A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

Damodar Rajbhandari, B.Sc.

Theory of Complex Systems Division Institute of Theoretical Physics Jagiellonian University

> Specialisation Seminar III 21 Jan 2020

What you will know from this talk?

- Introduction
- Framework
- Modern Approach
- Closing Remarks

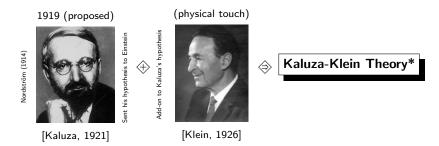
AIM of this talk: To introduce how Kaluza's idea on unifying EM with gravitation shaped into Kaluza-Klein theory

Damodar Rajbhandari | दामोदर राजभण्डारी | आग्रादव बाऊग्रावी | (firstname)@PhysicsLog.com

Modern Approach 000000000000 0000000 Closing Remarks O O

History

History



On 21 April (1919) Einstein writes [O'Raifeartaigh and Straumann, 1998],

"The idea of achieving [a unified theory] by means of a five-dimensional cylinder world never dawned on me.... At first glance I like your idea enormously"

Photos credit: Theodor Kaluza (left) and Oskar Klein (right), photos taken from Science Photo Library (left), Oskar Klein Center (right) *It was first used in 1933 by Oswald Veblem.

Damodar Rajbhandari | दामोदर राजभण्डारी | आगवन माऊगणने | (firstname)@PhysicsLog.com

Kaluza's Preliminary Idea

 $\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\delta} \frac{dx^{\nu}}{d\tau} \frac{dx^{\delta}}{d\tau} = 0 :\Longrightarrow \text{ worldline of a test particle in gravitation field is geodesic}$ $H = \frac{1}{2m_0} g^{\mu\nu} p_{\mu} p_{\nu} :\Longrightarrow \text{ Assuming a Hamiltonian}$

where m_0 is the rest mass of the particle, p_{μ} are canonical momenta conjugated to the coordinates x^{μ} and $\mu, \nu \in \{0, 1, 2, 3\}$. Metric signature (-+++).

Kaluza's Preliminary Idea

 $\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\delta} \frac{dx^{\nu}}{d\tau} \frac{dx^{\delta}}{d\tau} = 0 :\Longrightarrow \text{ worldline of a test particle in gravitation field is geodesic}$ $H = \frac{1}{2m_0} g^{\mu\nu} p_{\mu} p_{\nu} :\Longrightarrow \text{ Assuming a Hamiltonian}$

where m_0 is the rest mass of the particle, p_{μ} are canonical momenta conjugated to the coordinates x^{μ} and $\mu, \nu \in \{0, 1, 2, 3\}$. Metric signature (-+++).

WHY WE CHOOSE HAMILTONIAN?

Kaluza's Preliminary Idea

 $\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\delta} \frac{dx^{\nu}}{d\tau} \frac{dx^{\delta}}{d\tau} = 0 \implies \text{worldline of a test particle in gravitation field is geodesic}$ $H = \frac{1}{2m_0} g^{\mu\nu} p_{\mu} p_{\nu} \implies \text{Assuming a Hamiltonian}$

where m_0 is the rest mass of the particle, p_{μ} are canonical momenta conjugated to the coordinates x^{μ} and $\mu, \nu \in \{0, 1, 2, 3\}$. Metric signature (-+++).

WHY WE CHOOSE HAMILTONIAN?

Using this fact

$$\partial_{\mu}g^{\nu\delta} = -g^{\nu
ho}(\partial_{\mu}g_{
ho\sigma})g^{\sigma\delta}$$

Using Hamilton equations

$$\frac{dx^{\mu}}{d\tau} = \frac{\partial H}{\partial p_{\mu}}, \frac{dp_{\mu}}{d\tau} = -\frac{\partial H}{\partial x^{\mu}} \implies \text{ provides Geodesics equation}$$

Damodar Rajbhandari | दामोदर राजभण्डारी | व्याह्य बङ्गाराबे | (firstname)@PhysicsLog.com

	Framework 00000000	Modern Approach 00000000000	Closing Remarks O
Introducing Kaluza's Framework			

? : \implies TRYING to see the worldline of a test charged particle with charge

q and rest mass $m_0 \neq 0$ in gravitation field and an electromagnetic field :

	Framework	Modern Approach	Closing Remarks
	0000000	0000000000 0000000	
Introducing Kaluza's Framework			

? :=>> TRYING to see the worldline of a test charged particle with charge q and rest mass $m_0 \neq 0$ in gravitation field and an electromagnetic field : geodesic is the projection on the 4D spacetime of a 5D space

	Framework	Modern Approach	Closing Remarks
	0000000	00000000000 0000000	
Introducing Kaluza's Framework			

? :=>> TRYING to see the worldline of a test charged particle with charge q and rest mass $m_0 \neq 0$ in gravitation field and an electromagnetic field : geodesic is the projection on the 4D spacetime of a 5D space

$$H = \frac{1}{2m_0} g^{\mu\nu} \left(p_\mu - \frac{q}{c} A_\mu \right) \left(p_\nu - \frac{q}{c} A_\nu \right) \quad :\Longrightarrow \text{Assuming a new Hamiltonian}$$
$$= \frac{1}{2m_0} \left[g^{\mu\nu} p_\mu p_\nu - 2\frac{q}{c} A^\mu p_\mu + \left(\frac{q}{c}\right)^2 A^\mu A_\mu \right] \quad \because A^\mu \equiv g^{\mu\nu} A_\nu$$

Damodar Rajbhandari | दामोदर राजभण्डारी | वागादव बाऊग्रावी | (firstname)@PhysicsLog.com

	Framework	Modern Approach	Closing Remarks
	0000000	00000000000 0000000	
Introducing Kaluza's Framework			

? :=>> TRYING to see the worldline of a test charged particle with charge q and rest mass $m_0 \neq 0$ in gravitation field and an electromagnetic field : geodesic is the projection on the 4D spacetime of a 5D space

$$\begin{split} H &= \frac{1}{2m_0} g^{\mu\nu} \left(p_\mu - \frac{q}{c} A_\mu \right) \left(p_\nu - \frac{q}{c} A_\nu \right) \quad :\Longrightarrow \text{Assuming a new Hamiltonian} \\ &= \frac{1}{2m_0} \left[g^{\mu\nu} p_\mu p_\nu - 2\frac{q}{c} A^\mu p_\mu + \left(\frac{q}{c}\right)^2 A^\mu A_\mu \right] \quad \because A^\mu \equiv g^{\mu\nu} A_\nu \end{split}$$

WAIT WAIT!

