0)$. Ask what's this equal to?
- Intuitively, we can guess:
 At (t − t₀) → ∞, it's equal to f_{eq}(r, v) and particle will relax to equilibrium and looses its memory of what was its initial values

Quick Recap ●000	Quest for Solution	Closing Remarks OO O

unt tork this meter

- <u>Conditions:</u> systems represents ideal gas & is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
- ▶ We ask for the conditional PDF i.e. $f(\vec{r}, \vec{v}, t | \vec{r_0}, \vec{v_0}, t_0)$. Ask what's this equal to?
- ▶ Intuitively, we can guess: ■ At $(t - t_0) \rightarrow \infty$, it's equal to $f_{eq}(\vec{r}, \vec{v})$ ■ At $(t - t_0) \rightarrow 0$, it's equal to $\delta^{(3)}(\vec{r} - \vec{r_0})\delta^{(3)}(\vec{v} - \vec{v_0})$

Quick Recap		Closing Remarks
0000		00 0

- <u>Conditions:</u> systems represents ideal
 gas & is in thermal equilibrium
- Pick a particle at random
- Want to somehow track that particle
- We ask for the conditional PDF i.e. $f(\vec{r}, \vec{v}, t | \vec{r_0}, \vec{v_0}, t_0)$.
- At $(t t_0) \rightarrow \infty$, it's equal to $f_{eq}(\vec{r}, \vec{v})$ • At $(t - t_0) \rightarrow 0$, it's equal to $\delta^{(3)}(\vec{r} - \vec{r_0})\delta^{(3)}(\vec{v} - \vec{v_0})$

Ask what's in-between t and t_0 ?

A Quick Recap	
	 Conditions: systems represents ideal gas & is in thermal equilibrium Pick a particle at random Want to somehow track that particle We ask for the conditional PDF i.e. f(r, v, t r₀, v₀, t₀). At (t - t₀) → ∞, it's equal to f_{eq}(r, v) At (t - t₀) → 0, it's equal to δ⁽³⁾(r - r₀)δ⁽³⁾(v - v₀)
Purticle	Ask what's in-between t and t_0 ?
	A very HARD question because it turns out to be a many body problem due to particle-particle correlation

•000			00
A Quick Recap			
	<mark>gas</mark> & is ► Pick a par	<u>::</u> systems represents ide in thermal equilibrium ticle at random omehow track that part	
wint track	$f(\vec{r}, \vec{v}, t \vec{r_0})$ $f(\vec{r}, \vec{v}, t \vec{r_0})$ $f(\vec{r}, \vec{v})$	the conditional PDF is $, \vec{v_0}, t_0).$ $(t_0) \rightarrow \infty, ext{ it's equal to}$.e.

- At $(t t_0) \rightarrow 0$, it's equal t $\delta^{(3)}(\vec{r} - \vec{r_0})\delta^{(3)}(\vec{v} - \vec{v_0})$
- Ask what's in-between t and t_0 ?

Lets add one more condition to make our problem easier!

this Particle

00 00 0	0000000	00 0
A Quick Recap		
Hat the state of t	 Conditions: systems represents the ideal gas and in thermal equilible and has very few bigger particles i.e. Brownian particles Guess the equation of motion for particle? 	rium ,

Quick Recap O●OO	Basic Idea O	Quest for Solution 0000000	Closing Remarks OO O
A Quick Recap			

- <u>Conditions:</u> systems represents the ideal gas and in thermal equilibrium, and has Brownian particles
- Gives Langevin equation

 $\frac{da_j(t)}{dt} = h_j(\boldsymbol{a}) + \delta F_j(t)$

where, $\{a_1, \ldots, a_N\}$ are N dynamical variables, h_j is some non-linear deterministic function but without memory, and $\delta F(t)$ is a random force (noise) which is generated by <u>Gaussian white noise</u> with delta correlated second moment i.e. $\langle \delta F_j(t) \rangle = 0$, $\langle \delta F_i(t) \delta F_k(t') \rangle = 2B_{ik} \delta(t - t')$