Damodar Rajbhandari | दामोदर राजभण्डारी | व्याह्य बङ्गाराबे | (firstname)@PhysicsLog.com

	Framework	Modern Approach	Closing Remarks
	0000000	00000000000 0000000	
Introducing Kaluza's Framework			

? :=>> TRYING to see the worldline of a test charged particle with charge q and rest mass $m_0 \neq 0$ in gravitation field and an electromagnetic field : geodesic is the projection on the 4D spacetime of a 5D space

$$H = \frac{1}{2m_0} g^{\mu\nu} \left(p_\mu - \frac{q}{c} A_\mu \right) \left(p_\nu - \frac{q}{c} A_\nu \right) \quad :\Longrightarrow \text{Assuming a new Hamiltonian}$$
$$= \frac{1}{2m_0} \left[g^{\mu\nu} p_\mu p_\nu - 2\frac{q}{c} A^\mu p_\mu + \left(\frac{q}{c}\right)^2 A^\mu A_\mu \right] \quad \because A^\mu \equiv g^{\mu\nu} A_\nu$$

WAIT WAIT! Assuming geodesic is the projection on the 4D spacetime of a 5D space

$$\begin{split} H &= \frac{1}{2m_0} \hat{g}^{AB} p_A p_B \quad :\Longrightarrow \text{Defining Hamiltonian} \quad : A, B \in \{0, 1, 2, 3, 4\} \\ &= \frac{1}{2m_0} \left[\hat{g}^{\mu\nu} p_\mu p_\nu + 2 \hat{g}^{\mu4} p_\mu p_4 + \hat{g}^{44} p_4 p_4 \right] \quad :\Longrightarrow \text{expanding} \sum \sum \end{split}$$

	Framework	Modern Approach	Closing Remarks
	0000000	00000000000	
Introducing Kaluza's Framework			Ŭ

Comparing BOTH

$$H = \frac{1}{2m_0} \left[\hat{g}^{\mu\nu} p_{\mu} p_{\nu} + 2 \hat{g}^{\mu4} p_{\mu} p_4 + \hat{g}^{44} p_4 p_4 \right]$$

AND

$$H = \frac{1}{2m_0} \left[g^{\mu\nu} p_\mu p_\nu - 2 \frac{q}{c} A^\mu p_\mu + \left(\frac{q}{c} \right)^2 A^\mu A_\mu \right]$$

YIELDS

$$\hat{g}^{\mu
u} = g^{\mu
u}, \quad \hat{g}^{\mu4}p_4 = -rac{q}{c}A^{\mu}, \quad \hat{g}^{44}p_4p_4 = \left(rac{q}{c}
ight)^2 A^{\mu}A_{\mu}$$

Damodar Rajbhandari | दामोदर राजभण्डारी | वागावन बाऊगणानी | (firstname)@PhysicsLog.com

6 of 32

Introducing Kaluza's Framework

Kaluza's Cylinder Condition

- Components $g^{\mu\nu}$ and A^{μ} are function of x^{ν}
- ► Thus assumes \hat{g}^{AB} (also \hat{g}_{AB}) are function of x^{μ} because new coordinate x^4 does not appear in our new Hamiltonian.

Conclusion,

Metric tensor \hat{g}^{AB} does not depend upon fifth dimension (x^4)

Introducing Kaluza's Framework

Kaluza's Cylinder Condition

- Components $g^{\mu\nu}$ and A^{μ} are function of x^{ν}
- ► Thus assumes \hat{g}^{AB} (also \hat{g}_{AB}) are function of x^{μ} because new coordinate x^4 does not appear in our new Hamiltonian.

Conclusion,

Metric tensor \hat{g}^{AB} does not depend upon fifth dimension (x^4)

 \hookrightarrow Kaluza's (arbitrary) cylinder condition i.e. $\partial_4 \hat{g}_{AB} = 0 \implies \partial_4 A_\mu = 0, \partial_4 g_{\mu\nu} = 0$

> x^4 's conjugate momentum p^4 has a constant motion.

Damodar Rajbhandari | दामोदर राजभण्डारी | खगादव बङ्गाग्राबे | (firstname)@PhysicsLog.com

Modern Approach 000000000000 0000000

Introducing Kaluza's Framework

Kaluza's Hypothesis Mathematical Construct

$$\begin{pmatrix} A_0 & A_1 & A_2 & A_3 \end{pmatrix} \Leftrightarrow \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{00} & g_{01} & g_{02} & g_{03} \\ g_{00} & g_{01} & g_{02} & g_{03} \\ g_{00} & g_{01} & g_{02} & g_{03} \end{pmatrix} \Leftrightarrow \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} & A_0 \\ g_{00} & g_{01} & g_{02} & g_{03} & A_1 \\ g_{00} & g_{01} & g_{02} & g_{03} & A_2 \\ g_{00} & g_{01} & g_{02} & g_{03} & A_3 \\ A_0 & A_1 & A_2 & A_3 & ? \end{pmatrix}$$

So,
$$\hat{g}_{AB} = \begin{pmatrix} \hat{g}_{\mu
u} & \hat{g}_{\mu4} \\ \hat{g}_{4\mu} & \hat{g}_{44} \end{pmatrix}$$

New Notations Alert: defined as in-cooperating EM vector field by GR and defined as in-order to in-cooperate EM with GR, the resulting tensor should be symmetric tensor. I've defined it to make everything in one slide. Please do not take it seriously!

Introducing Kaluza's Framework

Kaluza's Idea Continued

Thus,

$$\hat{g}^{\mu
u} = g^{\mu
u}, \quad \hat{g}^{\mu4} = -\kappa A^{\mu}, \quad \hat{g}^{44} = \kappa^2 A^{\mu} A_{\mu}$$

• κ is constant such that $\kappa = \frac{q}{p_4 c}$

Add 1 to κ²A^μA_μ such that matrix ĝ^{AB} is non-singular i.e. det(ĝ^{AB}) ≠ 0

$$\hat{g}^{\mu
u} = g^{\mu
u}, \quad \hat{g}^{\mu4} = -\kappa A^{\mu}, \quad \hat{g}^{44} = 1 + \kappa^2 A^{\mu} A_{\mu}$$

Damodar Rajbhandari | दामोदर राजभण्डारी | व्याह्य बङ्गारावी | (firstname)@PhysicsLog.com

Introducing Kaluza's Framework

Kaluza's Idea Continued

Thus,

$$\hat{g}^{\mu
u} = g^{\mu
u}, \quad \hat{g}^{\mu4} = -\kappa A^{\mu}, \quad \hat{g}^{44} = \kappa^2 A^{\mu} A_{\mu}$$