A Quick Recap

Langevin equation

 $rac{da_j(t)}{dt} = h_j(\boldsymbol{a}) + \delta F_j(t)$

- Fokker-Planck suggested, instead of fluctuating, stochastic trajectories a_j(t), why not we're interested in the probability phase-space distribution f(a, t) averaged over the noise δF(t)?
- Using Gaussian white noise property

i.e.
$$\langle \delta F_j(t) \rangle = 0$$
,

$$\langle \delta F_j(t) \delta F_k(t') \rangle = 2B_{jk} \delta(t-t')$$

Then which results

Jagiellonian University | 11 May, 2020

Quick Recap OO●O	Quest for Solution 0000000	Closing Remarks 00 0

Langevin equation

 $\frac{da_j(t)}{dt} = h_j(\mathbf{a}) + \delta F_j(t)$

- Fokker-Planck suggested, instead of fluctuating, stochastic trajectories a_j(t), why not we're interested in the probability phase-space distribution f(a, t) averaged over the noise δF(t)?
- Using Gaussian white noise property i.e. $\langle \delta F_i(t) \rangle = 0$,

$$\langle \delta F_j(t) \delta F_k(t') \rangle = 2B_{jk} \delta(t-t')$$

Then which results $\frac{\partial}{\partial t} \langle f(\boldsymbol{a},t) \rangle = -\frac{\partial}{\partial a_j} h_j(\boldsymbol{a}) \langle f(\boldsymbol{a},t) \rangle$

5 of 15

A Quick Recap but lets be little forward in our quest

Consider the same Brownian particle but is in an external potential U(x) so, the corresponding Langevin equations of motion is

 $\dot{x}(t) = \frac{p(t)}{m}, \dot{p}(t) = -U'(x) - \zeta \frac{p}{m} + \delta F(t)$ where ζ is the frictional

coefficient due to particles viscosity

Quick Recap		Closing Remarks
0000		00 0

A Quick Recap but lets be little forward in our quest

Langevin equations of motion is

 $\dot{x}(t) = \frac{p(t)}{m}, \dot{p}(t) = -U'(x) - \zeta \frac{p}{m} + \delta F(t)$

Assume the magnitude of the frictional force $\zeta \frac{p}{m}$ is much larger than the magnitude of the Brownian particle inertial force $\dot{p}(t)$. In-other words, $\dot{p}(t)$ is negligible. i.e. $\dot{p}(t) \approx 0$

Quick Recap	Basic Idea O	Quest for Solution	Closing Remarks OO O
A Quic	k Recap but lets be li	ttle forward in our	r quest
	Langevin equations of motion i	S	
	$\dot{x}(t) = \frac{p(t)}{m}, \dot{p}(t) = -U'(x) - b$	$\zeta \frac{p}{m} + \delta F(t)$	
	Assume $\dot{p}(t) \approx 0$		
►	Becomes $\dot{x}(t) = -\frac{1}{\zeta}U'(x) + \frac{1}{\zeta}$	δF(t)	
	Comparing with general Langev	vin equation $\frac{da_j(t)}{dt} = h_j(t)$	$a) + \delta F_j(t)$
	and substitute required quantit	ies in Fokker-Planck (FP) equation
	$rac{\partial}{\partial t}\langle f(\boldsymbol{a},t) angle = -rac{\partial}{\partial a_j}h_j(\boldsymbol{a})\langle f(\boldsymbol{a},t) angle$	$ t) angle+rac{\partial}{\partial a_j}B_{jk}rac{\partial}{\partial a_k}\langle f(\mathbf{a},t) angle$	then, FP
	equation reduces to Smoluchov	vski equation i.e.	
	$rac{\partial}{\partial t}\langle f(x,t) angle = rac{\partial}{\partial x}rac{U'(x)}{\zeta}$	$\frac{\partial}{\partial f(x,t)} + \frac{\partial^2}{\partial x^2} \frac{K_B T}{\zeta} \langle f(x,t) \rangle$	$\langle x,t) angle$

Damodar Rajbhandari | दामोदर राजभण्डारी | {firstname>@PhysicsLog.com Kramers Escape Rate Problem

Quick Recan

A Quick Recap but lets be little forward in our quest

Smoluchowski equation i.e.

$$\begin{split} \frac{\partial}{\partial t} \langle f(x,t) \rangle &= \frac{\partial}{\partial x} \frac{U'(x)}{\zeta} \langle f(x,t) \rangle + \frac{\partial^2}{\partial x^2} \frac{K_B T}{\zeta} \langle f(x,t) \rangle \\ &= \left(\frac{K_B T}{\zeta} \right) \frac{\partial}{\partial x} \left[e^{-U/K_B T} \left(\frac{\partial}{\partial x} e^{U/K_B T} \langle f(x,t) \rangle \right) \right] \\ &= D \frac{\partial}{\partial x} e^{-U/K_B T} \frac{\partial}{\partial x} e^{U/K_B T} \langle f(x,t) \rangle \end{split}$$

where D is the diffusion coefficient $D = K_B T / \zeta$ and equal to the strength of the fluctuating force B by fluctuation-dissipation theorem