• κ is constant such that $\kappa = \frac{q}{p_4 c}$

Add 1 to κ²A^μA_μ such that matrix ĝ^{AB} is non-singular i.e. det(ĝ^{AB}) ≠ 0

$$\hat{g}^{\mu
u} = g^{\mu
u}, \quad \hat{g}^{\mu4} = -\kappa A^{\mu}, \quad \hat{g}^{44} = 1 + \kappa^2 A^{\mu} A_{\mu}$$

Using the fact that $\hat{g}^{AB}\hat{g}_{AC} = \delta^B_C$, the inverse of \hat{g}^{AB} must be given by

Damodar Rajbhandari | दामोदर राजभण्डारी | वागादव बाऊग्रावी | (firstname)@PhysicsLog.com

Introducing Kaluza's Framework

Kaluza's Idea Continued

Thus,

$$\hat{g}^{\mu
u} = g^{\mu
u}, \quad \hat{g}^{\mu4} = -\kappa A^{\mu}, \quad \hat{g}^{44} = \kappa^2 A^{\mu} A_{\mu}$$

• κ is constant such that $\kappa = \frac{q}{p_4 c}$

Add 1 to κ²A^μA_μ such that matrix ĝ^{AB} is non-singular i.e. det(ĝ^{AB}) ≠ 0

$$\hat{g}^{\mu
u} = g^{\mu
u}, \quad \hat{g}^{\mu4} = -\kappa A^{\mu}, \quad \hat{g}^{44} = 1 + \kappa^2 A^{\mu} A_{\mu}$$

Using the fact that $\hat{g}^{AB}\hat{g}_{AC}=\delta^B_C$, the inverse of \hat{g}^{AB} must be given by

$$\hat{g}_{\mu
u} = g_{\mu
u} + \kappa^2 A_{\mu} A_{
u}, \quad \hat{g}_{\mu4} = \kappa A_{\mu}, \quad \hat{g}_{44} = 1$$

Damodar Rajbhandari | दामोदर राजभण्डारी | यगादन नऊगरानी | (firstname)@PhysicsLog.com

I

Modern Approach 000000000000 0000000 Closing Remarks O O

Introducing Kaluza's Framework

Metric of the 5D space

NSERTING
$$\hat{g}_{\mu\nu} = g_{\mu\nu} + \kappa^2 A_{\mu} A_{\nu}$$
, $\hat{g}_{\mu4} = \kappa A_{\mu}$, $\hat{g}_{44} = 1$ IN
 $d\hat{s}^2 = \hat{g}_{AB} dx^A dx^B = \hat{g}_{\mu\nu} dx^{\mu} dx^{\nu} + 2\hat{g}_{\mu4} dx^{\mu} dx^4 + \hat{g}_{44} dx^4 dx^4$
 $\therefore d\hat{s}^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} + (dx^4 + \kappa A_{\mu} dx^{\mu})^2$

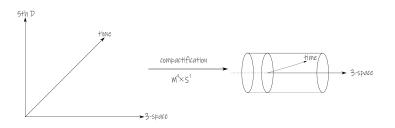
WITH signature (-++++)

Damodar Rajbhandari | दामोदर राजभण्डारी | वागादव बाऊग्रावी | (firstname)@PhysicsLog.com

Modern Approach 000000000000 0000000 Closing Remarks O

Introducing Kaluza's Framework

Klein's add-on to Kaluza's Hypothesis

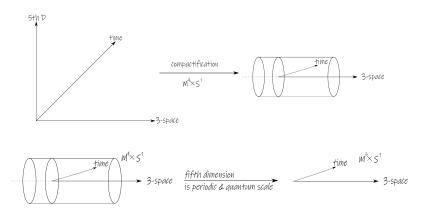


Damodar Rajbhandari | दामोदर राजभण्डारी | वागावन नाऊतहानी | (firstname)@PhysicsLog.com

Modern Approach 000000000000 0000000 Closing Remarks O

Introducing Kaluza's Framework

Klein's add-on to Kaluza's Hypothesis



Classically, which is appropriate space $\mathcal{M}^{(5)}$ or $\mathcal{M}^{(4)}\times\mathcal{S}^1$ as ground state?

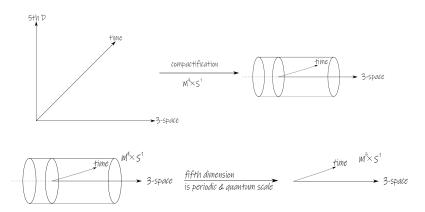
Damodar Rajbhandari | বাদীবर राजभण्डारी | অথেষ্য ৰাজনগুৰী | {firstname}@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

1 of 32

Modern Approach 000000000000 0000000 Closing Remarks O

Introducing Kaluza's Framework

Klein's add-on to Kaluza's Hypothesis



Classically, which is appropriate space $\mathcal{M}^{(5)}$ or $\mathcal{M}^{(4)}\times\mathcal{S}^1$ as ground state? Hard to decide!!! Both has zero energy [Witten, 1981]

Damodar Rajbhandari | दामोदर राजभण्डारी | व्याग्रव् श्वकृतग्रार्थे | (firstname)@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory Jagiellonian University | 21 Jan 2020 🚽

Introducing Kaluza's Framework

Klein's add-on to Kaluza's Hypothesis

* Fifth dimension should be periodic and very small

Damodar Rajbhandari | বাদীবर राजभण्डारी | আয়াইৰ ৰাজ্যীয়াৰ্খা | {firstname}@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

Klein's add-on to Kaluza's Hypothesis

- * Fifth dimension should be periodic and very small (Not notice in everyday experience)
- * Assume \hat{g}_{44} to be scalar field ϕ on $\mathcal{M}^{(4)}$ instead of constant i.e. 1.

Klein's add-on to Kaluza's Hypothesis

- * Fifth dimension should be periodic and very small (Not notice in everyday experience)
- * Assume \hat{g}_{44} to be scalar field ϕ on $\mathcal{M}^{(4)}$ instead of constant i.e. 1. ϕ is also called Brans-Dicke Scalar [Witten, 1981] or Dilaton [Pope, 2003].

Klein's add-on to Kaluza's Hypothesis

- * Fifth dimension should be periodic and very small (Not notice in everyday experience)
- * Assume \hat{g}_{44} to be scalar field ϕ on $\mathcal{M}^{(4)}$ instead of constant i.e. 1. ϕ is also called Brans-Dicke Scalar [Witten, 1981] or Dilaton [Pope, 2003].
- * ∂_4 can be think of killing vector associated with spacetime isometry i.e. $x^4 \mapsto x^4 + \epsilon, \forall \epsilon \in \mathbb{R}$

$$\partial_4 \hat{g}_{AB} = 0 \implies (\partial_4 g_{\mu\nu} = 0, \partial_4 A_{\mu} = 0), \partial_4 \phi = 0$$

 \hookrightarrow Kaluza's refined cylinder condition [Klein, 1926]

Introduction O Modern Approach

Closing Remarks O O

On the language of Differential forms by [Thiry, 1948]

We'll follow a different approach than the Kaluza's original way of using Einstein tensor notation (See [del Castillo, 2019])

Damodar Rajbhandari | বাদাবিব रাজনण्डारी | আয়াইৰ ৰাজনগ্ৰাৰ্থ | (firstname)@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory Jagiellonian University | 21 Jan 2020 13 of 32

Introduction O Modern Approach

Closing Remarks O O

On the language of Differential forms by [Thiry, 1948]

Digression

We'll follow a different approach than the Kaluza's original way of using Einstein tensor notation, following the philosophy of Amy's Ice Cream:

Life is uncertain. Eat dessert first.

Damodar Rajbhandari | दामोदर राजभण्डारी | यागायव वाखनाशावी | (firstname)@PhysicsLog.com

On the language of Differential forms by [Thiry, 1948]

Digression

Exterior (or Wedge) product

- Start with meaningless symbol dx^1, \ldots, dx^n
- Exterior product \wedge : $dx^i \wedge dx^j = -dx^j \wedge dx^i$ and $dx^i \wedge dx^i = 0$
- Usual properties of multiplication holds
- Differential forms is co-ordinate independent
- 0-form on \mathbb{R}^n is a function
- 1-form is an expression of the form $\sum_i f_i(x) dx^i$
- 2-form is $\sum_{i,j} f_{ij}(x) dx^i \wedge dx^j$
- ▶ k-form is $\sum_{I} f_{I}(x) dx^{I}$ where I is a subset $\{i_{1}, \ldots, i_{k}\}$ of $\{1, 2, \ldots, n\}$ and dx^{I} is shorthand $dx^{i_{1}} \land \ldots \land dx^{i_{k}}$

• If
$$\alpha$$
 is a k -form, we say that α has degree k : $\alpha := \sum_{I} \alpha_{I} dx^{I}$.

On the language of Differential forms by [Thiry, 1948]

Digression Contd.

Exterior derivative

Damodar Rajbhandari | दामोदर राजभण्डारी | आगवन माऊगणने | (firstname)@PhysicsLog.com

A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

dy

General Construction

► Assume *M*⁽⁵⁾ be (4+1)D Lorentzian manifold with general co-ordinates *x̂* := *x^A∂_A*

 Introduction
 Framework
 Modern Approach
 Closing Remarks

 0
 00000000
 000000000
 0

 On the language of Differential forms by [Thiry, 1948]

General Construction

- ► Assume *M*⁽⁵⁾ be (4+1)D Lorentzian manifold with general co-ordinates x̂ := x^A∂_A; aim to replace by x_aê^a, ê^a is 1-form.
- ► Rewriting Kaluza-Klein condition, $\partial_4 \hat{g}_{AB} = 0 \implies (\partial_4 g_{\mu\nu} = 0, \partial_4 A_{\mu} = 0), \partial_4 \phi = 0$
- ► Use Clairaut parametrization under the condition that we can foliate our spacetime by spacelike hypersurface, each orthogonal to the Killing vector field ∂₄ i.e. M⁽⁵⁾ ≡ M⁽⁴⁾ × M⁽¹⁾. So,

$$d\hat{s}^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} + (dx^{4} + \kappa A_{\mu}dx^{\mu})^{2}, \quad \text{Set } \kappa = \frac{q}{p_{4}c} = 1$$

$$\therefore d\hat{s}^{2} = e^{2\alpha\phi}g_{\mu\nu}dx^{\mu}dx^{\nu} + e^{2\beta\phi}(dx^{4} + A_{\mu}dx^{\mu})^{2}$$

 α and β are arbitrary constant.

General Construction Contd.

• \hat{g}_{AB} has components in-terms of Clairaut parameterization,

$$\hat{g}_{\mu\nu}=e^{2\alpha\phi}g_{\mu\nu}+e^{2\beta\phi}A_{\mu}A_{\nu}, \hat{g}_{\mu4}=e^{2\beta\phi}A_{\mu}, \hat{g}_{44}=e^{2\beta\phi}, \beta\neq 0.$$

Co-ordinate free descriptions:

- Tetrad basis $\{e^a, e^b\}$ on $\mathcal{M}^{(4)}$: $\eta_{ab} = e^\mu_{a} e^
 u_b g_{\mu
 u} orall a, b \in \{0, 1, 2, 3\}$
- Fünfbein basis $\{\hat{e}^a, \hat{e}^z\}$ on $\mathcal{M}^{(5)}$: $\hat{\eta}_{ab} = \hat{e}^A_{\ a} \hat{e}^B_{\ b} \hat{g}_{AB} \forall a, b \in \{0, \dots, 4\}$
- ▶ By inspection using Tetrad (or Vierbein) and Fünfbein metric: $\hat{e}^a = \exp(\alpha \phi) e^a$ and $\hat{e}^z = \exp(\beta \phi) (dx^4 + A_\mu dx^\mu)$
- z for the basis element pointing in direction associated with the cylinder condition

On the language of Differential forms by [Thiry, 1948]

General Construction Contd.

▶ To calculate curvature, use Maurer-Cartan structure equations,

- 5D Torsion two-form:
$$\hat{T}^a = d\hat{e}^a + \hat{\omega}^a{}_b \wedge \hat{e}^b, a,b \in \{0,\ldots,4\}$$

- Curvature two-form:
$$\hat{R}^{a}_{\ b} = \hat{\omega}^{a}_{\ b} + \hat{\omega}^{a}_{\ c} \wedge \hat{\omega}^{c}_{\ b} + \hat{\omega}^{a}_{\ z} \wedge \hat{e}^{z},$$

where $\hat{\omega}^{a}_{\ b}$ is Spin connection 1-form i.e. $\hat{\omega}^{a}_{\ b} := \hat{\omega}^{\ a}_{\ c} \frac{\partial}{\partial t} dx^{c}$