Damodar Rajbhandari | दामोदर राजभण्डारी | {firstname}@PhysicsLog.com Kramers Escape Rate Problem

A Quick Recap but lets be little forward in our quest

Smoluchowski equation i.e.

$$\begin{split} \frac{\partial}{\partial t} \langle f(x,t) \rangle &= \frac{\partial}{\partial x} \frac{U'(x)}{\zeta} \langle f(x,t) \rangle + \frac{\partial^2}{\partial x^2} \frac{K_B T}{\zeta} \langle f(x,t) \rangle \\ &= \left(\frac{K_B T}{\zeta} \right) \frac{\partial}{\partial x} \left[e^{-U/K_B T} \left(\frac{\partial}{\partial x} e^{U/K_B T} \langle f(x,t) \rangle \right) \right] \\ &= D \frac{\partial}{\partial x} e^{-U/K_B T} \frac{\partial}{\partial x} e^{U/K_B T} \langle f(x,t) \rangle \end{split}$$

Also, follows the equation of continuity i.e.

$$\frac{\partial}{\partial t}\langle f(x,t)\rangle = -\frac{\partial}{\partial x}\left(-De^{-U/K_BT}\frac{\partial}{\partial x}e^{U/K_BT}\langle f(x,t)\rangle\right) = -\frac{\partial}{\partial x}J(x,t)$$

where J(x, t) is flux density such that $J(x, t) = -De^{-U/K_BT} \frac{\partial}{\partial x} e^{U/K_BT} \langle f(x, t) \rangle$

Hendrik Anthony (Hans) Kramers, while studying the chemical kinetics:

".... A particle moves in an external field of force, but - in addition to this - is subject to the irregular forces of a surrounding medium in temperature equilibrium (Brownian motion). The conditions are such, that the particle is originally caught in a potential hole but may escape in the course of time by passing over a potential barrier. We want to calculate the probability of escape in its dependency on temperature and viscosity of the medium ..."

- Excerpt taken from [Kramers, 1940]

Photo credit: Hans Kramers (top-left corner), photo taken from Prabook.

Quick Recap 0000	Quest for Solution ●○○○○○○	Closing Remarks OO O

- When we start at A, with which rate does a particle come to point C?
- Two limiting cases: extremely strong force of friction and extremely weak force of friction. Later one is difficult so, we choose first case and use Smoluchowski equation i.e.

$$\frac{\partial}{\partial t}\langle f(x,t)\rangle = \frac{\partial}{\partial x}\left(De^{-U/K_{B}T}\frac{\partial}{\partial x}e^{U/K_{B}T}\langle f(x,t)\rangle\right)$$

Figure: First well (A) with position x_1 , potential barrier (B) with position x_2 and second well (C).

Figure: First well (A) with position x_1 , potential barrier (B) with position x_2 and second well (C).

- When we start at A, with which rate does a particle come to point C?
- Smoluchowski equation i.e.

$$\frac{\partial}{\partial t}\langle f(x,t)\rangle = \frac{\partial}{\partial x} \left(D e^{-U/K_B T} \frac{\partial}{\partial x} e^{U/K_B T} \langle f(x,t)\rangle \right)$$

At stationary, $\frac{\partial}{\partial t}\langle f(x,t)\rangle = 0$ then, the flux density J(x,t) becomes constant. i.e.

$$J(x,t) = -De^{-U/K_BT} \frac{\partial}{\partial x} e^{U/K_BT} \langle f(x,t) \rangle \neq 0$$

8 of 15

Quick Recap 0000		Quest for Solution ○●○○○○○	Closing Remarks OO O
Solving Kramer	s Problem		

Figure: First well (A) with position x_1 , potential barrier (B) with position x_2 and second well (C).

For simplicity, replace the notation J(x, t) by J, $\langle f(x, t) \rangle$ by F and U/K_BT by \tilde{U} then flux density looks

Quick Recap 0000	Quest for Solution	Closing Remarks OO O

Since no particle can get to x₂ from the right so this f(x₂) = 0 that gives

$$\frac{J}{D} = \frac{-e^{\tilde{U}(x_2)}f(x_2) + e^{\tilde{U}(x_1)}f(x_1)}{\int_{x_1}^{x_2} e^{\tilde{U}}dx}$$

 $\frac{J}{D} = \frac{e^{U(x_1)}f(x_1)}{\int^{x_2} e^{\tilde{U}} dx}$

becomes

Figure: First well (A) with position x_1 , potential barrier (B) with position x_2 and second well (C).