Our spacetime is Torsion free, the structure equation reduces to

$$\hat{\mathcal{T}}^{a} = 0 = d\hat{e}^{a} + \hat{\omega}^{a}_{\ b} \wedge \hat{e}^{b} + \hat{\omega}^{a}_{\ z} \wedge \hat{e}^{z}$$
(1)

$$\hat{T}^{z} = 0 = d\hat{e}^{z} + \hat{\omega}^{z}{}_{b} \wedge \hat{e}^{b} + \hat{\omega}^{z}{}_{z} \wedge \hat{e}^{z}$$
(2)

$$\hat{R}^{a}_{\ b} = \hat{\omega}^{a}_{\ b} + \hat{\omega}^{a}_{\ c} \wedge \hat{\omega}^{c}_{\ b} + \hat{\omega}^{a}_{\ z} \wedge \hat{e}^{z}, \qquad (3)$$

$$\hat{R}^{a}_{\ z} = \hat{\omega}^{a}_{\ z} + \hat{\omega}^{a}_{\ c} \wedge \hat{\omega}^{c}_{\ z} + \hat{\omega}^{a}_{\ z} \wedge \hat{e}^{z}, \qquad (4)$$

$$\hat{R}^{z}_{\ z} = \hat{\omega}^{z}_{\ z} + \hat{\omega}^{z}_{\ c} \wedge \hat{\omega}^{c}_{\ z} + \hat{\omega}^{z}_{\ z} \wedge \hat{e}^{z} \tag{5}$$

Modern Approach

Closing Remarks O O

18 of 32

On the language of Differential forms by [Thiry, 1948]

General Construction Contd.

• One form: $d\phi = \partial_A \phi dx^A = \partial_\mu \phi dx^\mu + \partial_4 \phi dx^4 = \partial_\mu \phi dx^\mu, \quad \because \partial_4 \phi = 0$ • To calculate Spin connection, $\hat{e}^a = \exp(\alpha \phi) e^a$ $d\hat{e}^a = d(\exp(\alpha \phi) e^a)$ $= d \exp(\alpha \phi) \wedge e^a + \exp(\alpha \phi) de^b$ $= \alpha \exp(\alpha \phi) d\phi \wedge e^a - \exp(\alpha \phi) \omega^a_b \wedge e^b, \quad \text{Using eqn (1) in } \mathcal{M}^{(4)}$ $= \alpha \exp(\alpha \phi) \partial_\mu \phi (dx^\mu \wedge e^a) - \exp(\alpha \phi) \omega^a_b \wedge e^b$

Damodar Rajbhandari | दामोदर राजभण्डारी | वागावन बाङगाया | (firstname)@PhysicsLog.com

Closing Remarks O O

On the language of Differential forms by [Thiry, 1948]

General Construction Contd.

► Using eqn 1,

$$\begin{aligned} \hat{T}^{a} &= 0 = d\hat{e}^{a} + \hat{\omega}^{a}{}_{b} \wedge \hat{e}^{b} + \hat{\omega}^{a}{}_{z} \wedge \hat{e}^{z} \\ \text{or, } d\hat{e}^{a} &= -\hat{\omega}^{a}{}_{b} \wedge \hat{e}^{b} - \hat{\omega}^{a}{}_{z} \wedge \hat{e}^{z} \\ &= -\exp(\alpha\phi)\hat{\omega}^{a}{}_{b} \wedge e^{b} - \exp(\beta\phi)\hat{\omega}^{a}{}_{z} \wedge (dx^{4} + A_{\mu}dx^{\mu}) \\ &= -\exp(\alpha\phi)\hat{\omega}^{a}{}_{b} \wedge e^{b} - \exp(\beta\phi)\hat{\omega}^{a}{}_{z} \wedge (dx^{4} + A), \quad \mathcal{A} := A_{\mu}dx^{\mu} \end{aligned}$$

Comparing like terms from two ways:

$$\alpha \exp(\alpha \phi) \partial_{\mu} \phi(dx^{\mu} \wedge e^{a}) = -\exp(\beta \phi) \hat{\omega}^{a}{}_{z} \wedge (dx^{4} + \mathcal{A})$$

$$\therefore \alpha \exp(\alpha \phi) \partial_{\mu} \phi(e^{a} \wedge dx^{\mu}) = \exp(\beta \phi) \hat{\omega}^{a}{}_{z} \wedge (dx^{4} + \mathcal{A}) \qquad (6)$$

and, $\hat{\omega}^{a}{}_{b} \wedge e^{b} = \omega^{a}{}_{b} \wedge e^{b} \qquad (7)$

Closing Remarks O O

On the language of Differential forms by [Thiry, 1948]

General Construction Contd.

Similary,

$$\begin{split} d\hat{e}^{z} &= d[\exp(\beta\phi)(dx^{4} + \mathcal{A})] \\ &= \beta \exp(\beta\phi)d\phi \wedge (dx^{4} + \mathcal{A}) + \exp(\beta\phi)d^{2}x^{4} + \exp\beta\phi d\mathcal{A} \\ &= \beta \exp(\beta\phi)\partial_{\mu}\phi dx^{\mu} \wedge (dx^{4} + \mathcal{A}) + \exp(\beta\phi)\mathcal{F}, \quad \mathcal{F} := d\mathcal{A} \end{split}$$

where d^2x^4 term disappear because $d^2\Phi = 0$ for any differential form Φ and x^4 is zero form.

Using eqn 2,

$$\begin{split} \hat{T}^z &= 0 = d\hat{e}^z + \hat{\omega}^z_{\ b} \wedge \hat{e}^b + \hat{\omega}^z_{\ z} \wedge \hat{e}^z \\ \text{or, } d\hat{e}^z &= -\exp(\alpha\phi)\hat{\omega}^z_{\ b} \wedge e^b - \hat{\omega}^z_{\ z} \wedge \hat{e}^z \end{split}$$

Damodar Rajbhandari | दामोदर राजभण्डारी | वागादव बाउन्हार्या | (firstname)@PhysicsLog.com

Framework 000000000 Modern Approach

Closing Remarks O O

On the language of Differential forms by [Thiry, 1948]

General Construction Contd.