Quick Recap 0000	Quest for Solution 000●000	Closing Remarks OO O

Figure: First well (A) with position x_1 , potential barrier (B) with position x_2 and second well (C).

For a high barrier, we can expand U
 near the maximum (i.e. U
 (x₂) = 0 and U
 (x₂) < 0) at x₂ using Taylor's expansion and replace U
 (x₂) by U
 gives</p>

$$ilde{U} pprox ilde{U}_2 - rac{| ilde{U}_2''|}{2} (x - x_2)^2$$

 $-|\tilde{U}_2^{\prime\prime}|$ ensure the potential barrier is always concave downward. So,

$$\int_{x_1}^{x_2} e^{\tilde{U}} dx \approx e^{\tilde{U}_2} \int_{x_1}^{x_2} e^{-\frac{|\tilde{U}_2''|}{2}(x-x_2)^2} dx$$
$$\approx \frac{1}{2} e^{\tilde{U}_2} \int_{-\infty}^{\infty} e^{-\frac{|\tilde{U}_2''|}{2}(x-x_2)^2} dx = e^{\tilde{U}_2} \sqrt{\frac{\pi}{2|\tilde{U}_2''|}}$$

Quick Recap 0000	Quest for Solution ○○○○●○○	Closing Remarks OO O

Figure: First well (A) with position x_1 , potential barrier (B) with position x_2 and second well (C).

• Equation $\frac{J}{D} = \frac{e^{\tilde{U}(x_1)}f(x_1)}{\int_{x_1}^{x_2} e^{\tilde{U}}dx}$ now reads as

$$J = De^{-(\tilde{U}_2 - \tilde{U}_1)} \sqrt{\frac{2|\tilde{U}_2''|}{\pi}} f(x_1)$$

- Flux depends exponentially on the potential difference and also on the curvature \tilde{U}_2'' of the barrier
- Since the frictional force is strong enough, so the Brownian particle rapidly relaxed to the equilibrium.

Quick Recap 0000	Quest for Solution ○○○○○●○	Closing Remarks OO O

Figure: First well (A) with position x_1 , potential barrier (B) with position x_2 and second well (C).

So, the average phase space distribution at x₁ is given by equilibrium distribution i.e.

$$f(x_1) = \frac{e^{-\tilde{U}(x_1)}}{\int_{x_0}^{x_2} e^{-\tilde{U}(x)} dx}$$

Expanding the potential around x₁ and ensuring potential well is always concave upward Ũ''(x₁) > 0.

$$ilde{U}(x) pprox ilde{U}_1 + rac{ ilde{U}_1''}{2}(x-x_1)^2$$

• which yields
$$f(x_1) \approx \frac{1}{\int_{-\infty}^{\infty} e^{-\frac{U_1''}{2}(x-x_1)^2} dx} \approx \sqrt{\frac{U_1''}{2\pi}}$$

(Potential Barrier) (First Well) (First We

Figure: First well (A) with position x_1 , potential barrier (B) with position x_2 and second well (C).

So, the total flux

$$J = De^{-(\tilde{U}_2 - \tilde{U}_1)} \sqrt{\frac{2|\tilde{U}_2''|}{\pi}} f(x_1)$$

becomes

$$J = \frac{D\sqrt{\tilde{U}_1''|\tilde{U}_2''|}}{\pi}e^{-(\tilde{U}_2 - \tilde{U}_1)}$$

Replacing the previously replaced notations

$$\therefore J = \frac{D\sqrt{U_1''|U_2''|}}{\pi K_B T} e^{-\Delta U/K_B T}$$

where,
$$\Delta U := U(x_2) - U(x_1)$$

Closing Remarks

- Suppose we have two potential wells in such a way that one is at left and another one is at right of potential well A. So there is equally likely probability that particle can cross from A to any one of these potential wells.
- So, half of total flux of Brownian particles cross the barrier to go from A to C.
- Thus, the rate of crossing the barrier $\kappa = J/2$ and using $D = K_B T/\zeta$, we find

Closing Remarks

$$\kappa = \frac{D\sqrt{U_1''|U_2''|}}{2\pi K_B T} e^{-\Delta U/K_B T}$$

Thank You For Listening! I Invite You To Ask Any Questions You May Have...

Damodar Rajbhandari | दामोदर राजभण्डारी | dphysicslog@gmail.com Kramers Escape Rate Problem Jagiellonian University | 11 May, 2020 15 of 15

References

Kramers, H. (1940).

Brownian motion in a field of force and the diffusion model of chemical reactions.

Physica, 7(4):284 – 304.