Comparing like terms from two ways:

$$\begin{split} \hat{\omega}^{z}_{\ z} &= \hat{\omega}^{zz} = 0, \\ \hat{\omega}^{z}_{\ c} &= -\beta \exp(-\alpha\phi) \partial^{a} \phi \hat{e}^{z} - \frac{1}{2} \mathcal{F}^{a}_{\ b} \ \exp\{(\beta - 2\alpha)\phi\} \hat{e}^{b}, \\ \hat{\omega}^{cz} &= -\hat{\omega}^{zc} = \beta \exp(-\alpha\phi) \partial_{a} \phi \hat{e}^{z} + \frac{1}{2} \mathcal{F}_{ac} \exp[(\beta - 2\alpha)\phi] \hat{e}^{c} \end{split}$$

where \mathcal{F}_{ac} is the components of \mathcal{F} in the co-ordinate-free basis. i.e. Electromagnetic tensor. Hint: See this arXiv:1711.09503v1 [gr-qc]

Damodar Rajbhandari | दामोदर राजभण्डारी | आग्रादव बाऊग्रावी | (firstname)@PhysicsLog.com

of 32

Curvature two-form

Using all the Machinery we built, in eqn (5):

$$\hat{R}_{z}^{z} = \hat{\omega}_{z}^{z} + \hat{\omega}_{c}^{z} \wedge \hat{\omega}_{z}^{c} + \hat{\omega}_{z}^{z} \wedge \hat{e}^{z}$$
or, $\hat{R}_{z}^{z} = \hat{\omega}_{c}^{z} \wedge \hat{\omega}_{z}^{c}$
or, $\hat{\eta}_{zz}\hat{R}^{zz} = \hat{\omega}_{c}^{z} \wedge \hat{\omega}^{cz}\hat{\eta}_{zz}$
or, $\hat{R}^{zz} = \hat{\omega}_{c}^{z} \wedge \hat{\omega}^{cz}$

$$= -[\beta \exp(-\alpha\phi)\partial^{a}\phi\hat{e}^{z} + \frac{1}{2}\mathcal{F}_{b}^{a}\exp\{(\beta - 2\alpha)\phi\}\hat{e}^{b}] \wedge [\beta \exp(-\alpha\phi)\partial_{a}\phi\hat{e}^{z} + \frac{1}{2}\mathcal{F}_{ac}\exp\{(\beta - 2\alpha)\phi\}\hat{e}^{c}]$$

$$\therefore \hat{R}_{zz} = \beta^{2}\exp(-2\alpha\phi)\Box\phi + \frac{1}{4}\exp\{2(\beta - 2\alpha)\phi\}\mathcal{F}^{2}$$

where, $\mathcal{F}^2 := \mathcal{F}^{ab} \mathcal{F}_{ab}$, $\Box := \partial_a \partial^a = \partial_\mu \partial^\mu := d'$ Alembert operator or Laplacian operator in 4D.

Damodar Rajbhandari | दामोदर राजभण्डारी | यागावन नाऊतारानी | (firstname)@PhysicsLog.com

On the language of Differential forms by [Thiry, 1948]

Curvature two-form Contd.

Remaining curvature two-forms [Pope, 2003, Miller, 2013]:

$$\hat{R}_{ab} = \exp(-2\alpha\phi)[R_{ab} + (\alpha\beta - 4\alpha^2)\partial_a\phi\partial_b\phi - \alpha\eta_{ab}\Box\phi] - \frac{1}{2}\exp\{2(\beta - 2\alpha)\phi\}\mathcal{F}_a{}^c\mathcal{F}_{bc}$$

and, $\hat{R}_{az} = \hat{R}_{za} = \frac{1}{2}\exp\{(\beta - \alpha)\phi\}\nabla^b[\exp\{2(\alpha + \beta)\phi\}\mathcal{F}_{ab}]$

where R_{ab} is curvature two-form on $\mathcal{M}^{(4)}, \eta_{ab}$ is 4D Minkowski metric, and ∇^{b} is covariant derivative on co-ordinate free basis.

Damodar Rajbhandari | दामोदर राजभण्डारी | वागादन बाङग्रावी | (firstname)@PhysicsLog.com

5D Ricci scalar

.

Trace of the curvature 2-form

$$\hat{R} = \hat{\eta}^{AB} \hat{R}_{AB} = \eta^{ab} \hat{R}_{ab} + \hat{R}_{zz}$$

$$= \eta^{ab} [\exp(-2\alpha\phi) \{ R_{ab} + (\alpha\beta - 4\alpha^2) \partial_a \phi \partial_b \phi - \alpha \eta_{ab} \Box \phi \} - \frac{1}{2} \exp\{2(\beta - 2\alpha)\phi\} \mathcal{F}_a{}^c \mathcal{F}_{bc}] + \beta^2 \exp(-2\alpha\phi) \Box \phi + \frac{1}{4} \exp\{2(\beta - 2\alpha)\phi\} \mathcal{F}^2$$

$$= \exp(-2\alpha\phi) \{ \eta^{ab} R_{ab} + (\alpha\beta - 4\alpha^2)(\partial\phi)^2 - \alpha \eta_a^a \Box \phi \} - \frac{1}{2} \exp\{2(\beta - 2\alpha)\phi\} \mathcal{F}^2 + \beta^2 \exp(-2\alpha\phi) \Box \phi + \frac{1}{4} \exp\{2(\beta - 2\alpha)\phi\} \mathcal{F}^2$$

$$\therefore \hat{R} = \exp(-2\alpha\phi) \{ R + (\alpha\beta - 4\alpha^2)(\partial\phi)^2 - (\beta^2 - 2\alpha) \Box \phi \} - \frac{1}{4} \exp\{2(\beta - 2\alpha)\phi\} \mathcal{F}^2$$
(8)

Damodar Rajbhandari | दामोदर राजभण्डारी | आग्रादव बाऊग्रावी | (firstname)@PhysicsLog.com

24 of 32

 Introduction
 Framework
 Modern Approach
 Closing Remarks

 0
 00000000
 0000000000
 0

 Field Equation

Lagrangian Density

- Easily verify: $\sqrt{-\hat{g}} = \sqrt{-\det(\hat{g_{AB}})} = \exp\{(\beta + 4\alpha)\phi\}\sqrt{-g}\}$
- Lagrangian density (Setting $\frac{1}{16\pi G} = 1$):

$$\begin{aligned} \mathcal{L} &:= \sqrt{-\hat{g}}\hat{R} \\ &= \sqrt{-g}\exp\{(\beta + 2\alpha)\phi\}[R + (\alpha\beta - 4\alpha^2)(\partial\phi)^2 + (\beta^2 - 2\alpha)\Box\phi] - \\ &\quad \frac{1}{4}\sqrt{-g}\exp(3\beta\phi)\mathcal{F}^2 \end{aligned}$$

- ► In-order to include 4D Einstein gravity with its Lagrangian has the form $\sqrt{-g}R$ [Pope, 2003]. i.e. $\beta := -2\alpha$
- Our beautiful Lagrangian becomes

$$\mathcal{L} = \sqrt{-g} [R - 6\alpha^2 (\partial \phi)^2 + (4\alpha^2 - 2\alpha) \Box \phi - \frac{1}{4} \exp(-6\alpha \phi) \mathcal{F}^2]$$

Introduction O Framework 000000000 Modern Approach

Closing Remarks O O

Field Equation

Lagrangian Density Contd.

- ► $-6\alpha^2(\partial\phi)^2$ equivalent to $-\frac{1}{2}(\partial\phi)^2$ is a Klein-Gordon Lagrangian for a massless scalar field. Extract $\alpha = \frac{1}{\sqrt{12}}$.
- Drop □ φ term. (∵ It gives total derivative in L which does not contribute to the field equation [Pope, 2003])

Final version of our beautiful Lagrangian becomes:

$$\mathcal{L} = \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^2 \right]$$
(9)

Set $\phi = 0$ retrieves Einstein-Maxwell Lagrangian:

$$\mathcal{L}=\sqrt{-g}(R-rac{1}{4}\mathcal{F}^2)$$

Damodar Rajbhandari | दामोदर राजभण्डारी | यागायव बाळाग्रावी | (firstname)@PhysicsLog.com

Introduction O Framework 000000000 Modern Approach

Closing Remarks O O

Field Equation

Lagrangian Density Contd.

- ► $-6\alpha^2(\partial\phi)^2$ equivalent to $-\frac{1}{2}(\partial\phi)^2$ is a Klein-Gordon Lagrangian for a massless scalar field. Extract $\alpha = \frac{1}{\sqrt{12}}$.
- Drop □φ term. (∵ It gives total derivative in L which does not contribute to the field equation [Pope, 2003])
- Final version of our beautiful Lagrangian becomes:

$$\mathcal{L} = \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^2 \right]$$
(9)

Set $\phi = 0$ retrieves Einstein-Maxwell Lagrangian:

$$\mathcal{L}=\sqrt{-g}(R-rac{1}{4}\mathcal{F}^2)$$

▶ But setting $\phi = 0$ is illegal ($\because \hat{g}_{AB}$ will become non-invertible).

Ingredients for Field Equation

- ▶ For simplicity, assume 5D spacetime has no boundary
- Remember from General relativity, $\delta \sqrt{-g} = -\frac{1}{2}\sqrt{-g}g_{\alpha\beta}\delta g^{\alpha\beta}$
- The variation on action is:

$$\begin{split} \delta S_{\text{Kaluza}} &= \int d^5 x \delta \mathcal{L} \\ &= \int d^5 x \delta \left[\sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^2 \right) \right] \\ &= \underbrace{\int \sqrt{-g} \delta \left(R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^2 \right) d^5 x}_{\delta S_1} + \underbrace{\int \left(R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^2 \right) \delta \sqrt{-g} d^5 x}_{\delta S_2} \end{split}$$

Framework

Modern Approach

Closing Remarks O

Field Equation

(

Field Equation on-process

$$\begin{split} \delta S_{1} &= \int \sqrt{-g} \delta \left(R - \frac{1}{2} (\partial \phi)^{2} - \frac{1}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^{2} \right) d^{5}x \\ &= \int \sqrt{-g} \delta \left(g^{\mu\nu} R_{\mu\nu} - \frac{1}{2} g^{\mu\nu} (\partial_{\mu}\phi) (\partial_{\nu}\phi) - \frac{1}{4} \exp(-\sqrt{3}\phi) g^{\mu\rho} g^{\nu\sigma} \mathcal{F}_{\mu\nu} \mathcal{F}_{\rho\sigma} \right) d^{5}x \\ &= \int \sqrt{-g} \left(g^{\mu\nu} \delta R_{\mu\nu} + R_{\mu\nu} \delta g^{\mu\nu} - \frac{1}{2} (\partial_{\mu}\phi) (\partial_{\nu}\phi) \delta g^{\mu\nu} - \frac{1}{2} g^{\mu\nu} (\partial_{\mu}\phi) \partial_{\nu} \delta \phi \right) d^{5}x \\ &- \frac{1}{4} \int \sqrt{-g} \exp(-\sqrt{3}\phi) \left(-\sqrt{3} \mathcal{F}^{2} \delta \phi + 2 \mathcal{F}_{\mu\rho} \mathcal{F}^{\nu\rho} \delta g^{\mu\nu} + 2 \mathcal{F}^{\mu\nu} \delta \mathcal{F}_{\mu\nu} \right) d^{5}x \end{split}$$

$$\delta S_2 = \int \left(R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^2 \right) \delta \sqrt{-g} d^5 x$$
$$= -\frac{1}{2} \int \sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^2 \right) g_{\alpha\beta} \delta g^{\alpha\beta} d^5 x$$

Damodar Rajbhandari | বাদ্যাবং রাজনण্डारी | আমাহ্রন্ আন্তার্জ্ঞার্ম | 〈firstname〉@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

	Modern Approach	Closing Remarks
	0000000000 0000000	
Field Equation		

Field Equation on-process

Setting variation of action = 0, this results

$$0 = \int \sqrt{-g} g^{\mu\nu} \delta R_{\mu\nu} d^5 x \tag{10}$$

$$0 = -\frac{1}{2} \int \sqrt{-g} \exp(-\sqrt{3}\phi) \mathcal{F}^{\mu\nu} \delta \mathcal{F}_{\mu\nu} d^5 x$$
(11)

$$0 = \int \sqrt{-g} \left(\frac{1}{4} \sqrt{3} \mathcal{F}^2 - \frac{1}{2} (\partial^{\mu} \phi) \partial_{\mu} \right) \delta \phi d^5 x$$
 (12)

$$0 = \int \sqrt{-g} \left[R_{\mu\nu} - \frac{1}{2} Rg_{\mu\nu} - \frac{1}{2} \left((\partial_{\mu}\phi)(\partial_{\nu}\phi) - \frac{1}{2} (\partial\phi)^2 g_{\mu\nu} \right) - \frac{1}{2} \left(\mathcal{F}^2_{\mu\nu} - \frac{1}{4} \mathcal{F}g_{\mu\nu} \right) \right] \delta g^{\mu\nu} d^5 x$$
(13)

where $\mathcal{F}^2_{\mu
u}:=\mathcal{F}_{\mu
ho}\mathcal{F}_{
u}{}^{
ho}$

Field Equation

Serving Field Equation

- Eqn 10 is integral over boundary thus, vanishes.
- Remaining three integrals defined our field equations:

$$0 = \nabla^{\mu} \left(\exp(-\sqrt{3}\phi) \mathcal{F}_{\mu\nu} \right)$$
(14)

$$\Box \phi = -\frac{\sqrt{3}}{4} \exp(-\sqrt{3}\phi) \mathcal{F}^2$$
(15)

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{1}{2}\left(\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}(\partial\phi)^{2}g_{\mu\nu}\right) + \frac{1}{2}\left(\mathcal{F}_{\mu\nu}^{2} - \frac{1}{4}\mathcal{F}^{2}g_{\mu\nu}\right)$$
(16)

Damodar Rajbhandari | दामोदर राजभण्डारी | आगायव गऊगणावी | (firstname)@PhysicsLog.com

Framework 000000000 Modern Approach

Closing Remarks O O

Field Equation

Few words on Field equation

- Eqn 14 is an equation of continuity
- Eqn 15 suggest $\phi \neq 0$

Damodar Rajbhandari | दामोदर राजभण्डारी | ঝুয়াব্ব, ঝুজুয়াঝু | (firstname)@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

Few words on Field equation

- Eqn 14 is an equation of continuity
- ▶ Eqn 15 suggest $\phi \neq 0$ (∵ Source term \mathcal{F} cannot be zero).

Damodar Rajbhandari | दामोदर राजभण्डारी | आगावेश गाऊगुशांगी | {firstname}@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

Few words on Field equation

- Eqn 14 is an equation of continuity
- ► Eqn 15 suggest φ ≠ 0 (∵ Source term F cannot be zero). Source term for scalar field. Eqn 15 is Klein-Gordon equation for massless scalar field.

ln-general,
$$\phi = 0$$
 iff $\mathcal{F} = 0$.

Modern Approach 000000 Field Equation

Few words on Field equation

- Eqn 14 is an equation of continuity
- Eqn 15 suggest $\phi \neq 0$ (\because Source term \mathcal{F} cannot be zero). Source term for scalar field. Eqn 15 is Klein-Gordon equation for massless scalar field.

• In-general,
$$\phi = 0$$
 iff $\mathcal{F} = 0$.

Eqn 16 resemble as Field eqn from Einstein gravity if

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \underbrace{\frac{1}{2}\left(\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}(\partial\phi)^{2}g_{\mu\nu}\right) + \frac{1}{2}\left(\mathcal{F}_{\mu\nu}^{2} - \frac{1}{4}\mathcal{F}^{2}g_{\mu\nu}\right)}_{T_{\mu\nu} = \text{Energy-Momentum tensor}}$$

_nergy-iviomentum tensor

Damodar Raibhandari | दामोदर राजभण्डारी | आगावन नाऊगशानी | (firstname)@PhysicsLog.com

of 32

Few words on Field equation

- Eqn 14 is an equation of continuity
- Eqn 15 suggest φ ≠ 0 (∵ Source term F cannot be zero). Source term for scalar field. Eqn 15 is Klein-Gordon equation for massless scalar field.

• In-general,
$$\phi = 0$$
 iff $\mathcal{F} = 0$.

Eqn 16 resemble as Field eqn from Einstein gravity if

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \underbrace{\frac{1}{2}\left(\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}(\partial\phi)^{2}g_{\mu\nu}\right) + \frac{1}{2}\left(\mathcal{F}_{\mu\nu}^{2} - \frac{1}{4}\mathcal{F}^{2}g_{\mu\nu}\right)}_{T_{\mu\nu}:= \text{ Energy-Momentum tensor}}$$

• If $\phi = 0, \mathcal{F} = 0$ then, eqn 16 reduces to 4D Einstein pure gravity with no EM field

Why this theory is so remarkable?

- Various attempts have been made trying to find unified theories that include all known fundamental interactions

Damodar Rajbhandari | বাদীবर राजभण्डारी | আগাইৰ ৰাজ্যযোগী | {firstname}@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

Why this theory is so remarkable?

- Various attempts have been made trying to find unified theories that include all known fundamental interactions
- Inspired from Kaluza-Klein (K-K) theory, string theory uses string instead of periodic circle which is the improvement on K-K theory based on the Quantum theory [Overduin and Wesson, 1997]

Damodar Rajbhandari | বামাবং राजभण्डारी | অগ্যশ্ব ৰাস্তনযোগী | (firstname)@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

Why this theory is so remarkable?

- Various attempts have been made trying to find unified theories that include all known fundamental interactions
- Inspired from Kaluza-Klein (K-K) theory, string theory uses string instead of periodic circle which is the improvement on K-K theory based on the Quantum theory [Overduin and Wesson, 1997]

Damodar Rajbhandari | বামাবং राजभण्डारी | অগ্যশ্ব ৰাস্তনযোগী | (firstname)@PhysicsLog.com A Beginning for the search for a Theory of Everything- Kaluza-Klein Theory

32 of 32

Why this theory is so remarkable?

- Various attempts have been made trying to find unified theories that include all known fundamental interactions
- Inspired from Kaluza-Klein (K-K) theory, string theory uses string instead of periodic circle which is the improvement on K-K theory based on the Quantum theory [Overduin and Wesson, 1997]

Thank You For Listening! I Invite You To Ask Any Questions You May Have...

Damodar Rajbhandari | दामोदर राजभण्डारी | व्याह्य बङ्गाराबे | (firstname)@PhysicsLog.com

References

References I

Appelquist, T., Chodos, A., and Freund, P. (1987). "Modern Kaluza-Klein theories". Frontiers in physics. Addison-Wesley Pub. Co.
del Castillo, G. F. T. (2019).
An introduction to the kaluza-klein formulation.
https://rmf.smf.mx/ojs/rmf-e/article/view/4451, Online accessed 2020-Dec-20.
Kaluza, T. (1921).
Zum unitätsproblem der physik.
Sitzungsberichte der Königlich Preußischen Akademie der
Wissenschaften, Berlin.
Translation in [Appelquist et al., 1987].

References

References II

📔 Klein, O. (1926).

Quantum theory and five dimensional theory of relativity. Zeitschrift für Physik volume.

📄 Miller, J. (2013).

A brief summary of kaluza-klein theory.

http://www.thephysicsmill.com/blog/wpcontent/uploads/jmm_GR2_paper.pdf, Online accessed 2020-Dec-20.

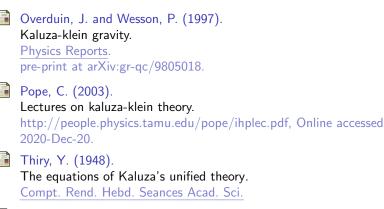
O'Raifeartaigh, L. and Straumann, N. (1998). Early history of gauge theories and kaluza-klein theories, with a

glance at recent developments.

pre-print at arXiv:hep-ph/9810524.

References

References III



Witten, E. (1981).

Search for a realistic kaluza-klein theory. Nuclear Physics B.